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Abstract— Resistive switching memory (RRAM) is a
promising technology for embedded memory and their ap-
plication in computing. In particular, RRAM arrays can pro-
vide a convenient primitive for matrix-vector multiplication
(MVM) with strong impact on the acceleration of neural net-
works for artificial intelligence (AI). At the same time, RRAM
is affected by intrinsic conductance variations which might
cause a degradation of accuracy in AI inference hardware.
This work provides a detailed study of the multilevel-cell
(MLC) programming of RRAM for neural network applica-
tions. We compare three MLC programming schemes and
discuss their variations in terms of the different slope in the
programming characteristics. We test the accuracy of a 2-
layer fully-connected neural network (FC-NN) as a function
of the MLC scheme, the number of weight levels, and the
weight mapping configuration. We find a trade-off between
the FC-NN accuracy, size and current consumption. This
work highlights the importance of a holistic approach to
AI accelerators encompassing the device properties, the
overall circuit performance, and the AI application speci-
fications.

Index Terms— Resistive switching memory (RRAM); mul-
tilevel cell (MLC) operation; artificial neural network (ANN);
in-memory computing (IMC).

I. INTRODUCTION

RESISTIVE switching memory (RRAM) has recently
gained increased interest for its application in novel

computing concepts called in-memory computing (IMC) [1],
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Fig. 1. (a) Schematic of a 1T1R RRAM device of the 4-kbit array used
in this work. The RRAM has a stack consisting of a Ti-based oxygen
reservoir and an amorphous HfO2 switching layer sandwiched between
a TiN TE and a TiN BE. (b) Multilevel I − V characteristics of 1T1R
RRAM device measured for increasing VG.

[2]. A major advantage of IMC is the capability to execute
matrix-vector multiplication (MVM) in parallel on multiple
rows and columns of a memory array, which allows for a
strong acceleration of neural networks [3]–[7]. The recent
demonstration of embedded RRAM devices at Mbit capac-
ity [8] enables the design and integration of IMC circuits [9]–
[11], thus paving the way for energy efficient RRAM-based
accelerators of artificial intelligence (AI).

A potential issue for RRAM-based IMC is the limited
precision of conductance, which is affected by programming
variations [12], [13], random telegraph noise (RTN) [14],
drift [15], and other types of random fluctuations [16], [17].
Additionally, reliability concerns at array-level such as con-
ductance relaxation over time [18] and temperature insta-
bility [19] also challenge the achievement of a stable and
high accuracy in RRAM-based IMC. Multilevel-cell (MLC)
program/verify techniques have been proposed to overcome
the variability effects and improve the precision of conduc-
tance in RRAM [20]–[23]. Still, the optimization of MLC
precision and its impact on the overall performance of the
IMC accelerators in terms of precision and energy efficiency
is not fully understood.

This work compares three different MLC program/verify
schemes for a 4kb RRAM array used to accelerate MVM
in a 2-layer fully-connected neural network (FC-NN). We
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Fig. 2. Measured single-cell (gray line) and median (symbol) conductance of 4 LRS levels programmed in the 4-kbit array by (a) ISPVA, (b)
IGVVA-100, and (c) IGVVA-10. ISPVA shows abrupt conductance transitions in correspondence of the set voltage while IGVVA-100 and IGVVA-10
provide a more gradual conductance increase as a result of better current modulation achieved by VG control than VTE control. Smaller voltage
step ∆VG makes IGVVA-10 programming more accurate than IGVVA-100.

show that gate-based program/verify techniques, where the
compliance current is increased at each programming step,
display the best accuracy thanks to relatively shallow char-
acteristics of conductance vs. number of pulses. Thanks to
this optimized control of MLC conductance, we program the
RRAM array with synaptic weights obtained from an offline
training and quantization technique for the recognition of
handwritten characters. The results are discussed in terms of
the tradeoff between inference testing accuracy and current
consumption in the array. These results show that a multiscale
approach, ranging from weight precision at device level to
overall circuit performance, is essential in the design of IMC
accelerators of AI.

Preliminary results about this work were reported in [24].
In this work, we extend the number of MLC states up to
9 resistive levels, resulting in 19 synaptic weights. We also
include the impact of fluctuations on the FC-NN accuracy,
by comparing the conductance immediately after verify to
the one at the end of the algorithm. Finally, we include
a comprehensive study of accuracy as a function of the
number/choice of conductance levels and the number of hidden
neurons, also including the impact of IR drop due to parasitic
wire resistance in the RRAM array.

II. MULTILEVEL 1T1R RRAM DEVICE

The 4-bit array used as test vehicle in this work includes
64x64 RRAM cells based on the one-transistor/one-resistor
(1T1R) structure shown in Fig. 1(a). This structure consists
of the serial connection of a TiN/Ti/HfO2/TiN RRAM with
a n-channel MOS in 0.25 µm CMOS technology, which is
introduced to select the cell and limit the current to the
compliance current IC . Fig. 1(b) shows the measured I − V
curves for increasing IC which was controlled by the gate
voltage VG. These characteristics present abrupt set transitions
from the high resistance state (HRS) to the low resistance
state (LRS) and gradual reset transitions from the LRS to the
HRS for positive/negative voltages, respectively. These curves
clearly support the ability of our 1T1R RRAM devices to
achieve MLC operation by tuning of VG.

Fig. 3. Measured conductance of a single RRAM device evidencing the
after-switching conductance GAS and the end-algorithm conductance
GEA for (a) ISPVA and (b) IGVVA-100. The inset shows the pulse
amplitude of VTE and VG for AS and EA conditions.

III. MLC ALGORITHM CHARACTERIZATION

To achieve an accurate MLC programming of the 4-kbit
RRAM array, we compared two program/verify algorithm
approaches based on the modulation of top electrode voltage
VTE and gate voltage VG, respectively. The first algorithm,
referred to as incremental step pulse program and verify
algorithm (ISPVA), was proposed in [25] and allows multilevel
programming via step-by-step application of set pulses (pulse
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Fig. 4. Conductance CDFs of HRS and 4 LRS levels measured (a) after the switching event (AS) and (b) at the end of the algorithm (EA) by
application of ISPVA, IGVVA-100, and IGVVA-10. IGVVA-10 CDFs display the lowest D2D variability for both AS and EA condition, followed by
ISPVA and IGVVA-100. (c) Conductance variability of LRS levels for decreasing programming voltage step in IGVVA.

width tpulse = 1 µs) with increasing VTE while VG is set
to achieve the IC corresponding to the desired target level,
and the source of the transistor is grounded. Fig. 2(a) shows
the conductance of 4 LRS levels measured by application
of ISPVA on a quarter of the 4-kbit 1T1R RRAM devices
initially prepared in HRS. VTE was increased from 0.5 V to
2 V with a voltage step ∆VTE = 100 mV by keeping the
amplitude of VG pulses fixed at 1 V, 1.2 V, 1.4 V, and 1.6 V
to achieve the target level currents of 10 µA, 20 µA, 30 µA,
and 40 µA, respectively. Note that, after any programming
operation, a read operation was performed by application of
VG = 1.7 V and VTE = 0.2 V. By considering both single cell
conductance G and its median value <G> for each LRS level,
it can be noted that abrupt changes take place as soon as VTE

becomes larger than Vset ≈ 0.9 V, which evidences that ISPVA
is not suitable to finely modulate the device conductance. In
particular, the median characteristics show faster transitions
for increasing VG.

To overcome the ISPVA limitation, we designed and inves-
tigated a VG-based programming algorithm called incremental
gate voltage and verify algorithm (IGVVA) [24]. Unlike VTE-
controlled ISPVA, IGVVA consists of the application of pro-
gramming pulses (pulse width tpulse = 1 µs) with increasing
amplitude VG from 0.5 V to 1.7 V. On the other hand,
the amplitude of VTE programming pulses is kept equal to
1.2 V, which is larger than Vset to allow for the set transition.
Fig. 2(b) and (c) show the measured G and <G> as a function
of VG by IGVVA based on the voltage steps ∆VG = 100 mV
(IGVVA-100) and ∆VG = 10 mV (IGVVA-10), respectively,
which exhibit a more gradual increase compared to ISPVA.
This is due to the higher accuracy in the device current control
arising from the tight relation between VG and IC [26]. Also, it
can be noted that the level programming precision of IGVVA-
10 is higher than IGVVA-100 thanks to the smaller ∆VG

allowing a finer control of current flowing in the device during
the programming algorithm operation.

To compare the programming accuracy of these MLC
algorithms, we programmed 5 levels into the 4-kbit RRAM
array by measuring the after-switching (AS) and the end-
algorithm (EA) conductance, namely the conductance values
measured immediately above the verify threshold and the value

Fig. 5. (a) Comparison among ISPVA, IGVVA-100, and IGVVA-10
median I − V characteristics of the LRS with <G> = 200 µS in
terms of maximum slope g = dI/dV. (b) CDFs of ISPVA, IGVVA-100,
and IGVVA-10 dI/dV. According to Fig. 2, ISPVA provides dI/dV CDFs
with increasing median and standard deviation variability for increasing
level. On the other hand, IGVVA-100 and IGVVA-10 show dI/dV with
small median and standard deviation variability. In particular, IGVVA-
10 dI/dV CDFs show the lowest median variability, confirming its finer
conductance tuning capability.

measured at the end of the whole algorithm, respectively [23].
For example, Fig. 3 shows the AS conductance GAS and the
EA conductance GEA for (a) ISPVA and (b) IGVVA-100
program/verify pulses in the case of the conductance level
with Gtarget = 150 µS. It should be noted that in ISPVA,
no program pulses are applied to the device after GAS is
measured, while the read pulse is applied until the number
of pulses reaches 16, which would be needed to increase the
theoretical VTE to the maximum value of 2 V. Similar to
ISPVA, no additional programming pulses are applied to the
device between the AS state and the EA state in IGVVA-100.
This allows to evidence post-programming fluctuations of the
conductance. Note also that in the case of IGVVA-10 (not
shown), we adopted the same scheme used for IGVVA-100,
while applying a total sequence of 121 pulses as a result of the
smaller ∆VG. This highlights the tradeoff between the higher
precision obtained by reducing ∆VG and the larger number
of pulses, hence longer programming time.

Fig. 4(a) shows the (a) AS and (b) EA cumulative dis-
tributions (CDFs) of HRS and 4 programmed LRS levels.
Compared to AS, the EA distributions show a conductance
relaxation for any level, thus resulting in the conductance
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Fig. 6. Measured AS and EA CDFs of 9 IGVVA-10 conductance levels
used to implement the synaptic weights into the 4-kbit RRAM array.

of some programmed cells decreases below the conductance
target [23]. Both figures indicate that IGVVA-10 shows the
lowest device-to-device (D2D) variability, followed by ISPVA
and IGVVA-100. Also, to better evaluate the impact of pro-
gramming step on D2D variability in IGVVA, we measured
the standard deviation of LRS conductance for decreasing
∆VG. As shown in Fig. 4(c), reducing ∆VG from 100 mV
to 10 mV allows to significantly decrease the D2D variability
of LRS levels as a result of finer control of current during
program/verify algorithm operation.

To gain more insight about the control of CDFs by the
algorithms, we also studied the maximum slope g = dI/dV
of the experimental I − V characteristics, which is explained
in Fig. 5(a) for the case of the highest programmed level.
Fig. 5(b) shows the CDFs of g for each of the 4 LRS levels
programmed by ISPVA, IGVVA-100, and IGVVA-10. From
these data, ISPVA features increasing slope with increasing
level as opposed to IGVVA-100 and IGVVA-10, where a
small increase of g with negligible dependence on ∆VG can
be noted. These results evidence the better control of CDFs
with IGVVA-10 compared with IGVVA-100 and ISPVA, thus
supporting IGVVA-10 as the most accurate approach for
programming the synaptic weights of a neural network in our
RRAM array.

IV. SYNAPTIC WEIGHT MAPPING BY IGVVA-10

To test the accuracy of IGVVA-10 for encoding synaptic
weights in a neural network, we programmed 8 LRS levels
corresponding to the target conductances from 50 µS to
225 µS by IGVVA-10. Fig. 6 shows the experimental CDFs
of the HRS and 8 LRS levels. Both the AS and the EA
distributions are reported, evidencing a small D2D variability
and relatively small EA relaxation tails affecting all the levels.

The 9 conductance CDFs in Fig. 6 were used to implement
the 4-kbit synaptic weights of the 2-layer FC-NN investigated
in [24]. This neural network was trained off-line by back-
propagation rule for recognizing a simplified 14x14 version of
the handwritten digit images of Modified National Institute of
Standards and Technology (MNIST) dataset [27]. The network
consists of an input layer including 197 neurons, a hidden

Fig. 7. (a) Schematic representation of a synaptic weight W imple-
mented using the differential configuration of two 1T1R RRAM devices.
(b) Color plot of standard deviation σW of 19 differential weights
calculated via all the IGVVA-10 CDF differences. Based on σW , we
selected 10 combinations of 19 weights (C1-C10) for mapping the
synaptic weights of the neural network, where C10 features the lowest
variability.

layer with 20 neurons, and an output layer with 10 neurons.
The after-training weight quantization scheme proposed in [28]
was implemented to take advantage of the quantized levels
in the RRAM array. To maximize the inference accuracy of
the neural network in the 4-kbit array, here we implemented
the FC-NN synaptic weights using the 9 IGVVA-10 CDFs
in Fig. 6 combined with the differential scheme illustrated in
Fig. 7(a), namely by encoding the weight as the difference of
two 1T1R conductances G+ and G− [3]. Note that, to obtain
a certain weight W, there are various possible combinations of
G+ and G− from the distributions of Fig. 6. Fig. 7(b) shows
the 100 combinations of G+ and G− for mapping 19 weights
in the network. For instance, a weight of 100 µS can be
obtained as the difference between G+ = 100 µS and G− = 0,
or as the difference between G+ = 200 µS and G− = 100 µS.
Note that L2, which corresponds to < G > = 25 µS, was
not experimentally measured, but calculated in simulation
by differences of CDFs. The figure also shows the standard
deviation σW of the differential levels obtained by all the
possible differences of the 9 IGVVA-10 CDFs. It can be noted
that the combination of 19 differential weights with the lowest
σW , called C10, is found at the top row (G+ = L10) and
the rightmost column (G− = L10) as a result of the lowest
σG of L10 shown in Fig. 6. Also, Fig. 7(b) shows other
examples of weight mapping combinations (C1, C3, C6, and
C8), which, despite the higher σW , allow to implement the 19
differential weights by using smaller conductance levels. This
poses a significant trade-off for the design of our network:
while the weight precision is maximized in correspondence
of the highest conductance levels, the relatively large current
results in a larger area and energy of the periphery circuits
as well as a higher IR drop, causing additional errors. The IR
drop impact might be minimized provided that the interconnect
resistances are much smaller than the device resistances [29].

V. IMPACT OF SYNAPTIC WEIGHT MAPPING ON NEURAL
NETWORK DESIGN

To better understand the impact of the various weight
mapping combinations, Fig. 8(a) shows the calculated in-
ference accuracy η of the 2-layer FC-NN with 100 hidden
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Fig. 8. (a) Calculated inference accuracy using differential weights
based on AS and EA IGVVA-10 CDFs and (b) corresponding current
consumption as a function of the weight mapping combination. EA
relaxation has a small impact on both figures of merit of our network
implementation. (c) Impact of the IR drop on the inference accuracy
of the calculated FC-NN based on crossbar arrays of 32x32 RRAM
devices as a function of the weight combination for increasing parasitic
resistance r from 0 to 3 Ω. (d) Impact of the IR drop on the calculated
inference accuracy as a function of the size of the crossbar arrays for
increasing r in the case of weight combination C1.

neurons (NH = 100) and 19 differential weight levels based
on IGVVA-10 on MNIST test dataset as a function of the
weight combination Ci, where the index i ranges from 1 to
10. In agreement with the color plot in Fig. 7(b), the testing
accuracy of the network increases with increasing i, supporting
C10 as the best combination to increase η (96.58%) closer
to the software accuracy calculated using real-valued weights
with 64-bit floating point (FP-64) precision (96.77%). Note
that the improvement in terms of inference accuracy from
C1 to C10 for both AS and EA is by 0.15%. Fig. 8(b)
shows the current consumption during the inference phase
as a function of Ci. This was calculated as the sum of all
the column currents of the network during the testing of
the MNIST images. We obtained that the consumed current
increases with Ci as a result of the increasing conductances
used to implement the differential weights, thus leading to a
maximum value at C10 which is about five times the C1-
based dissipation. These results clearly illustrate the trade-
off between the inference accuracy of the FC-NN and the
current consumption. In addition to the current consumption,
the impact of the IR drop, namely the voltage drop due to
the parasitic wire resistance, was evaluated. Fig. 8(c) shows
the inference accuracy of our network as a function of the
combinations indicated in Fig. 7(b). The network was broken
into 6 individual tiles consisting of 32x32 crossbar arrays
of RRAM devices where both terminals of each device are
connected to row and column wires with a finite non-zero

Fig. 9. (a) Calculated inference accuracy of the 2-layer FC-NN with
NH = 100 as a function of the number of synaptic weight levels by
IGVVA-100, ISPVA, and IGVVA-10 CDFs. The higher number of levels
combined with IGVVA-10 programming leads η close to FP-64 accuracy.
(b) Calculated inference accuracy as a function of ∆VG for increasing
number of synaptic weight levels.

resistance r between two contacts. The simulation results
show that the inference accuracy decreases with increasing
r from 0 to 3 Ω evidencing an increasing drop at higher Ci
because of the larger currents. These results further highlight
the importance of adopting relatively low conductance levels,
despite their slightly larger variation. An approach to achieve
low conductance levels to minimize the IR drop issues could
be the application of an algorithm based on incremental
reset. However, partial reset was shown to lead to higher
conductance variation compared to gradual set [30], suggesting
that combined algorithms based on partial set/reset pulses need
further studies. Also, Fig. 8(d) shows the FC-NN inference
accuracy as a function of size Nrow of crossbar arrays for
r = 1 Ω, 3 Ω, and 5 Ω for combination C1, evidencing an
increasing accuracy drop for increasing r due to the larger
impact of the IR drop for increasing array size.

While accuracy is only barely improved by increasing the
conductance levels (Fig. 8(a)), it can be more heavily impacted
by the conductance precision in terms of the number of levels
of the synaptic weight. This is shown in Fig. 9(a) where we
report the calculated η of the 2-layer FC-NN with NH = 100 as
a function of the number of discrete weight levels programmed
by ISPVA, IGVVA-100, and IGVVA-10. First, the increasing
number of weight levels from 9 to 19 leads to increasing
inference accuracy values for all the algorithms, supporting the
need for memory devices with accurate MLC operation. Also,
accordingly with Fig. 4(a), IGVVA-10 provides the highest
improvement followed by ISPVA and IGVVA-100 thanks to
its lower D2D variability. To better address the impact of
the programming voltage step, Fig. 9(b) shows the FC-NN
inference accuracy as a function of ∆VG in the case of 7,
9, and 19 weight levels with ∆W = 25 µS, by evidencing a
small variation for increasing ∆VG in all the cases and the
best accuracy achieved by IGVVA-10.

In addition to the number of levels, mapping a wider range
of real-valued weights calculated in software is also essential
to achieve higher inference accuracies. This is shown in
Fig. 10(a), where we report that η can be achieved by mapping
the weights using levels with a step ∆W = 50 µS rather
than a smaller step of 25 µS in the case of 9 discrete levels.
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Fig. 10. Calculated inference accuracy of the 2-layer FC-NN as a
function of the number of synaptic weight levels for (a) various steps
∆W in weight mapping and (b) increasing size of hidden layer NH .

Obviously, this choice has the drawback of requiring a larger
current consumption, and a larger number of discrete MLC
states in the memory device. Fig. 10(b) shows the increase
in inference accuracy of the 2-layer FC-NN as a function of
the number of weight levels programmed by IGVVA-10 AS
CDFs for increasing NH . As expected, a larger number of
weights enables a significant improvement in test accuracy.
In particular, if 19 levels are adopted for weight mapping, η
increases from 92% with NH = 20 to 96.2% with NH = 100.
However, increasing the number of hidden neurons, namely
the size of FC-NN, also results in a larger area of the memory
array, thus evidencing a trade-off between accuracy and area
consumption.

VI. CONCLUSIONS

We investigated 3 MLC algorithms to optimize the synaptic
weight implementation for RRAM-based FC-NNs. IGVVA-
10 allows to program 9 conductance levels exhibiting the
lowest D2D variability thanks to the highly accurate slope
control of I − V characteristics. Combining the differential
encoding scheme and IGVVA-10, we mapped the weights
of a 2-layer FC-NN demonstrating high inference accuracy
for increasing number of levels, weight mapping step, and
hidden layer size. This study also allows to evidence key
trade-offs between the improvement of inference accuracy and
current/area consumption, with a focus on the impact of the IR
drop. The results discussed in this work support the need for a
co-optimization at device and system level to bring the array-
level neural network implementations close to the accuracy
achieved by neural networks operated in software.
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