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Abstract
A Cahn–Hilliard equation with stochastic multiplicative noise and a random convec-
tion term is considered. The model describes isothermal phase-separation occurring
in a moving fluid, and accounts for the randomness appearing at the microscopic level
both in the phase-separation itself and in the flow-inducing process. The call for a
random component in the convection term stems naturally from applications, as the
fluid’s stirring procedure is usually caused by mechanical or magnetic devices. Well-
posedness of the state system is addressed, and optimisation of a standard tracking
type cost with respect to the velocity control is then studied. Existence of optimal
controls is proved, and the Gâteaux–Fréchet differentiability of the control-to-state
map is shown. Lastly, the corresponding adjoint backward problem is analysed, and
the first-order necessary conditions for optimality are derived in terms of a variational
inequality involving the intrinsic adjoint variables.

Keywords Stochastic Cahn–Hilliard equation · Convection · Well-posedness ·
Optimal velocity control · Optimality conditions
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1 Introduction

The aim of this paper is to analyse the stochastic Cahn–Hilliard equation with con-
vection
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dϕ − �μ dt + u · ∇ϕ dt = B(ϕ) dW in (0, T ) × O =: Q , (1.1)

μ = −�ϕ + � ′(ϕ) in (0, T ) × O , (1.2)

n · ∇ϕ = n · ∇μ = 0 in (0, T ) × ∂O , (1.3)

ϕ(0) = ϕ0 in O , (1.4)

where O is a smooth bounded domain in R
d , d = 2, 3, T > 0 is a fixed final

time, and n denotes the normal outward unit vector on ∂O. The system (1.1)-(1.4)
models isothermal phase-separation occurring in a moving fluid occupying the space
region O during the time interval [0, T ]. The order parameter, or phase-variable, ϕ

represents the relative concentration between the pure phases, the variableμ represents
the chemical potential of the system, and the nonlinearity � : R → R is a double-
well potential with two global minima. The term u is an external random velocity
field acting on the system, modelling possible stirring and mixing processes of the
fluid which may affect phase-separation itself. The stochastic forcing describing the
thermal fluctuations affecting phase-separation is modelled by means of a cylindrical
Wiener process W on a given probability space and a W -integrable coefficient B,
possibly depending on the phase variable itself, which calibrates the intensity of the
noise.

The Cahn–Hilliard equation is a classical model employed in phase-separation, and
has nowadays numerous applications to physics, biology, and engineering. Its intro-
duction dates back to the pioneering work by Cahn and Hilliard (1958), where it was
proposed, in the deterministic version, to adequately describe spinodal decomposition
in binary metallic alloys. In the last decades, the model has been extensively refined
in several directions. For example, the description of possible viscous behaviours has
been originally presented in Elliott and Stuart (1996), Elliott and Songmu (1986),
Novick-Cohen (1988), and then generalised in Gurtin (1996). The presence of a fur-
ther evolution close to boundary due to the interaction with the hard walls has been
accounted for by proposing several choices of dynamic boundary conditions, forwhich
we refer to (Fischer et al. 1997; Kenzler et al. 2001; Gal 2012).

The deterministic Cahn–Hilliard equation has been proven to be extremely effective
in describing phase-separation phenomena. Nevertheless, it presents some drawbacks.
Indeed, the phase-separation process inevitably presents some disruptions, acting at a
microscopic level. These are due to unpredictable movements at the atomistic level,
which may be caused, for example, by temperature oscillations, magnetic effects, or
configurational interactions. As such, the classical Cahn–Hilliard system is unable to
capture the erratic nature of the separation process. The most natural way to over-
come this problem is to switch to a random setting instead, by introducing a suitable
noise term in the equation that could effectively describe the unpredictability of the
phenomenon at a small scale. This was proposed by Cook (1970) for Wiener-type
noises and gave rise to the well-known Cahn–Hilliard–Cook stochastic model for
phase-separation. The stochastic version of the model was then confirmed multi-
ple times (Binder 1981; Pego 1989) to be the only one that can genuinely describe
phase-separation in alloys. Since then, the random version of the equation has been
increasingly studied, both in the physics literature (Rogers et al. 1988; Elder et al.
1988; Grant et al. 1985; Langer et al. 1975; Milchev et al. 1988) and in the direction
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of model validation and numerical simulations (Blömker et al. 2001, 2008, 2016;
Hawick 2010; Hawick and Playne 2010; Hawick 2008; Lee et al. 2014).

The classical Cahn–Hilliard equation is the gradient flow associated with the free
energy functional

ϕ �→ 1

2

∫
O

|∇ϕ|2 +
∫
O

�(ϕ) ,

with respect to themetric of H1(O)∗. The gradient term penalises the oscillation of the
order parameter, while the double-well potential models the tendency of each phase to
concentrate. The form of the chemical potential in (1.2) appears then naturally from
the differentiation of the free energy. Typical examples of � are given by

�log(r) := θ

2
((1 + r) ln(1 + r) + (1 − r) ln(1 − r))

θ0

2
r2 ,

− r ∈ (−1, 1) , 0 < θ < θ0 , (1.5)

and

�pol(r) := 1

4
(r2 − 1)2 , r ∈ R. (1.6)

Although (1.5) is the most relevant choice in terms of thermodynamical consistency,
its singular behaviour in ±1 could be hard to tackle from the mathematical viewpoint,
and in several models the polynomial approximation (1.6) is often employed.

The velocity field u models the transport effects due to convection terms acting
on the system. In our analysis, this will be a prescribed external forcing field which
will play the role of velocity control in a typical optimisation problem. Optimisation
involving phase-separating fluids where the velocity is the control arises naturally in
applications. For example, this is the case of block solidification of silicon crystals in
photovoltaic applications. Here, the flow of the fluid acts as a control to optimise the
distribution of certain impurities, at the atomistic level, in a process of solidification
of silicon melt. For more details about the applications of optimal velocity control
problem in phase-separating fluids, we refer to (Kudla et al. 2013; Rocca and Sprekels
2015). In practice, the motion of the fluid can be achieved in several ways: as pointed
out in Colli et al. (2018a), Rocca and Sprekels (2015), the most common choices
consist in employing either mechanical stirring devices or ultrasound emitters directly
into the container. Another possibility is to prescribe a velocity on the fluid by means
of magnetic fields: this is widely employed, for example, in the case of molten metals
(Kudla et al. 2013) or bulk semiconductor crystals. Nevertheless, it is worthwhile
noting that in all these scenarios, the velocity field is usually obtained in an indirect
way, meaning that the motion of the fluid is achieved only as a consequence of more
direct controls, such as mechanical devices or magnetic effects. This being noticed, it
is clear then that the external prescription of a given velocity is strongly affected by
microscopic noises, which may be caused, depending on the type of motion-inducing
devices, by configurational or electromagnetic disturbances occurring in the flow-
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creating process. Also, the effective induction of the flow is strongly affected by the
imprecision of the above-mentioned devices.

From the modelling point of view, this strongly calls for the introduction of a fur-
ther source of randomness in the velocity field u and for abandoning the classical
deterministic setting of the problem. Let us stress that the random component of the
velocity field prescinds from the stochastic nature of the noise in equation (1.1): while
theWiener processW models microscopic turbulences occurring in phase-separation,
the random nature of u takes into account the imprecision of the flow-inducing mecha-
nisms. For example, in typical situations u would satisfy a further stochastic equation
involving a further Wiener process, independent of W . Clearly, this extra equation
would specifically depend on the model in consideration: here, in order to make the
treatment as general and light as possible, we only require u to be a stochastic process.
Let us point out that this choice implies that the microscopic fluctuations in u coming
from a possible further noise are not taken into account explicitly here. Indeed, the box
constraint for the controls (see Sect. 2 below) only requires some generalmeasurability
and integrability conditions on u, and does not prescribe any specific requirement on
the microscopic fluctuations of u. To fix the ideas, the reader can naturally think about
focusing only on macroscopic controls, e.g. controls which are C1 in time and W 1,p

in space, and neglecting thus the microscopic turbulence in u. Here, since the method-
ology can be directly adapted to more general controls, we preferred to consider a
broader class of admissible controls, for sake of mathematical generality.

The importance of allowing the control variable to be random is crucial when
dealing with a controlled stochastic equation (see, for example, Yong and Zhou 1999).
Indeed, bearing in mind the typical perspective ofMonte Carlo simulations, restricting
to deterministic controls wouldmean to choose a priori a control which is independent
of the possible outcomes of the evolution according to the prescribed underlying
probability space. By contrast, stochastic controls ensure more freedom from the
point of view of the controller, as they allow to adapt the control to the random
outcomes of the phenomenon itself. With this in mind, in our analysis u will be a
prescribed stochastic process satisfying some natural box-constraints, possibly taking
into account the random imprecision of the velocity-inducing devices. The model that
we study presents then two main sources of randomness: the first one is given by
the Wiener noise in equation (1.1), taking into account the microscopic turbulence
affecting phase-separation, and the second one is the stochastic component of the
convection term, modelling the imprecision of the stirring procedure. Hence, one can
think the two random forcings as acting on two separate levels: a microscopic scale
described by W , and a different uncorrelated scale rendered by u.

The mathematical literature dealing with the Cahn–Hilliard equation is extremely
developed. In the deterministic case, attention has been widely devoted to the study
of well-posedness, regularity, long-time behaviour of solutions, and asymptotics. Due
to the considerable size of the literature, we prefer to quote the detailed overview by
Miranville (2019) and the references therein for completeness. Let us only point out
the contributions (Colli et al. 2014; Cherfils et al. 2011; Gilardi et al. 2009) dealing
with well-posedness and (Colli et al. 2015a, b, 2016; Hintermüller and Wegner 2012)
in the direction of distributed and boundary control problems. Possible relaxations
and asymptotics of the Cahn–Hilliard equation have been recently studied in Bonetti
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et al. (2017, 2018, 2020), Colli and Scarpa (2016), Scarpa (2019a) also with nonlinear
viscosity terms.

In the stochastic case, the original contribution dealing with Cahn–Hilliard equa-
tion is (Da Prato and Debussche 1996), on the existence of mild solutions in the case
of polynomial potentials. Further studies have been then carried out in the works
(Cornalba 2016; Elezović and Mikelić 1991) again in the polynomial setting, and in
Scarpa (2018, 2020) in the case of more general potentials in variational framework.
The stochastic Cahn–Hilliard equation with logarithmic potential has been studied
in Debussche and Zambotti (2007), Debussche and Goudenège (2011); Goudenège
(2009) in relation to reflectionmeasures, and in Scarpa (2019) in the case of degenerate
mobility. In the context of phase-field modelling with stochastic forcing, it is worth-
while mentioning the contributions (Antonopoulou et al. 2016; Feireisl and Petcu
2019a, b), as well as (Bauzet et al. 2017; Bertacco 2020; Orrieri and Scarpa 2019)
on the stochastic Allen–Cahn equation. In the direction of optimal control, we point
out (Scarpa 2019b) dealing with a distributed optimal control problem of the stochas-
tic Cahn–Hilliard equation, and the recent work (Orrieri et al. 2020) on a stochastic
phase-field model for tumour growth.

Concerning specifically the Cahn–Hilliard equation with convection, in the deter-
ministic case well-posedness has been studied in Colli et al. (2018a) under general
choices of dynamic boundary conditions, in Porta and Grasselli (2015) in a local ver-
sion with reaction terms, while some related optimal velocity control problems have
been analysed in Colli et al. (2018b, 2019), Rocca and Sprekels (2015), Zhao and Liu
(2013), and Zhao and Liu (2014). Also, the relationship between the behaviour of the
convection term and phase-separation has been analysed in the recent work (Feng et al.
2020): here, the authors show that if the velocity field is sufficiently mixing, then no
phase-separation occurs, and the solutions of the respective advective Cahn–Hilliard
equation converge exponentially to a homogenous mixed state instead. This may have
important connections to related optimal control problems with a target distribution
at a final time: in particular, the above-mentioned result makes the optimisation prob-
lem meaningful also when the final target state is not necessarily separated, but is a
homogenous mixed state. Also, it points out how powerful the action of the convec-
tion term is on the phase-separation, and motivates the study of phase-optimisation
problems where the control is the velocity itself. The convective Cahn–Hilliard equa-
tion has also been considered in coupled systems, with a further equation equation
for the velocity field: it is the case, for example, of Cahn–Hilliard–Navier–Stokes
systems, studied in Abels (2009), and Frigeri et al. (2019, 2020, 2016). By contrast,
despite its strong relevance in application to stochastic optimal velocity control, the
convective Cahn–Hilliard has not been analysed yet. The only results available in the
stochastic setting deal with coupled systems, for example in the context of stochastic
Cahn–Hilliard–Navier–Stokes models (Deugoué and Medjo 2018b, a; Medjo 2017).
This paper constitutes a first contribution to optimal velocity control for the stochastic
convective Cahn–Hilliard equation.

The literature on stochastic optimal control is also quite extensive: for a general
overviewwe refer to themonograph (Yong and Zhou 1999). Stochastic optimal control
is also studied in Fuhrman et al. (2012, 2013, 2018), Fuhrman and Orrieri (2016),
Guatteri et al. (2017) in the context of the heat equation and reaction-diffusion systems.
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For completeness, we refer also to the works (Du andMeng 2013; Lü and Zhang 2014)
concerning the stochastic maximal principle. Relaxation of the optimality conditions
has been addressed in Brzeźniak and Serrano (2013) and Barbu et al. (2018) for
dissipative SDPEs and the Schrödinger equation, respectively. Deterministic optimal
control problems of stochastic reaction–diffusion equations have been analysed in
Stannat and Wessels (2019).

Let us describe now the main points that will be addressed in this work. First of
all, we concentrate on the well-posedness of the state-system (1.1)–(1.4), where the
control u is arbitrary but fixed. Using a Yosida approximation on the nonlinearity and
a time-regularisation on the velocity field, we show existence-uniqueness of solutions
by means of variational techniques and stochastic compactness arguments. Thanks to
monotone analysis tools, we are able to cover very general potentials, not necessarily
of polynomial growth. Also, we prove continuous dependence of the variables with
respect to the control, and this allows to define a suitable control-to-state map S : u �→
(ϕ, μ). Secondly, we focus on the optimisation problem, which consists in minimising
a tracking-type cost functional in the form:

J (ϕ,u) := α1

2
E

∫
Q

|ϕ − ϕQ |2 + α2

2
E

∫
O

|ϕ(T ) − ϕT |2 + α3

2
E

∫
Q

|u|2

subject to the state-system (1.1)–(1.4) and the constraint thatu is an admissible control,
meaning that u ∈ Uad with Uad being a suitable bounded, closed subset of the space
p-integrable progressively measurable process with values in L3(O)d . Here, ϕQ and
ϕT represent some running and final targets, while α1, α2, α3 are nonnegative weights.

Cost functionals in this form arise very naturally from applications. Roughly speak-
ing, the optimisation problem amounts to identify the optimal way of stirring and
mixing the fluid in such a way that the state variable ϕ is as close as possible to
the running target ϕQ during the evolution and to the final target ϕT at the end of
the evolution, without wasting too much energy in inducing the flow u. As we have
anticipated above, a typical example that we have in mind appears in the solidification
process of silicon crystals in the context of industrial photovoltaic applications (Kudla
et al. 2013; Rocca and Sprekels 2015). Here, a certain mixture of impurities needs
to be moved by convection from within the silicon melt to its boundary, in order to
refine the quality of the final silicon block. The flow u of the fluid behaves then as a
control on the silicon melt in order to make the relative distribution of impurities ϕ

be close enough to some prescribed targets. In particular, the final target distribution
ϕT of impurities can be seen here as concentrated on the boundary and diluted in the
interior. Analogous applications arise more generally in optimal distribution problems
of melting materials: the local distribution of some substance contained in the separat-
ing fluid is optimised close to some desired targets by inducing a flow in the material
itself.

The starting point in the analysis consists in addressing existence of optimal con-
trols. This is one of the main differences with respect to the deterministic optimal
control problem. Indeed, in the deterministic setting existence of optimal controls fol-
lows with no particular effort from the direct method of calculus of variations, since
one is able to obtain enough compactness from the well-posedness of the state system
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and the boundedness of the set of admissible controls. By contrast, in the stochastic
case these uniform estimates on the minimising sequence of controls do not ensure
enough compactness in probability, due to the stochastic nature of the problem itself.
Also, classical stochastic tools that are usually employed to bypass this problem, such
as the well-known criterion à la Gyöngy–Krylov, do not work here: this is due to the
non-uniqueness of optimal controls, which is caused by the highly nonlinear nature
of the minimisation problem. To overcome this issue, we propose instead a relaxed
notion of optimality, which may be considered as optimality in law, i.e. requiring that
the stochastic basis and theWiener process are part of the definition of optimal control
themselves. This techniquemimics the definition of probabilisticallyweak solution for
stochastic evolution equations, and has been employed in other settings such as (Barbu
et al. 2018; Orrieri et al. 2020). In this framework, we prove existence of relaxed opti-
mal controls, and we show that when one restricts the attention only to deterministic
controls, then it is possible to get existence in the classical (probabilistically strong)
sense.

We move then to the study of the differentiability properties of the control-to-
state map S. More specifically, we prove that S is Gâteaux and Fréchet differentiable
between suitable Banach spaces. This is done by showing well-posedness of the
so-called linearised system, obtained from (1.1)–(1.4) formally differentiating with
respect to u, and by carefully proving that the unique linearised solution actually coin-
cides with the derivative of S. This will allow to explicitly characterise, thanks to the
chain rule in Banach spaces, the derivative of the reduced cost functional J ◦ S, so that
the optimisation problem could be seen only in terms of the control u. Consequently,
it is possible to obtain a first rudimental version of necessary conditions for optimality,
by imposing the classical first-order variational inequality D(J ◦ S)(u) ≥ 0 on a given
optimal control.

The last part of the paper aims at refining the first version of necessary conditions,
by removing any explicit dependence on the linearised variables. This is done by intro-
ducing and studying a suitable adjoint problem, which is formally related to the dual
problem of the linearised system. The adjoint problem consists of a backward-in-time
stochastic partial differential equation, and its analysis is the most challenging point
of the work. The first main difficulty is indeed the backward nature of the equation:
although this is not a great limitation in deterministic problems, in the stochastic case
it calls for the introduction of an extra variable, in order to preserve adaptability of
the processes in play, and requires different analytical techniques such as martingale
representation theorems. The second andmost crucial difficulty depends instead on the
nonlinear nature of the system. Indeed, the presence of the nonlinear term � ′′(ϕ) and
the dual structure of the equation prevent from obtaining uniform estimates directly
on the adjoint system. Consequently, well-posedness cannot be obtained classically
by tackling the adjoint problem straightaway, and a different idea is needed. In this
regard, we use a duality method. We consider a more general version of the linearised
system, where an arbitrary forcing term is added, and we show that this is well posed
and the solutions depend continuously on the forcing term. Then, we prove that such
system is in duality with the adjoint problem that we want to study, and this allows
to recover by comparison some first uniform estimates on the adjoint variables. This
tool is extremely powerful, as it allows to bound the adjoint variables without even
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working on the adjoint system itself: themain intuition behind this is that the linearised
system is usually much simpler to study, and the duality between linearised-adjoint
systems allows to “transfer” uniform bounds on the solutions from one problem to the
other. Once these first crucial estimates are obtained, using classical techniques we are
then able to prove well-posedness of the adjoint problem. Lastly, the duality relation
is employed to refine the first-order conditions for optimality and to write them as a
variational inequality only depending on the intrinsic adjoint variables.

The main novelty of the work is the presence of two sources of randomness in
equation (1.1), accounting for noises both in the phase-separation process and in the
flow-inducing procedure. As interesting as it may be from the applied point of view,
certainly this novel framework does not come without effort on the mathematical
side. Indeed, let us stress that the fact that u is assumed to be a stochastic process,
and not a deterministic function, causes several non-trivial issues in estimating the
solutions: this is due to a lack of satisfactory computational tools of Gronwall type in
the genuinely pure stochastic case. Such difficulties are evident especially in the study
of the forward problems, i.e. in the state system (1.1)–(1.4) and in the corresponding
linearised system. Here, the idea is to argue instead combining carefully the Hölder
inequality and several iterative patching arguments, in order to avoid applying the
Gronwall lemma, which does not work. In the adjoint problem, the situation is slightly
better: we will show that the backward nature of the equation allows indeed to use a
very general and recent backward-in-time version of the stochastic Gronwall lemma
(see Lemma 6.1).

We conclude by summarising here the structure of the paper. Section 2 contains the
description of the setting of the work, the precise assumptions, and the main results
that we prove. In Sect. 3, we prove well-posedness of the state-system, while Sect. 4
focuses on the existence of optimal controls. Then, in Sects. 5 and 6, we study the
linearised system and the adjoint system, respectively. Finally, in Sect. 7, we prove
the two versions of the first-order conditions for optimality.

2 Setting and Assumptions

In this section, we specify the general setting, notation, and assumptions of the work.
We then present the main results of the paper.

Let (�,F , (Ft )t∈[0,T ],P) be a filtered probability space satisfying the usual con-
ditions, where T > 0 is a fixed final time and W is a cylindrical Wiener process on a
separable Hilbert space K . For convenience, let us fix now once and for all a complete
orthonormal system (e j ) j of K . The progressive σ -algebra on � × [0, T ] is denoted
byP .

As far as notation is concerned, the dual of a given real Banach space E is denoted
by E∗, and the duality pairing between E∗ and E is denoted by 〈·, ·〉E∗,E . Weak
convergence in E and weak∗ convergence in E∗ will be denoted by the respec-

tive symbols ⇀ and
∗
⇀. Also, for all q ∈ [1,+∞] we employ the usual symbols

Lq(�; E) and Lq(0, T ; E) for the spaces of q-Bochner integrable functions, and
C0([0, T ]; E) and C0

w([0, T ]; E) for the spaces of strongly and weakly continuous
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functions from [0, T ] to E , respectively. For spaces of stochastic processes, we use the
notation Lq1

P (�; Lq2(0, T ; E)) to further specify that measurability is also intended
with respect to the progressive σ -algebraP . In the case that q > 1 and E is separable,

we explicitly set Lq
w(�; L∞(0, T ; E∗)) as the dual space of L

q
q−1 (�; L1(0, T ; E)),

which we recall can be characterised (Edwards 1965, Thm. 8.20.3) as the space of
weak*-measurable random variables y : � → L∞(0, T ; E∗)with finite q-moment in
�. Finally, if E1 and E2 are separable Hilbert spaces, we use the notationL 2(E1, E2)

for the space of Hilbert–Schmidt operators from E1 to E2.
In the proofs, the symbol c is reserved to denote any generic positive constant,

whose value depends on the structure of the problem and may be updated from line
to line in the proofs.

Let O ⊂ R
d (d ≥ 2) be a smooth bounded domain. We use the classical notation

Q := (0, T ) × O, Qt := (0, t) × O, and QT
t := (t, T ) × O for every t ∈ (0, T ).

The outward normal unit vector on the boundary ∂O is denoted by n. We introduce
the functional spaces

H := L2(O) , V1 := H1(O) ,

V2 := {v ∈ H2(O) : n · ∇v = 0 a.e. on ∂O} , V3 := V2 ∩ H3(O) ,

endowed with their natural norms ‖·‖H , ‖·‖V1 , ‖·‖V2 , and ‖·‖V3 , respectively. We
identify H to its dual, so that we have the continuous and dense inclusions

V3 ↪→ V2 ↪→ V1 ↪→ H ↪→ V ∗
1 .

For all y ∈ V ∗
1 , we use the notation yO := 1

|O| 〈y, 1〉 for the spatial mean of y, and
define the subspaces of zero-mean elements as

V ∗
1,0 := {y ∈ V ∗

1 : yO = 0} , H0 := H ∩ V ∗
1,0 , V1,0 := V1 ∩ H0.

Let us recall that the variational formulation of the Laplace operator with Neumann
conditions

L : V1 → V ∗
1 , 〈Ly, ζ 〉 :=

∫
O

∇ y · ∇ζ , y, ζ ∈ V1 ,

is a well-defined linear operator, and its restriction to V1,0 is an isomorphism onto the
space V ∗

1,0. Its inverse N : V ∗
1,0 → V1,0 is the resolvent operator associated with the

abstract elliptic problem on O with homogenous Neumann conditions, meaning that
for all y ∈ V ∗

1,0 the element z := N y ∈ V1,0 is the unique solution with null mean to

{
−�z = y in O ,

∂nz = 0 in ∂O.

As a consequence of the Poincaré–Wirtinger inequality, it is immediate to check that

ζ �→ ‖∇N (ζ − ζO)‖2H + |ζO|2 , ζ ∈ V ∗
1 ,
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yields an equivalent norm on V ∗
1 . In particular, it follows the compactness inequality

∀ ε > 0 , ∃ cε > 0 : ‖y‖2H ≤ ε ‖∇ y‖2H + cε ‖∇N y‖2H ∀ y ∈ V1,0. (2.1)

We introduce the space

U :=
{
u ∈ L3(O) : div u = 0 , u · n = 0 a.e. on ∂O

}
,

where the divergence is intended in the sense of distributions on O. The space of
velocity controls u that we focus on will be

U := L∞
P (�; L p(0, T ;U )) , p ∈ (2,+∞).

Let us note that this includes as a special case the choice of deterministic controls,
which has also received a strong mathematical interest on its own: see, for instance,
Stannat and Wessels (2019). Indeed, we can set

Udet := L p(0, T ;U ) ⊂ U .

The following assumptions on the problem will be in force throughout the paper.

A1: � : R → R is of class C2, � ′(0) = 0, and there exist C� > 0 and γ ∈ [1, 2]
such that

� ′′(r) ≥ −C� ∀ r ∈ R ,

|� ′(r)| + |� ′′(r)|γ ≤ C�(1 + �(r)) ∀ r ∈ R.

Let us point out that the classical polynomial double-well potential �pol satisfies
these assumptions with γ = 2. Nonetheless, by allowing also the smaller values
γ ∈ [1, 2] we are able to include possibly more singular potential, such as the
first-order exponentials. We set β : r �→ � ′(r) +C�r , r ∈ R: then β : R → R is
aC2 nondecreasing function; hence, it can be identified with a maximal monotone
(single-valued) graph in R × R. Let us also denote by β̂ : R → [0,+∞) the
convex lower semicontinuous function with β̂(0) = 0.

A2: ϕ0 ∈ V1 and �(ϕ0) ∈ L1(O).
A3: B : V1 → L 2(K , V1) and there exists a constant CB > 0 such that

‖B(y1) − B(y2)‖L 2(K ,H) ≤ CB ‖y1 − y2‖H ∀ y1, y2 ∈ H ,

‖B(y)‖L 2(K ,V1) ≤ CB
(
1 + ‖y‖V1

) ∀ y ∈ V1 ,

∞∑
j=0

∥∥B(y)e j
∥∥2
L

2γ
γ−1 (O)

≤ CB ∀ y ∈ H .

Moreover, we prescribe that

B : V1 → L 2(K , V1,0) in case of multiplicative noise.
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Let us note that in case of additive noise B ∈ L 2(K , V1), these conditions are
trivially satisfied for all γ ∈ (1, 2] if d = 2 and for all γ ∈ [3/2, 2] if d = 3: in
particular, the classical polynomial case in dimension two and three is always cov-
ered. In the genuine multiplicative noise case, i.e. when B is not constant in V1, we
also suppose that B isL 2(K , V1,0)-valued: this amounts to requiring that the noise
is conservative, in the sense that it preserves the mean ϕO of the phase-variable. A
direct consequence is the conservation of mass, which is a fundamental feature of
Cahn–Hilliard-type evolutions. This hypothesis on the noise is very classical and
natural in literature: for example, let us stress that a relevant multiplicative choice
of B can be given as:

B(y)e j := h j (y) − (h j (y))O , y ∈ V1 , j ∈ N ,

where the sequence (h j ) j ⊂ W 1,∞(R) is such that

C2
B :=

∞∑
j=0

∥∥h j
∥∥2
W 1,∞(R)

< +∞.

It is not difficult to show that this example allows for all values of γ ∈ [1, 2] in
every space-dimension d = 2, 3.

In the context of the optimal velocity control, it will be useful to introduce a
polynomial-growth assumption on �. This will be necessary only in the study of
the optimisation problem, but is not needed for the well-posedness of the state system.

C1: it holds that γ = 2 in A1 and

|� ′′(r)| ≤ C�(1 + |r |2) ∀ r ∈ R.

Such requirement is very natural in the Cahn–Hilliard context, since it is satisfied
by the classical choice of the polynomial double-well potential �pol of degree
4.

The firstmain result of the paper states existence and uniqueness of strong solutions,
and their continuous dependence with respect to the velocity field.

Theorem 2.1 AssumeA1–A3. Then, for every u ∈ U , there exists a unique pair (ϕ, μ)

with

ϕ ∈ L p
P

(
�;Ws,p(0, T ; V ∗

1 ) ∩ C0([0, T ]; H) ∩ L2(0, T ; V2)
) ∩ L p

w(�; L∞(0, T ; V1)) ,

μ = −�ϕ + � ′(ϕ) ∈ L p/2
P (�; L2(0, T ; V1)) ,

for all s ∈ (0, 1/2), and such that

(ϕ(t), ζ )H +
∫
Qt

∇ϕ · ∇ζ −
∫
Qt

ϕu · ∇ζ
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= (ϕ0, ζ )H +
(∫ t

0
B(ϕ(s)) dW (s), ζ

)
H

∀ ζ ∈ V1 ,

for every t ∈ [0, T ], P-almost surely. Furthermore, there exists a constant K > 0,
only depending on the structure of the problem, such that for all u ∈ U , the respective
solution (ϕ, μ) satisfies

‖ϕ‖L p(�;L∞(0,T ;V1))∩L p
P (�;L2(0,T ;V2)) + ‖μ‖

L p/2
P (�;L2(0,T ;V1))

+ ‖�(ϕ)‖L p/2(�;L∞(0,T ;L1(O)))

+ ∥∥� ′(ϕ)
∥∥
L p/2
P (�;L2(0,T ;H))

+ ∥∥� ′′(ϕ)
∥∥
Lγ p/2(�;L∞(0,T ;Lγ (O)))

≤ K

[
1 + ‖u‖

2
p−2

U

]
, (2.2)

and for every {ui }i=1,2 ⊂ U , the respective solutions {(ϕi , μi )}i=1,2 verify

‖ϕ1 − ϕ2‖L p
P (�;C0([0,T ];V ∗

1 )∩L2(0,T ;V1))

≤ K

[
1 + ‖u1‖

2
p−2

U

] [
1 + ‖u2‖

2
p−2

U

]
‖u1 − u2‖U . (2.3)

Lastly, if also C1 holds, then

‖ϕ1 − ϕ2‖L p/3
P (�;C0([0,T ];H)∩L2(0,T ;V2)) + ‖μ1 − μ2‖L p/3

P (�;L2(0,T ;H))

≤ K

[
1 + ‖u1‖

4
p−2

U + ‖u2‖
4

p−2

U

] [
1 + ‖u1‖

2
p−2

U

] [
1 + ‖u2‖

2
p−2

U

]
‖u1 − u2‖U .

(2.4)

Once the analysis of well-posedness of the state system has been addressed, we can
turn our attention to the optimal velocity control problem. As far as the controls are
concerned, we consider classical box-constraints on the velocity controls, by defining
the set of admissible controls as:

Uad := {
u ∈ U : ‖u‖L p(0,T ;U ) ≤ L P-a.s.

}
,

where L > 0 is a prescribed constant. The prescription of a box-constraint on the
admissible controls is classical on the mathematical side. In applications, the constant
L is typically related to themaximumcapacity of the flow-inducing devices that convey
the velocity field. It will be useful to introduce an enlarged bounded open set Ũad in
U containing Uad , as

Ũad := {u ∈ U : ‖u‖U < L + 1} .
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Analogously, we introduce the corresponding spaces of admissible deterministic con-
trols as:

Udet
ad := Udet ∩ Uad , Ũdet

ad := Udet ∩ Ũad .

The cost functional that we study is of quadratic tracking-type and reads

J : L2
P (�;C0([0, T ]; H)) × L2

P (�; L2(0, T ; Hd)) → R ,

J (ϕ,u) := α1

2
E

∫
Q

|ϕ − ϕQ |2 + α2

2
E

∫
O

|ϕ(T ) − ϕT |2 + α3

2
E

∫
Q

|u|2 ,

(ϕ,u) ∈ L2
P (�;C0([0, T ]; H)) × L2

P (�; L2(0, T ; Hd)) , (2.5)

where α1, α2, α3 are non-negative constants with α1 + α2 + α3 > 0 and the targets
are fixed with

ϕQ ∈ L2
P (�; L2(0, T ; H)) , α2ϕT ∈ L2(�,FT ; H).

The optimal velocity control consists in the following:

(CP) minimise the cost functional J with the constraints that u belongs to Uad and ϕ is
the unique corresponding solution component to the state system (1.1)–(1.4).

By virtue of the well-posedness Theorem 2.1, it is well defined the control-to-state
map

S : Ũad →
[
L p
P

(
�;C0([0, T ]; H) ∩ L2(0, T ; V2)

)
∩ L p

w(�; L∞(0, T ; V1))
]

×L p/2
P (�; L2(0, T ; V1))

as

S(u) = (S1(u), S2(u)) := (ϕ, μ) , u ∈ Ũad .

This implies that the optimal control problem can be reduced to the only variable u,
by introducing the so-called reduced cost functional as:

J̃ : Ũad → R , J̃ (u) := J (S1(u),u) , u ∈ Ũad .

Remark 2.2 Clearly, the well-posedness result in Theorem 2.1 continues to hold on
any new stochastic basis (�′,F ′,P′,W ′), provided to analogously define the new
spaces of controls U ′, U ′

ad , and Ũ ′
ad . Hence, if also (ϕ′

Q, ϕ′
T ) are some new targets on

(�′,F ′,P′) with the same law of (ϕQ, ϕT ), one can define the corresponding cost
functional J ′, the corresponding control-to-state map S′, and the new reduced cost
functional J̃ ′ on the new probability space, by simply replacing � with �′.
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With this notations,we can state the exact definitionof optimal control as follows.As
anticipated, we also give some relaxed notions of optimality, one based on the concept
of optimality-in-law and the other obtained minimising only on the deterministic
controls.

Definition 2.3 An optimal control for (CP) is an element u ∈ Uad such that

J̃ (u) = inf
v∈Uad

J̃ (v).

Arelaxedoptimal control for (CP) is a family
(
�′,F ′, (F ′

t )t∈[0,T ],P′,W ′, ϕ′
Q, ϕ′

T ,u′
)

where (�′,F ′,P′) is a probability space, (F ′
t )t∈[0,T ] is a filtration satisfying the usual

conditions,W ′ is a K -cylindricalWiener process on it,α1ϕ
′
Q ∈ L2

P (�′; L2(0, T ; H))

and α2ϕ
′
T ∈ L2(�′,F ′

T ; H) have the same laws of α1ϕQ and α2ϕT , respectively, and
u′ ∈ U ′

ad satisfies

J̃ ′(u′) = inf
v∈Uad

J̃ (v).

A deterministic optimal control for (CP) is an element u ∈ Udet
ad such that

J̃ (u) = inf
v∈Udet

ad

J̃ (v).

Our first result in the analysis of the optimisation problem (CP) concerns existence
optimal controls. It is worthwhile noting that due to the non-uniqueness of optimal
controls, in the genuinely stochastic case one can only show existence of relaxed
optimal controls: this is typical in highly nonlinear stochastic optimal control prob-
lems, see, for example, (Barbu et al. 2018; Scarpa 2019b). By contrast, we show that
deterministic optimal controls always exist.

Theorem 2.4 Assume A1–A3. Then, there exist a relaxed optimal control u and a
deterministic optimal control udet for problem (CP).

Once existence of minimisers for (CP) is proved, we can now turn to the main focus
of the work, i.e. the investigation of necessary conditions for optimality. The first main
step in this direction is the study of the differentiability of the control-to-state map S,
along with the characterisation of its derivative through the analysis of the linearised
state system. This will allow to obtain a first version of the first-order conditions for
optimality by means of a suitable variational inequality involving the derivative of the
reduced cost functional. In this direction, we introduce the assumptions

C2: the map B : V1 → L 2(K , H) is of class C1. Let us point out that this implies
togetherwithA3 that ‖DB(y)ζ‖L 2(K ,H) ≤ CB ‖ζ‖H for all y, ζ ∈ V1.Moreover,
let us stress this requirement is very natural, and it is satisfied, for instance, in the
relevant example described inA3, provided to replaceW 1,∞(R) withW 1,∞(R)∩
C1(R).
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C3: � is of class C3, DB ∈ C0,1(V1;L (V1,L 2(K , H))), and it holds that

|� ′′′(r)| ≤ C�(1 + |r |) ∀ r ∈ R.

This is a refinement of assumptions C1–C2 and ensures, as we will see, better
differentiability properties for S. Still, C3 is satisfied by the polynomial poten-
tial �pol and the relevant noise coefficient described in A3, provided to replace
W 1,∞(R) with W 2,∞(R).

The linearised system can be formally obtained by differentiating the state system
(1.1)–(1.4) with respect to the control u in a given direction h ∈ U , and reads

dθh − �νh dt + h · ∇ϕ dt + u · ∇θh dt = DB(ϕ)θh dW in (0, T ) × O , (2.6)

νh = −�θh + � ′′(ϕ)θh in (0, T ) × O , (2.7)

n · ∇θh = n · ∇νh = 0 in (0, T ) × ∂O , (2.8)

θh(0) = 0 in O. (2.9)

The next result ensures exactly that the linearised system (2.6)–(2.9) is well posed in
a suitable variational sense, and that the unique solution to (2.6)–(2.9) coincides with
the derivative of the control-to-state map S in the point u along the direction h.

Theorem 2.5 Assume A1–A3, C1–C2, and p > 3. Then, for all u ∈ Ũad and h ∈ U ,
setting ϕ := S1(u), there exists a unique pair (θh, νh) with

θh ∈ L p
P

(
�;C0([0, T ]; V ∗

1 ) ∩ L2(0, T ; V1)
)

∩ L p/3
P

(
�;C0([0, T ]; H) ∩ L2(0, T ; V2)

)
,

νh = −�θh + � ′′(ϕ)θh ∈ L p/3
P (�; L2(0, T ; H)) ,

such that, for every t ∈ [0, T ], P-almost surely,

(θh(t), ζ )H −
∫
Qt

νh�ζ −
∫
Qt

(ϕh + θhu) · ∇ζ

=
(∫ t

0
DB(ϕ(s))θh(s) dW (s), ζ

)
H

∀ ζ ∈ V2.

Furthermore, the control-to-state map S1 is Gâteaux-differentiable in the following
sense: for all u ∈ Ũad and h ∈ U , as δ ↘ 0, it holds that

S1(u + δh) − S1(u)

δ
→ θh in L�

P (�; L2(0, T ; V1)) ∀ � ∈ [1, p) ,

S1(u + δh) − S1(u)

δ

∗
⇀ θh in L p

w

(
�; L∞(0, T ; V ∗

1 )
) ∩ L p

P

(
�; L2(0, T ; V1)

)
,

S1(u + δh) − S1(u)

δ

∗
⇀ θh in L p/3

w

(
�; L∞(0, T ; H)

) ∩ L p/3
P

(
�; L2(0, T ; V2)

)
,

S1(u + δh)(t) − S1(u)(t)

δ
⇀θh(t) in L p/3(�,Ft ; H) ∀ t ∈ [0, T ].
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Moreover, if p ≥ 7 and C3 holds, then S1 is also Fréchet-differentiable as a map

S1 : Ũad → L p/7
P (�;C0([0, T ]; V ∗

1 ) ∩ L2(0, T ; V1)).

The second step in the analysis of necessary conditions for optimality consists in
studying the so-called adjoint system and by proving a suitable duality relation with
respect to the linearised system. The adjoint system can be formally obtained as the
dual system of (2.6)–(2.9), and reads

−dP − �P̃ dt + � ′′(ϕ)P̃ dt − u · ∇P dt

= α1(ϕ − ϕQ) dt + DB(ϕ)∗Z dt − Z dW in (0, T ) × O , (2.10)

P̃ = −�P in (0, T ) × O , (2.11)

n · ∇P = n · ∇ P̃ = 0 in (0, T ) × ∂O , (2.12)

P(T ) = α2(ϕ(T ) − ϕT ) in O. (2.13)

Let us point out that the adjoint system is backward in time: due to the stochastic
framework of the problem, this necessarily requires the introduction of the additional
variable Z in view of the classical martingale representation theorems. The situation
here is then much more complex than the deterministic one: the variable of the adjoint
system is indeed the couple (P, Z), with P̃ being an auxiliary variable. Due to the
difficulty of analysis of the adjoint system, we will need to require more regularity on
the targets, namely

C4 p ≥ 6 and it holds that

α1ϕQ ∈ L
2p
p−4

P (�; L2(0, T ; H)), α2ϕT ∈ L
2p
p−4 (�,FT ; V1).

The next result ensures that the adjoint system (2.10)–(2.13) is well posed in a suitable
variational sense, and state a duality relation between (2.6)–(2.9) and (2.10)–(2.13).

Theorem 2.6 Assume A1–A3, C1–C2, and C4. Then, for all u ∈ Ũad , setting ϕ :=
S1(u), there exists a triplet (P, P̃, Z), with

P ∈ L2
P (�;C0([0, T ]; V1) ∩ L2(0, T ; V3)) ,

P̃ = LP ∈ L2
P (�;C0([0, T ]; V ∗

1 ) ∩ L2(0, T ; V1)) ,

Z ∈ L2
P (�; L2(0, T ;L 2(K , V1))) ,

such that, for every t ∈ [0, T ], P-almost surely,

(P(t), ζ )H +
∫
QT
t

∇ P̃ · ∇ζ +
∫
QT
t

� ′′(ϕ)P̃ζ +
∫
QT
t

Pu · ∇ζ

= (α2(ϕ(T ) − ϕT ), ζ )H +
∫
QT
t

DB(ϕ)∗Zζ −
(∫ T

t
Z(s) dW (s), ζ

)
H

∀ ζ ∈ V1.
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Furthermore, the solution components ∇P, P̃, and ∇Z are unique in the spaces
L2
P (�;C0([0, T ]; Hd)), L2

P (�;C0([0, T ]; V ∗
1 )), and L2

P (�; L2(0, T ;L 2(K , Hd))),
respectively.

At this point, we are finally ready to state the necessary conditions for optimality:
more specifically, we present here two different versions. The first one is deduced
directly by the characterisation of the derivative of S1 in Theorem 2.5, and consists of
a variational inequality depending also on the linearised variables. The second one is a
refinement of this, as it employs the adjoint problem and only depends on the intrinsic
adjoint variables (P, P̃, Z), not on the linearised ones.

Theorem 2.7 Assume A1–A3, C1–C2, and p ≥ 6. If u ∈ Uad is an optimal control
for (CP) and ϕ := S1(u) is its respective optimal state, then

α1E

∫
Q
(ϕ − ϕQ)θv−u + α2E

∫
O

(ϕ(T ) − ϕT )θv−u(T )

+α3E

∫
Q
u · (v − u) ≥ 0 ∀ v ∈ Uad , (2.14)

where θv−u is the unique first solution component of the linearised system (2.6)–(2.9)
with the choice h := v − u, in the sense of Theorem 2.5.

Theorem 2.8 Assume A1–A3, C1–C2, and C4. If u ∈ Uad is an optimal control for
(CP) and ϕ := S1(u) is its respective optimal state, then

E

∫
Q
(ϕ∇P + α3u) · (v − u) ≥ 0 ∀ v ∈ Uad , (2.15)

where ∇P is the uniquely determined solution component of the adjoint system
(2.10)–(2.13) in the sense of Theorem 2.6. In particular, if α3 > 0, then u is the
orthogonal projection of − 1

α3
ϕ∇P on the closed convex set Uad in the Hilbert space

L2
P (�; L2(0, T ; Hd)).

Remark 2.9 Let us comment on the necessary condition for optimality.When handling
the optimisation problem in practice, the main role of condition (2.15) is to restrict the
class of possible candidates to be optimal controls. Roughly speaking, the optimisation
analysis begins with the identification of some natural candidates u to the role of
optimal controls. Secondly, for such controls u the forward and the backward systems
are solved, so that the respective variables ϕ = ϕ(u) and∇P = ∇P(u) are identified.
Finally, if condition (2.15) is not met, then the candidate u is cut off from the analysis,
otherwise it is confirmed. Nonetheless, let stress again that condition (2.15) is only
a necessary requirement, and can only help to restrict the class of potential optimal
controls. In order to further refine the analysis, sufficient conditions for optimality
should be investigated. Themathematical idea behind this is very natural: if the reduced
cost functional J̃ can be shown to be twice (Fréchet or Gâteaux) differentiable, then
any control u satisfying the first-order stationary condition (2.15) and the positive
definiteness conditionD2 J̃ (u) > 0 is anoptimal control. Such second-order analysis is
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extremely challenging, and to the best of the author’s knowledge, it has been performed
so far only in relation to some selected optimal control problems in the deterministic
setting (Colli et al. 2015b; Colli and Sprekels 2015). In the stochastic case, the second-
order analysis is open and is currently being investigated in a work in preparation.

3 Well-posedness of the State System

This section is devoted to the proof of Theorem 2.1 about well-posedness of the state
system.

3.1 Uniqueness

Let {ui }i=1,2 ⊂ U and let us denote by {(ϕi , μi )}i=1,2 any respective solutions to (1.1)–
(1.4) in the sense of Theorem 2.1. Let us set for brevity of notation ϕ := ϕ1 − ϕ2,
μ := μ1 − μ2, u := u1 − u2: then we have

dϕ − �μ dt + u · ∇ϕ1 dt + u2 · ∇ϕ dt = (B(ϕ1) − B(ϕ2)) dW , ϕ(0) = 0 ,

where the equality is intended in the usual variational sense of Theorem 2.1.
Taking 1

|O| ∈ V1 as test function yields directly by assumption A3 that

ϕO = 0, so that actually ϕ ∈ L p
P (�;C0([0, T ]; V ∗

1,0)) and B(ϕ1) − B(ϕ2) ∈
L p
P (�; L2(0, T ;L 2(K , V ∗

1,0))). Hence, Itô’s formula for the function 1
2 ‖∇Nϕ‖2H

yields

1

2
‖∇Nϕ(t)‖2H +

∫
Qt

|∇ϕ|2 +
∫
Qt

(� ′(ϕ1) − � ′(ϕ2))ϕ

+
∫
Qt

(u · ∇ϕ1 + u2 · ∇ϕ)Nϕ

= 1

2

∫ t

0
‖∇N (B(ϕ1) − B(ϕ2))(s)‖2L 2(K ,H)

ds

+
∫ t

0
(Nϕ(s), (B(ϕ1) − B(ϕ2))(s) dW (s))H .

Now, the mean value theorem and assumption A1 give

∫
Qt

(� ′(ϕ1) − � ′(ϕ2))ϕ ≥ −C�

∫
Qt

|ϕ|2 ,

while the inclusion V1 ↪→ L6(O), the Hölder and the Poincaré–Wirtinger inequalities
yield

∫
Qt

(u · ∇ϕ1 + u2 · ∇ϕ)Nϕ
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≤ c
∫ t

0
(‖∇ϕ1(s)‖H ‖u(s)‖U + ‖u2(s)‖U ‖∇ϕ(s)‖H ) ‖Nϕ(s)‖V1 ds

≤ ‖ϕ1‖2L∞(0,T ;V1) ‖u‖2L2(0,T ;U )
+ 1

2

∫
Qt

|∇ϕ|2 + c
∫ t

0

(
1 + ‖u2(s)‖2U

)
‖∇Nϕ(s)‖2H ds.

Furthermore, assumption A3 ensures that

∫ t

0
‖∇N (B(ϕ1) − B(ϕ2))(s)‖2L 2(K ,H)

ds ≤ c
∫
Qt

|ϕ|2.

Using the compactness inequality (2.1) and rearranging the terms, we are left with

‖∇Nϕ(t)‖2H +
∫
Qt

|∇ϕ|2 ≤ c ‖ϕ1‖2L∞(0,T ;V1) ‖u‖2L2(0,T ;U )

+ c
∫ t

0

(
1 + ‖u2(s)‖2U

)
‖∇Nϕ(s)‖2H ds

+ c
∫ t

0
(Nϕ(s), (B(ϕ1) − B(ϕ2))(s) dW (s))H . (3.1)

On the right-hand side, we have, by the Hölder inequality in time,

∫ t

0

(
1 + ‖u2(s)‖2U

) ‖∇Nϕ(s)‖2H ds ≤ ct1−
2
p

(
1 + ‖u‖2L p(0,T ;U )

)
‖∇Nϕ‖2L∞(0,t;H) ,

and, thanks to the Burkholder–Davis–Gundy and the Young inequalities, assumption
A3, and again the compactness inequality (2.1),

E sup
r∈[0,t]

∣∣∣∣
∫ r

0
(Nϕ(s), (B(ϕ1) − B(ϕ2))(s) dW (s))H

∣∣∣∣
p/2

≤ 1

8
E ‖∇Nϕ‖p

L∞(0,t;H)
+ cE ‖ϕ‖p

L2(0,t;H)

≤ 1

8
E ‖∇Nϕ‖p

L∞(0,t;H)
+ 1

2
E ‖∇ϕ‖p

L2(0,t;H)
+ cE ‖∇Nϕ‖p

L2(0,t;H)
.

Consequently, taking power p/2 at both sides of (3.1) and rearranging the terms yield

E ‖∇Nϕ‖p
L∞(0,t;H)

+ E ‖∇ϕ‖p
L2(0,t;H)

≤ c ‖u‖p
U E ‖ϕ1‖p

L∞(0,T ;V1) + ct
p
2 −1(1 + ‖u2‖p

U )E ‖∇Nϕ‖p
L∞(0,t;H)

.

Hence, setting

T0 :=
(
1

2
c−1(1 + ‖u2‖p

U )−1
) 2

p−2 ∧ T ,
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we get

E ‖∇Nϕ‖p
L∞(0,T0;H)

+ E ‖∇ϕ‖p
L2(0,T0;H)

≤ c ‖u‖p
U E ‖ϕ1‖p

L∞(0,T ;V1) + 1

2
E ‖∇Nϕ‖p

L∞(0,T0;H)
.

Since T0 is independent of the initial time, we can iterate the procedure and close the
estimate on each subinterval [kT0, (k + 1)T0] for all k ∈ N until (k + 1)T0 > T :
summing up, noting that the number of such subintervals is less than T

T0
+ 1, and

renominating c independently of u2, we get then

‖ϕ1 − ϕ2‖p
L p
P (�;C0([0,T ];V ∗

1 )∩L2(0,T ;V1))

≤ c ‖ϕ1‖p
L p(�;L∞(0,T ;V1))

(
1 + ‖u2‖

2p
p−2

U

)
‖u1 − u2‖p

U ,

from which uniqueness of solutions follows.

3.2 Approximation

We turn now to existence of solutions. First of all, for every λ let βλ : R → R

be the Yosida approximation of β and β̂λ : R → [0,+∞) be the Moreau–Yosida
regularisation of β̂, which are defined, respectively, as:

βλ(r) := r − (I + λβ)−1(r)

λ
, β̂λ(r) :=

∫ r

0
βλ(s) ds , r ∈ R.

Let us recall that βλ is 1
λ
-Lipschitz continuous, β̂λ is convex and quadratic at ∞, and

as λ ↘ 0 it holds that βλ(r) → β(r) and β̂λ(r) ↗ β̂(r) for all r ∈ R. For further
details about the properties of βλ and β̂λ, we refer to the monograph (Barbu 2010,
Ch. 2). We define the approximated double-well potential as:

�λ : R → R , �λ(r) := �(0) + β̂λ(r) − C�

2
r2 , r ∈ R ,

so that in particular we have � ′
λ(r) = βλ(r) − C�r for r ∈ R. Secondly, we define

uλ := ρλ ∗ u ,

where (ρλ)λ ⊂ C∞
c (R) is a classical non-anticipative sequence of mollifiers in time.

In particular, let us point out that it holds

uλ ∈ L∞
P (� × (0, T );U ) , uλ → u in Lq

P (�; L p(0, T ;U )) ∀ q ≥ 1.
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The approximated system is obtained by replacing � ′ with � ′
λ and u with uλ in

(1.1)–(1.4):

dϕλ − �μλ dt + uλ · ∇ϕλ dt = B(ϕλ) dW in (0, T ) × O , (3.2)

μλ = −�ϕλ + � ′
λ(ϕλ) in (0, T ) × O , (3.3)

n · ∇ϕλ = n · ∇μλ = 0 in (0, T ) × ∂O , (3.4)

ϕλ(0) = ϕ0 in O. (3.5)

We formulate (3.2)–(3.5) in an abstract way as

dϕλ + (Aλ + Cλ)(ϕλ) dt = B(ϕλ) dW , ϕλ(0) = ϕ0 , (3.6)

where the variational operators

Aλ : V2 → V ∗
2 , Cλ : � × [0, T ] × V2 → V ∗

2 ,

are defined as:

〈Aλ(y), ζ 〉 :=
∫
O

(−�ζ)(−�y + � ′
λ(y)) , y, ζ ∈ V2 ,

and

〈Cλ(ω, t, y), ζ 〉 := −
∫
O
yuλ(ω, t) · ∇ζ , y, ζ ∈ V2 , t ∈ [0, T ].

Since � ′
λ is Lipschitz-continuous, it is not difficult to show (see, for example, Scarpa

2018, Lem. 3.1) thatAλ is weakly monotone, weakly coercive, and linearly bounded,
in the sense that there are two constants cλ, c′

λ > 0 such that

〈Aλ(y1) − A2(y2), y1 − y2〉 ≥ cλ ‖y1 − y2‖2V2 − c′
λ ‖y1 − y2‖2H ∀ y1, y2 ∈ V2

and

‖Aλ(y)‖V ∗
2

≤ c′
λ(1 + ‖y‖V2) ∀ y ∈ V2.

As far as the convection operator Cλ is concerned, since div uλ = 0, thanks to the
divergence theorem we have

〈Cλ(y1) − Cλ(y2), y1 − y2〉 = −
∫
O

(y1 − y2)uλ · ∇(y1 − y2) = 0 ,

and, thanks to the Hölder inequality and the inclusion V1 ↪→ L6(O),

‖Cλ(y)‖V ∗
2

= sup
‖ζ‖V2≤1

{
−

∫
O
yuλ · ∇ζ

}
≤ ‖y‖H ‖uλ‖U
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≤ ‖uλ‖L∞
P (�×(0,T );U ) ‖y‖V2 ∀ y ∈ V2.

Hence, the operator Aλ + Cλ : � × [0, T ] × V2 → V ∗
2 is weakly monotone, weakly

coercive, and linearly bounded. Besides, due to the Lipschitz-continuity of � ′
λ and

the regularity of uλ, it is immediate to check that it is also hemicontinuous. Moreover,
assumption A3 ensures that B : H → L 2(K , H) is Lipschitz-continuous. It follows
then by the classical variational approach to SPDEs by Pardoux (1975) and Krylov
and Rozovskiı̆ (1979) that the evolution equation (3.6) admits a unique variational
solution

ϕλ ∈ L2
P (�;C0([0, T ]; H) ∩ L2(0, T ; V2)).

Let us set μλ := −�ϕλ + � ′
λ(ϕλ) as the approximated chemical potential.

3.3 Uniform Estimates

Itô’s formula for the square of the H -norm yields

1

2
‖ϕλ(t)‖2H +

∫
Qt

|�ϕλ|2 +
∫
Qt

� ′
λ(ϕλ)(−�ϕλ) −

∫
Qt

ϕλuλ · ∇ϕλ

= 1

2
‖ϕ0‖2H + 1

2

∫ t

0
‖B(ϕλ(s))‖2L 2(K ,H)

ds +
∫ t

0
(ϕλ(s), B(ϕλ(s)) dW (s))H .

Now, on the left-hand side, we have, thanks to the monotonicity of βλ,

∫
Qt

� ′
λ(ϕλ)(−�ϕλ) =

∫
Qt

β ′
λ(ϕλ)|∇ϕλ|2 − C�

∫
Qt

ϕλ(−�ϕλ)

≥ −1

4

∫
Qt

|�ϕ2
λ| − C2

�

∫
Qt

|ϕλ|2.

Also, by the Hölder inequality and the inclusion V1 ↪→ L6(O), it holds

−
∫
Qt

ϕλuλ · ∇ϕλ ≥ −
∫ t

0
‖ϕλ(s)‖H ‖uλ(s)‖U ‖ϕ(s)‖V2 ds.

Thanks to the elliptic regularity theory for the Neumann problem (see, for exam-
ple, Brezis 2011, §9.6) there is c > 0 independent of λ such that ‖ζ‖V2 ≤
c(‖ζ‖H + ‖�ζ‖H ) for every ζ ∈ V2: consequently, renominating c and using the
Young inequality we get

−
∫
Qt

ϕλuλ · ∇ϕλ ≥ −1

4

∫
Qt

|�ϕλ|2 − c2
∫ t

0
‖ϕλ(s)‖2H (1 + ‖uλ(s)‖2U ) ds.
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Furthermore, noting that 2γ
γ−1 ≥ 4 since γ ∈ [1, 2], assumption A3 yields

1

2

∫ t

0
‖B(ϕλ(s))‖2L 2(K ,H)

ds ≤ c.

Putting this information together and using assumption on the right-hand side we get,
possibly updating the value of c,

1

2
‖ϕλ(t)‖2H + 1

2

∫
Qt

|�ϕλ|2 ≤ 1

2
‖ϕ0‖2H + c

∫ t

0
‖ϕλ(s)‖2H (1 + ‖uλ(s)‖2U ) ds

+
∫ t

0
(ϕλ(s), B(ϕλ(s)) dW (s))H ∀ t ∈ [0, T ] , P-a.s.

Taking now power p/2 at both sides, the stochastic integral on the right-hand side can
be treated again thanks to A3, using classical computations based on the Burkholder–
Davis–Gundy inequality (see, for example, Marinelli and Scarpa 2018, Lem. 4.3).
Consequently, the same iterative argument used in Sect. 3.1 ensures that

‖ϕλ‖p
L p
P (�;C0([0,T ];H)∩L2(0,T ;V2)) ≤ c

(
1 + ‖u‖

2p
p−2

U

)
. (3.7)

In order to deduce further estimates on ϕλ and μλ, we rely on the free-energy
estimate. Namely, we consider the approximated energy

ζ �→ Eλ(ζ ) := 1

2

∫
O

|∇ζ |2 +
∫
O

�λ(ζ ) , ζ ∈ V1.

Clearly, Eλ is well defined and of class C1 in V1, with derivative

DEλ : V1 → V ∗
1 , DEλ(ζ ) = Lζ + � ′

λ(ζ ) , ζ ∈ V1 ,

so that in particular we have DEλ(ϕλ) = μλ. Moreover, the Lipschitz-continuity of
� ′

λ ensures that DEλ : V1 → V ∗
1 is actually Fréchet-differentiable with

D2Eλ(ζ )[z1, z2] =
∫
O

∇z1 · ∇z2 +
∫
O

� ′′
λ(ζ )z1z2 , ζ, z2, z2 ∈ V1.

Now, we would like to write Itô’s formula for Eλ(ϕλ): in order to do this, we need
to show first that ϕλ and μλ enjoy more regularity. This can be shown by performing
a further approximation on the problem (for example, the classical Faedo–Galerkin
approximation of the abstract evolution equation (3.6)). Indeed, by the classical vari-
ational theory on stochastic evolution equations (Liu and Röckner 2015), there is a
sequence (Hn)n of finite-dimensional subspaces of H , included in V2 and with ∪nHn

dense in H , such that, setting Pn : V ∗
2 → Hn as the orthogonal projection onto Hn ,

the unique solution (ϕn
λ, μn

λ) of the finite-dimensional system
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dϕn
λ − �μn

λ dt + Pn(uλ · ∇ϕn
λ) dt = PnB(ϕn

λ) dW in (0, T ) × O ,

μn
λ = −�ϕn

λ + Pn�
′
λ(ϕ

n
λ) in (0, T ) × O ,

n · ∇ϕn
λ = n · ∇μn

λ = 0 in (0, T ) × ∂O ,

ϕn
λ(0) = ϕn

0 in O ,

satisfy, as n → ∞,

ϕn
λ⇀ϕλ in L p

P (�; L2(0, T ; V2)) , μn
λ⇀μλ in L p

P (�; L2(0, T ; H)).

At this point, the finite-dimensional Itô formula for Eλ|Hn yields

1

2

∫
O

|∇ϕn
λ(t)|2 +

∫
O

�λ(ϕ
n
λ(t)) +

∫
Qt

|∇μn
λ|2 = 1

2

∫
O

|∇ϕn
0 |2 +

∫
O

�λ(ϕ
n
0 )

+
∫
Qt

ϕn
λuλ · ∇μn

λ

+ 1

2

∫ t

0

∥∥∇PnB(ϕn
λ(s))

∥∥2
L 2(K ,H)

ds +
∞∑
j=0

∫
Qt

� ′′
λ(ϕn

λ)|PnB(ϕn
λ)e j |2

+
∫ t

0

(
μn

λ(s), B(ϕn
λ(s)) dW (s)

)
H

for every t ∈ [0, T ], P-almost surely. We show now uniform estimates on the terms on
the right-hand side, independent of both λ and n. These will show a posteriori that ϕλ

and μλ are actually more regular. For this reason and for brevity of notation, we omit
from now on the dependence on n and refer to (Scarpa 2018, 2020) for more detail.

To this end, noting that the definition of μλ and assumption A1 imply

|(μλ)O| = |(� ′
λ(ϕλ))O| ≤ ∥∥� ′

λ(ϕλ)
∥∥
L1(O)

≤ c

(
1 +

∫
O

�λ(ϕλ)

)
,

on the left-hand side, we get

∫
O

�λ(ϕλ(t)) ≥ 1

c
|(μλ(t))O| − c.

On the right-hand side, thanks to the Hölder and Young inequalities, the inclusion
V1 ↪→ L6(O), and the estimate (3.7), proceeding as in Sect. 3.1, we have

∫
O

�λ(ϕ0) +
∫
Qt

ϕλuλ · ∇μλ ≤
∫
O

�(ϕ0) + 1

2

∫
Qt

|∇μλ|2

+ 1

2

∫ t

0
‖ϕλ(s)‖2V1 ‖uλ(s)‖2U ds

≤ c + 1

2

∫
Qt

|∇μλ|2 + ct1−
2
p ‖u‖2U ‖∇ϕ‖2L∞(0,t;H)
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Moreover, assumptionsA3 andA1 yield, togetherwith theHölder inequality and (3.7),

1

2

∫ t

0
‖∇B(ϕλ(s))‖2L 2(K ,H)

ds +
∞∑
j=0

∫
Qt

� ′′
λ(ϕλ)|B(ϕλ)e j |2

≤ c

(
1 +

∫ t

0
‖ϕλ(s)‖2V1 ds

)
+

∞∑
j=0

∫ t

0

∥∥� ′′
λ(ϕλ(s))

∥∥
Lγ (O)

∥∥B(ϕλ(s))e j
∥∥2
L

2γ
γ−1 (O)

ds

≤ c

(
1 +

∫ t

0
‖∇ϕλ(s)‖2H ds +

∫
Qt

�λ(ϕλ)

)

≤ c + ct ‖∇ϕλ‖2L∞(0,t;H) + ct ‖�λ(ϕλ)‖L∞(0,t;L1(O)) .

Finally, the Burkholder–Davis–Gundy and the Poincaré–Wirtinger inequalities give,
together with assumption A3,

E sup
r∈[0,t]

∣∣∣∣
∫ r

0
(μλ(s), B(ϕλ(s)) dW (s))H

∣∣∣∣
p/2

≤ cE

(∫ t

0
‖μλ(s)‖2H ‖B(ϕλ(s))H‖2L 2(K ,H)

ds

)p/4

≤ cE ‖μλ‖p/2
L2(0,t;H)

≤ δE ‖∇μλ‖p
L2(0,t;H)

+ cδ

(
1 + E ‖(μλ)O‖p/2

L2(0,t)

)
,

for every δ > 0, where we have updated the value of c and cδ step-by-step, inde-
pendently of λ. Putting all this information together, choosing δ sufficiently small,
rearranging the terms, and updating again the value of c, we infer that

E ‖∇ϕλ‖p
L∞(0,t;H)

+ E ‖�λ(ϕλ)‖p/2
L∞(0,t;L1(O))

+ E ‖(μλ)O‖p/2
L∞(0,t) + E ‖∇μλ‖p

L2(0,t;H)

≤ c
[
1 +

(
t
p
2 −1 ‖u‖p

U + t
p
2

)
E ‖∇ϕ‖p

L∞(0,t;H)

+t
p
2 E ‖�λ(ϕλ)‖p/2

L∞(0,t;L1(O))
+ t p/4E ‖(μλ)O‖p/2

L∞(0,t)

]
∀ t ∈ [0, T ].

Consequently, we can close the estimate on a certain subinterval [0, T0], where T0 is
chosen sufficiently small in order to incorporate the terms on the right-hand side into
the corresponding ones on the left. Also, a patching argument as in Sect. 3.1 allows
then to extend the estimate to the whole interval [0, T ], and we obtain

‖ϕλ‖L p(�;L∞(0,T ;V1)) + ‖μλ‖L p/2
P (�;L2(0,T ;V1)) + ‖∇μλ‖L p

P (�;L2(0,T ;H))

+ ‖�λ(ϕλ)‖L p/2(�;L∞(0,T ;L1(�))) ≤ c

(
1 + ‖u‖

2p
p−2

U

)
, (3.8)

which by comparison in μλ = −�ϕλ + � ′
λ(ϕλ) and estimate (3.7) gives also

∥∥� ′
λ(ϕλ)

∥∥
L p/2
P (�;L2(0,T ;H))

≤ c

(
1 + ‖u‖

2p
p−2

U

)
. (3.9)
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Finally, note that by assumption A3 and the estimate (3.8), we have

‖B(ϕλ)‖L∞(�×(0,T );L 2(K ,H))∩L p(�;L∞(0,T ;L 2(K ,V1))) ≤ c ,

so that the classical result by Flandoli and Gatarek (1995, Lem. 2.1) ensures in partic-
ular that

∥∥∥∥Iλ :=
∫ ·

0
B(ϕλ(s)) dW (s)

∥∥∥∥
L p
P (�;Ws,p(0,T ;V1))

≤ cs ∀ s ∈ (0, 1/2). (3.10)

Consequently, by comparison in (3.2), it is not difficult to check that

‖ϕλ‖L p
P (�;W 1,2(0,T ;V ∗

1 )+Ws,p(0,T ;V1)) ≤ cs ∀ s ∈ (0, 1/2).

Now, recalling that p > 2, for all arbitrary s ∈ (0, 1/2) we have that s − 1
p ≤ 1

2 , so
that the usual Sobolev embeddings ensure that

W 1,2(0, T ; V ∗
1 ) ↪→ Ws,p(0, T ; V ∗

1 ) ∀ s ∈ (0, 1/2) ,

and we deduce that

‖ϕλ‖L p
P (�;Ws,p(0,T ;V ∗

1 )) ≤ cs ∀ s ∈ (0, 1/2). (3.11)

3.4 Passage to the Limit

From the estimates (3.7)–(3.9), there exists a pair (ϕ, μ), with

ϕ ∈ L p
w(�; L∞(0, T ; V1)) ∩ L p

P (�; L2(0, T ; V2)) , μ ∈ L p/2
P (�; L2(0, T ; V1))

such that, as λ ↘ 0, on a non-relabelled subsequence we have

ϕλ

∗
⇀ ϕ in L p

w(�; L∞(0, T ; V1)) ∩ L p
P (�; L2(0, T ; V2)) ,

μλ⇀μ in L p/2
P (�; L2(0, T ; V1)).

Now, since p > 2, we can fix s̄ ∈ ( 1p , 1
2 ), so that s̄ p > 1: with this choice, by the

classical Aubin–Lions–Simon compactness results (Simon 1987, Cor. 5) we have

L∞(0, T ; V1) ∩ L2(0, T ; V2) ∩ Ws̄,p(0, T ; V ∗
1 )

↪→ C0([0, T ]; H) ∩ L2(0, T ; V1) compactly.

Hence, setting Bn as the closed ball of radius n in L∞(0, T ; V1) ∩ L2(0, T ; V2) ∩
Ws̄,p(0, T ; V ∗

1 ), we have thatBn is compact inC0([0, T ]; H)∩L2(0, T ; V1), for every
n ∈ N. Consequently, denoting by νλ the law of ϕλ on C0([0, T ]; H) ∩ L2(0, T ; V1)
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for brevity, the Markov inequality and the uniform estimates (3.7), (3.8), and (3.11)
yield

νλ(Bc
n) = P{‖ϕλ‖L∞(0,T ;V1)∩L2(0,T ;V2)∩Ws̄,p(0,T ;V ∗

1 ) > n}
≤ 1

n
E ‖ϕλ‖L∞(0,T ;V1)∩L2(0,T ;V2)∩Ws̄,p(0,T ;V ∗

1 ) ≤ c

n
,

from which

lim
n→∞ sup

λ>0
νλ(Bc

n) = 0.

By the Prokhorov theorem, this implies that

the laws of (ϕλ)λ are tight on C0([0, T ]; H) ∩ L2(0, T ; V1).

Similarly, estimate (3.10) ensures by the same argument that

the laws of (Iλ)λ are tight on C0([0, T ]; H).

Let us show now that, possibly on a further subsequence, we have also the strong
convergence

ϕλ → ϕ in C0([0, T ]; H) ∩ L2(0, T ; V1) P-a.s. (3.12)

To this end, we use the following lemma due to Gyöngy and Krylov (1996, Lem. 1.1),
which characterises the convergence in probability in a Polish space.

Lemma 3.1 LetX beaPolish spaceand (Zn)n bea sequenceofX -valued randomvari-
ables. Then, (Zn)n converges in probability if and only if for any pair of subsequences
(Znk )k and (Zn j ) j , there exists a joint sub-subsequence (Znk�

, Zn j�
)� converging in

law to a probability measure ν on X × X such that ν({(z1, z2) ∈ X × X : z1 =
z2}) = 1.

We apply this lemma to X = C0([0, T ]; H) ∩ L2(0, T ; V1) and (ϕλ)λ. Given two
arbitrary subsequences (ϕλk )k and (ϕλ j ) j , since the laws of the pairs (ϕλk , ϕλ j )k, j are
tight on (C0([0, T ]; H) ∩ L2(0, T ; V1))2, there is a joint subsequence (ϕλki

, ϕλ ji
)i

converging weakly to a probability measure ν on (C0([0, T ]; H) ∩ L2(0, T ; V1))2.
By the Skorokhod representation theorem (Ikeda and Watanabe 1989, Thm. 2.7) and
(van der Vaart and Wellner 1996, Thm. 1.10.4, Add. 1.10.5), there exist a new prob-
ability space (�′,F ′,P′) and measurable maps φi : (�′,F ′) → (�,F ), such that
P

′ ◦ φ−1
i = P for every i ∈ N and

(ϕ′
λki

, ϕ′
λ ji

) := (ϕλki
, ϕλ ji

) ◦ φi → (ϕ′
1, ϕ

′
2) in (C0([0, T ]; H) ∩ L2(0, T ; V1))2 , P

′-a.s. ,
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for some measurable random variables

(ϕ′
1, ϕ

′
2) : (�′,F ′) → (C0([0, T ]; H) ∩ L2(0, T ; V1))2.

Similarly, we have

(u′
λki

,u′
λ ji

) := (uλki
,uλ ji

) ◦ φi → (u′
1,u

′
2) in L p(0, T ;U )2 , P

′-a.s. ,

(I ′
λki

, I ′
λ ji

) := (Iλki , Iλ ji
) ◦ φi → (I ′

1, I
′
2) in C0([0, T ]; H)2 , P

′-a.s. ,

W ′
i := W ◦ φi → W ′ in C0([0, T ]; K ) , P

′-a.s.

for some measurable random variables

(u′
1,u

′
2) : (�′,F ′) → L p(0, T ;U )

and

(I ′
1, I

′
2) : (�′,F ′) → C0([0, T ]; H)2 , W ′ : (�′,F ′) → C0([0, T ];U ).

Now, since uλ → u in L p(0, T ;U ) P-almost surely on the whole sequence λ, for
every arbitrary f ∈ C0(R) ∩ L∞(R) we have

E
′ [ f (∥∥u′

1 − u′
2

∥∥
L p(0,T ;U )

)]
= lim

i→∞E
′
[
f

(∥∥∥u′
λki

− u′
λ ji

∥∥∥
L p(0,T ;U )

)]

= lim
i→∞E

[
f

(∥∥∥uλki
− uλ ji

∥∥∥
L p(0,T ;U )

)]
= 0 ,

from which u′
1 = u′

2 P
′-almost surely due to the arbitrariness of f . Let us set then

u′ := u′
1 = u′

2 and (μ′
λki

, μ′
λ ji

) := (μλki
, μλ ji

) ◦ φi : since the maps φi preserve the
laws, from the uniform estimates (3.7)–(3.9) we deduce also that

(ϕ′
λki

, ϕ′
λ ji

) → (ϕ′
1, ϕ

′
2) in L�

P (�′;C0([0, T ]; H) ∩ L2(0, T ; V1))2 ∀ � ∈ [1, p) ,

(ϕ′
λki

, ϕ′
λ ji

)
∗
⇀ (ϕ′

1, ϕ
′
2) in L p

w(�′; L∞(0, T ; V1))2 ∩ L p
P (�′; L2(0, T ; V2))2 ,

(μ′
λki

, μ′
λ ji

)⇀(μ′
1, μ

′
2) in L p/2

P (�′; L2(0, T ; V1))2 ,

(u′
λki

,u′
λ ji

)
∗
⇀ (u′,u′) in L∞

P (�′; L p(0, T ;U ))2 ,

for some measurable random variables

(μ′
1, μ

′
2) : (�′,F ′) → L2(0, T ; V1)2.

Now, if we introduce the filtration (F ′
i,t )t∈[0,T ] as:

F ′
i,t := σ {ϕ′

λki
(s), ϕ′

λ ji
(s), μ′

λki
(s), μ′

λ ji
(s),u′

λki
(s),u′

λ ji
(s),W ′

i (s), I
′
λki

(s), I ′
λ ji

(s) : s ≤ t} ,
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using classical representation theorems formartingales (see Flandoli andGatarek 1995
andDa Prato and Zabczyk 2014, § 8.4) we have thatW ′

i is a cylindricalWiener process
on (�′,F ′, (F ′

t )t∈[0,T ],P′) and

I ′
λki

=
∫ ·

0
B(ϕ′

λki
(s)) dW ′

i (s) , I ′
λ ji

=
∫ ·

0
B(ϕ′

λ ji
(s)) dW ′

i (s) ,

so that on the new probability space (�′,F ′,P′) we have

dϕ′
λki

− �μ′
λki

dt + u′
λki

· ∇ϕ′
λki

dt = B(ϕ′
λki

) dW ′
i , ϕ′

λki
(0) = ϕ0 ,

dϕ′
λ ji

− �μ′
λ ji

dt + u′
λ ji

· ∇ϕ′
λ ji

dt = B(ϕ′
λ ji

) dW ′
i , ϕ′

λ ji
(0) = ϕ0 ,

where the equations are intended in the usual variational sense (3.6). Now, the strong
convergences of (ϕ′

λki
, ϕ′

λ ji
)i imply, together with the Lipschitz-continuity of B, that

(B(ϕ′
λki

), B(ϕ′
λ ji

)) → (B(ϕ′
1), B(ϕ′

2)) in L�
P (�′;C0([0, T ];L 2(K , H)))2 ∀ � ∈ [1, p).

Introducing then the limiting filtration (F ′
t )t∈[0,T ] as

F ′
t := σ {ϕ′

1(s), ϕ
′
2(s), μ

′
1(s), μ

′
2(s),u

′(s),W ′(s), I ′
1(s), I

′
2(s) : s ≤ t} , t ∈ [0, T ] ,

a classical argument based again on the martingale representation theorem (see Flan-
doli and Gatarek 1995 and Da Prato and Zabczyk 2014, § 8.4) yields the identification

I ′
1 =

∫ ·

0
B(ϕ′

1(s)) dW
′(s) , I ′

2 =
∫ ·

0
B(ϕ′

2(s)) dW
′(s).

Moreover, the strong convergences of (ϕ′
λki

, ϕ′
λ ji

)i together with the uniform estimate
(3.9) on the nonlinearities also give

(� ′
λki

(ϕ′
λki

),� ′
λ ji

(ϕ′
λ ji

))⇀(� ′(ϕ′
1),�

′(ϕ′
2)) in L p/2

P (�′; L2(0, T ; H))2.

Putting all this information together, we deduce that (ϕ′
1, ϕ

′
2) solves the limit problem

(1.1)–(1.4) in the sense of Theorem 2.1 on the new probability space (�′,F ′,P′),
namely

dϕ′
1 − �μ′

1 dt + u′ · ∇ϕ′
1 dt = B(ϕ′

1) dW
′ , ϕ′

1(0) = ϕ0 ,

dϕ′
2 − �μ′

2 dt + u′ · ∇ϕ′
2 dt = B(ϕ′

2) dW
′ , ϕ′

2(0) = ϕ0.

Since we have already proved uniqueness of solutions in Sect. 3.1, we deduce that

ν({(z1, z2) ∈ X 2 : z1 = z2}) = P
′ {∥∥ϕ′

1 − ϕ′
2

∥∥
C0([0,T ];H)∩L2(0,T ;V1) = 0

}
= 1.
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so that Lemma 3.1 ensures the strong convergence (3.12) also on the original probabil-
ity space (�,F ,P). Proceeding now in exactly the same way on (�,F ,P) instead,
it is a standard matter to show that (ϕ, μ) is the unique solution to the state system
(1.1)–(1.4). Clearly, the global estimate (2.2) follows directly by the computations in
Sect. 3.3 and assumption A3,

3.5 Continuous Dependence

Here we conclude the proof of Theorem 2.1 by showing the continuous dependence
estimates (2.3)–(2.4).

First of all, (2.3) is a consequence of the already proved (2.2) and Sect. 3.1. Now,
let us focus on proving (2.4). To this end, we use the same notation of Sect. 3.1 and
use Itô’s formula for the square of the H -norm instead, getting

1

2
‖ϕ(t)‖2H +

∫
Qt

|�ϕ|2 −
∫
Qt

(� ′(ϕ1) − � ′(ϕ2))�ϕ +
∫
Qt

(u · ∇ϕ1 + u2 · ∇ϕ) ϕ

= 1

2

∫ t

0
‖B(ϕ1(s)) − B(ϕ2(s))‖2L 2(K ,H)

ds +
∫ t

0
(ϕ(s), (B(ϕ1(s))

−B(ϕ2(s))) dW (s))H .

The third term on the left-hand side can be handled thanks to assumption A1, the
Hölder and Young inequalities, and the embedding V1 ↪→ L6(O), as

∫
Qt

(� ′(ϕ1) − � ′(ϕ2))�ϕ

≤ 1

2

∫
Qt

|�ϕ|2 + c
∫
Qt

(
1 + |ϕ1|4 + |ϕ2|4

)
|ϕ|2

≤ 1

2

∫
Qt

|�ϕ|2 +
∫ t

0

(
1 + ‖ϕ1(s)‖4L6(D)

+ ‖ϕ2(s)‖4L6(D)

)
‖ϕ(s)‖2L6(D)

ds

≤ 1

2

∫
Qt

|�ϕ|2 +
(
1 + ‖ϕ1‖4L∞(0,T ;V1) + ‖ϕ2‖4L∞(0,T ;V1)

)
‖ϕ‖2L2(0,T ;V1) .

The convection terms on the right-hand side can be treated similarly using the diver-
gence theorem, the Hölder and Young inequalities, and the inclusion L6(�) ↪→ V1
as

∫
Qt

(u · ∇ϕ1 + u2 · ∇ϕ) ϕ

=
∫
Qt

u · ∇ϕ1ϕ ≤ ‖ϕ‖2L2(0,T ;V1) + c ‖ϕ1‖2L∞(0,T ;V1) ‖u‖2L2(0,T ;U )
.
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Hence, we rearrange the terms and take power p/6 at both sides, obtaining, thanks to
the Hölder and Young inequalities,

E ‖ϕ‖p/3
L∞(0,T ;H)

+ E ‖�ϕ‖p/3
L2(0,T ;H)

≤ c

[
1 + ‖ϕ1‖

2
3 p
L p(�;L∞(0,T ;V1)) + ‖ϕ2‖

2
3 p
L p(�;L∞(0,T ;V1))

]
‖ϕ‖p/3

L p
P (�;L2(0,T ;V1))

+ cE ‖ϕ‖p/3
L2(0,T ;V1)

+ c ‖ϕ1‖p/3
L p(�;L∞(0,T ;V1)) ‖u‖p/3

U

+ cE sup
t∈[0,T ]

∣∣∣∣
∫ t

0
(ϕ(s), (B(ϕ1(s)) − B(ϕ2(s))) dW (s))H

∣∣∣∣
p/6

where the Burkholder–Davis–Gundy inequality and the Lipschitz-continuity of B
yield

E sup
t∈[0,T ]

∣∣∣∣
∫ t

0
(ϕ(s), (B(ϕ1(s)) − B(ϕ2(s))) dW (s))H

∣∣∣∣
p/6

≤ σE ‖ϕ‖p/3
L∞(0,T ;H)

+ cσE ‖ϕ‖p/3
L2(0,T ;H)

for all σ > 0. Hence, choosing σ sufficiently small and rearranging the terms, the
continuous dependence (2.4) follows from the already proved estimates (2.2)–(2.3).
This concludes the proof of Theorem 2.1.

4 Existence of Optimal Controls

In this section, we prove Theorem 2.4 showing that the optimisation problem (CP)
always admits a relaxed optimal control u ∈ Uad and a deterministic optimal control
udet ∈ Udet

ad . The main idea is to use the direct method from calculus of variations,
combined with a stochastic compactness argument.

Let (un)n ⊂ Uad be a minimising sequence for the functional J̃ , in the sense that

J̃ (un) ↘ inf
v∈Uad

J̃ (v) ,

and define (ϕn, μn)n as the unique respective solutions to the state system (1.1)–(1.4),
in the sense of Theorem 2.1. Thanks to the definition of Uad and the estimate (2.2),
we deduce that there exist u ∈ Uad and a triplet (ϕ, μ, ξ) with

ϕ ∈ L p
P (�;C0([0, T ]; H) ∩ L2(0, T ; V2)) ∩ L p

w(�; L∞(0, T ; V1)) ,

μ ∈ L p/2
P (�; L2(0, T ; V1)) , ξ ∈ L p/2

P (�; L2(0, T ; H)) ,
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such that, as n → ∞, possibly on a subsequence,

ϕn
∗
⇀ ϕ in L p

w(�; L∞(0, T ; V1)) ∩ L p
P (�; L2(0, T ; V2)) ,

μn⇀μ in L p/2
P (�; L2(0, T ; V1)) ,

� ′(ϕn)⇀ξ in L p/2
P (�; L2(0, T ; H)) ,

un
∗
⇀ u in L∞

P (�; L p(0, T ;U )).

Assumption A3 and the uniform estimates on (ϕn)n ensure also that

‖B(ϕn)‖L∞(�×(0,T );L 2(K ,H))∩L p(�;L∞(0,T ;L 2(K ,V1))) ≤ c ,

so that in particular

∥∥∥∥In :=
∫ ·

0
B(ϕn(s)) dW (s)

∥∥∥∥
L p
P (�;Ws,p(0,T ;V1))

≤ cs ∀ s ∈ (0, 1/2).

By comparison in the equation (1.1), we infer then

‖ϕn‖L p
P (�;Ws,p(0,T ;V ∗

1 )) ≤ cs ∀ s ∈ (0, 1/2) ,

which ensures that the laws of (ϕn)n are tight on the space C0([0, T ]; H) ∩
L2(0, T ; V1). We argue now on the same line of Sect. 3.4. As a consequence of the
Skorokhod theorem, there is a probability space (�′,F ′,P′) and measurable maps
φi : (�′,F ′) → (�,F ) with P′ ◦ φ−1

i = P for all i ∈ N, such that

ϕ′
ni := ϕni ◦ φi → ϕ′ in L�

P (�′;C0([0, T ]; H) ∩ L2(0, T ; V1)) ∀ � ∈ [1, p) ,

ϕ′
ni

∗
⇀ ϕ′ in L p

w(�′; L∞(0, T ; V1)) ∩ L p
P (�′; L2(0, T ; V2)) ,

μ′
ni := μni ◦ φi⇀μ′ in L p/2

P (�′; L2(0, T ; V1)) ,

u′
ni := uni ◦ φi

∗
⇀ u′ in L∞

P (�′; L p(0, T ;U )) ,

ϕ′
Q,i := ϕQ ◦ φ′

i⇀ϕ′
Q in L2

P (�′; L2(0, T ; H)) ,

ϕ′
T ,i := ϕT ◦ φi⇀ϕ′

T in L2(�′,F ′
T ; H).

Furthermore, on the new probability space we have

dϕ′
ni − �μ′

ni dt + u′
ni · ∇ϕ′

ni dt = B(ϕ′
ni ) dW

′
i , ϕ′

ni (0) = ϕ0 ,

where the stochastic integral is intended with respect to a suitably defined filtration
(Fi,t )t∈[0,T ]. Proceeding as in Sect. 3.4, we infer that

� ′(ϕ′
ni )⇀� ′(ϕ′) in L p/2

P (�′; L2(0, T ; H)) ,
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so that by assumption A3 and the martingale representation theorem we can pass to
the limit as i → ∞ on the new probability space and get

dϕ′ − �μ′ dt + u′ · ∇ϕ′ dt = B(ϕ′) dW ′ , ϕ′(0) = ϕ0.

This shows that u′ ∈ U ′
ad and that (ϕ′, μ′) = S′(u′). To conclude that u′ is a relaxed

optimal control for the optimisation problem (CP), we note that by the weak lower
semicontinuity of the cost functional J we have

J̃ ′(u′) = α1

2
E

′
∫
Q

|ϕ′ − ϕ′
Q |2 + α2

2
E

′
∫
O

|ϕ′(T ) − ϕ′
T |2 + α3

2
E

∫
Q

|u′|2

≤ lim inf
i→∞

(
α1

2
E

′
∫
Q

|ϕ′
ni − ϕ′

Q,i |2 + α2

2
E

′
∫
O

|ϕ′
ni (T ) − ϕ′

T ,i |2 + α3

2
E

′
∫
Q

|u′
ni |2

)

= lim inf
i→∞

(
α1

2
E

∫
Q

|ϕni − ϕQ |2 + α2

2
E

∫
O

|ϕni (T ) − ϕT |2 + α3

2
E

∫
Q

|uni |2
)

= lim inf
n→∞ J̃ (un) = inf

v∈Uad
J̃ (v) ,

so that u′ ∈ U ′
ad is a relaxed optimal control in the sense of Definition 2.3.

In order to showexistence of a deterministic optimal control, the argument is similar.
We start taking a minimising sequence (un)n ⊂ Udet

ad such that

J̃ (un) ↘ inf
v∈Udet

ad

J̃ (v).

Arguing exactly as above, thanks to the fact that (un)n are deterministic, in this case
we have that u′

ni = uni for every i ∈ N. Consequently, in this case we can (ϕn)n
inherits some strong compactness properties on the original probability space, using
a similar argument to the one of Sect. 3.4, by employing Lemma 3.12. Namely, we
infer the strong convergence

ϕn → ϕ in C0([0, T ]; H) ∩ L2(0, T ; V1) , P-a.s.

on the original probability space (�,F ,P). It follows then that ξ = � ′(ϕ) almost
everywhere, and letting n → ∞ yields

dϕ − �μ dt + u · ∇ϕ dt = B(ϕ) dW , ϕ(0) = ϕ0 ,

so that (ϕ, μ) = S(u). At this point, the conclusion follows as above by lower semi-
continuity of the cost functional.
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5 Linearised System and Differentiability of the Control-to-State Map

The aim of this section is to prove that the linearised state system (2.6)–(2.7) is well
posed and to characterise its solution as the derivative on the control-to-state map.
Namely, we prove here Theorem 2.5.

5.1 Existence

Let u ∈ Ũad and h ∈ U be arbitrary and fixed. Using the notation of Sect. 3.2, we
consider the approximated linearised problem

dθh,λ − �νh,λ dt + h · ∇ϕ dt + uλ · ∇θh,λ dt = DB(ϕ)θh,λ dW in (0, T ) × O ,

(5.1)

νh,λ = −�θh,λ + � ′′
λ(ϕ)θh,λ in (0, T ) × O ,

(5.2)

n · ∇θh,λ = n · ∇νh,λ = 0 in (0, T ) × ∂O ,

(5.3)

θh,λ(0) = 0 in O. (5.4)

Noting that� ′′
λ(ϕ) ∈ L∞(�×Q), the classical variational approach ensures existence

and uniqueness of the approximated solution

θh,λ ∈ L2
P

(
�;C0([0, T ]; H) ∩ L2(0, T ; V2)

)
,

νh,λ = −�θh,λ + � ′′
λ(ϕ)θh,λ ∈ L2

P (�; L2(0, T ; H)) ,

in the sense that, for every ζ ∈ V2, for every t ∈ [0, T ], P-almost surely,

(
θh,λ(t), ζ

)
H −

∫
Qt

νh,λ�ζ −
∫
Qt

(ϕh + θh,λu) · ∇ζ =
(∫ t

0
DB(ϕ)θh,λ dW (s), ζ

)
H

.

(5.5)

Noting that (θh,λ)O = 0, we can write Itô’s formula for 1
2

∥∥∇N θh,λ

∥∥2
H , getting

1

2

∥∥∇N θh,λ(t)
∥∥2
H +

∫
Qt

|∇θh,λ|2

= −
∫
Qt

� ′′
λ(ϕ)|θh,λ|2 +

∫
Qt

(
ϕh + θh,λuλ

) · ∇N θh,λ

+ 1

2

∫ t

0
‖∇N DB(ϕ(s))θh(s)‖2L 2(K ,H)

ds

+
∫ t

0

(N θh,λ(s), DB(ϕ(s))θh,λ(s) dW (s)
)
H .
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Now, assumption A1, the Hölder–Young inequalities and the compactness inequality
(2.1), and the embedding V1 ↪→ L6(O) give, for all ε > 0,

−
∫
Qt

� ′′
λ(ϕ)|θh,λ|2 +

∫
Qt

(
ϕh + θh,λuλ

) · ∇N θh,λ

≤ ε

∫
Qt

|∇θh,λ|2 + ‖ϕ‖2L∞(0,T ;V1)

+ cε

∫ t

0

(
1 + ‖h(s)‖2U + ‖uλ(s)‖2U

) ∥∥∇N θh,λ(s)
∥∥2
H ds.

Similarly, by C2 and again the compactness inequality (2.1), we have

1

2

∫ t

0
‖∇N DB(ϕ(s))θh(s)‖2L 2(K ,H)

ds ≤ ε

∫
Qt

|∇θh,λ|2 + cε

∫ t

0

∥∥∇N θh,λ(s)
∥∥2
H ds.

As for the stochastic integral, the Burkholder–Davis–Gundy and Young inequalities
give (see, for example, Marinelli and Scarpa 2020, Lem. 4.1), together with (2.1) and
C2

E sup
r∈[0,t]

∣∣∣∣
∫ r

0

(N θh,λ(s), DB(ϕ(s))θh,λ(s) dW (s)
)
H

∣∣∣∣
p/2

≤ εE
∥∥N θh,λ

∥∥p
L∞(0,t;H)

+ cεE
∥∥θh,λ

∥∥p
L2(0,t;H)

≤ εE
∥∥∇N θh,λ

∥∥p
L∞(0,t;H)

+ εE
∥∥∇θh,λ

∥∥p
L∞(0,t;H)

+ cεE
∥∥∇N θh,λ

∥∥p
L2(0,t;H)

.

Consequently, using the same iterative-patching argument of Sect. 3.1, raising to power
p/2, taking supremum in time and expectations, we infer that

∥∥θh,λ

∥∥
L p
P (�;C0([0,T ];V ∗

1 )∩L2(0,T ;V1)) ≤ c. (5.6)

Now, Itô’s formula for 1
2

∥∥θh,λ

∥∥2
H yields

1

2

∥∥θh,λ

∥∥2
H +

∫
Qt

|�θh,λ|2 =
∫
Qt

(
ϕh + θh,λuλ

) · ∇θh,λ +
∫
Qt

� ′′
λ (ϕ)θh,λ�θh,λ

+ 1

2

∫ t

0

∥∥DB(ϕ(s))θh,λ(s)
∥∥2
L 2(K ,H)

ds +
∫ t

0

(
θh,λ(s), DB(ϕ(s))θh,λ(s) dW (s)

)
H ,

where by the divergence theorem we have

∫
Qt

(
ϕh + θh,λuλ

) · ∇θh,λ =
∫
Qt

ϕh · ∇θh,λ.

Hence, it is not difficult to see that, using again the Hölder, Young and Burkholder–
Davis–Gundy inequalities, assumption C2, and the estimate (5.6), all the terms on
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the right-hand side can be handled, except the one containing � ′′. For this one, we
proceed using C1, the embedding V1 ↪→ L6(O), as

∫
Qt

� ′′
λ(ϕ)θh,λ�θh,λ ≤ ε

∫
Qt

|�θh,λ|2 + cε

∫ 1

0

(
1 + ‖ϕ(s)‖4V1

) ∥∥θh,λ(s)
∥∥2
V1

ds

≤ ε

∫
Qt

|�θh,λ|2 + cε

(
1 + ‖ϕ‖4L∞(0,T ;V1)

) ∥∥θh,λ

∥∥2
L2(0,T ;V1) ,

where, thanks to (5.6) and the Hölder inequality,

∥∥∥‖ϕ‖4L∞(0,T ;V1)
∥∥θh,λ

∥∥2
L2(0,T ;V1)

∥∥∥
L p/6(�)

≤ ‖ϕ‖4L p(�;L∞(0,T ;V1))
∥∥θh,λ

∥∥2
L p
P (�;L2(0,T ;V1)) ≤ c.

Consequently, we deduce that

∥∥θh,λ

∥∥
L p/3
P (�;C0([0,T ];H)∩L2(0,T ;V2)) ≤ c , (5.7)

from which, by comparison in (5.2),

∥∥νh,λ

∥∥
L p/3
P (�;L2(0,T ;H))

≤ c , (5.8)

We infer the existence of (θh, νh) with

θh ∈ L p
P

(
�;C0([0, T ]; V ∗

1 ) ∩ L2(0, T ; V1)
)

∩ L p/3
w (�; L∞(0, T ; H))

∩ L p/3
P (�; L2(0, T ; V2)) ,

νh ∈ L p/3
P (�; L2(0, T ; H)) ,

such that, as λ ↘ 0 (possibly on a subsequence),

θh,λ

∗
⇀ θh in L p

w

(
�; L∞(0, T ; V ∗

1 )
) ∩ L p/3

w

(
�; L∞(0, T ; H)

)
, (5.9)

θh,λ⇀θh in L p
P

(
�; L2(0, T ; V1)

)
∩ L p/3

P

(
�; L2(0, T ; V2)

)
, (5.10)

νh,λ⇀νh in L p/3
P

(
�; L2(0, T ; H)

)
. (5.11)

Since the systems (5.1)–(5.4) and (2.6)–(2.9) are linear, the passage to the limit is
straightforward. Indeed, by assumption C2 and the dominated convergence theorem,
it follows that

DB(ϕ)θh,λ⇀DB(ϕ)θh in L p
P

(
�; L2(0, T ;L 2(K , H))

)
.
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Moreover, thanks toC1 and the regularity ofϕ,wehave� ′′(ϕ) ∈ L3(�; L∞(0, T ; L3(O))),
so in particular

� ′′
λ(ϕ) → � ′′(ϕ) in L3(� × Q) ,

and also, thanks to (5.10),

� ′′
λ(ϕ)θh,λ⇀� ′′(ϕ)θh in L6/5

P (�; L6/5(0, T ; L6/5(O))).

We deduce that letting λ ↘ 0 in (5.5) we get that (θh, νh) is a solution to (2.6)–(2.9)
in the sense of Theorem 2.5. The strong continuity in H of θh follows a posteriori with
a classical method by Itô’s formula on the limit equation (2.6).

5.2 Uniqueness

We show here that the linearised system (2.6)–(2.9) admits at most one solution. By
linearity, it enough to check that if (θ, ν) is a solution to (2.6)–(2.9) in the sense of
Theorem 2.5 with h = 0, then θ = ν = 0. To this end, we note that (2.6) yields
θO = 0, so that Itô’s formula gives

1

2
‖∇N θ(t)‖2H +

∫
Qt

|∇θ |2 +
∫
Qt

� ′′(ϕ)|θ |2

=
∫
Qt

θu · ∇N θ +
∫ t

0
(N θ(s), DB(ϕ(s))θ(s))H

+ 1

2

∫ t

0
‖∇N DB(ϕ(s))θ(s)‖2L 2(K ,H)

ds.

Now, we can argue on the same line of Sect. 5.1 by using assumption A1 on � ′′, C2
on DB, together with Burkholder–Davis–Gundy and Young inequalities to get

‖θ‖L p
P (�;C0([0,T ];V ∗

1 )∩L2(0,T ;V1)) ≤ 0 ,

fromwhich θ = 0, and also ν = 0 by comparison in (2.7). This show that the linearised
system (2.6)–(2.9) admits at most one solution.

5.3 Gâteaux-Differentiability

We prove here that S1 is Gâteaux-differentiable. Let u ∈ Ũad and h ∈ U be arbitrary
and fixed: since Ũad is open in U , there exists δ0 > 0 such that u + δh ∈ Ũad for all
δ ∈ [−δ0, δ0]. For every such δ, setting (ϕδ, μδ) := S(u + δh) and (ϕ, μ) := S(u),
the difference of the respective equations (for δ �= 0) gives

d

(
ϕδ − ϕ

δ

)
− �

(
μδ − μ

δ

)
dt + u · ∇

(
ϕδ − ϕ

δ

)
dt + h · ∇ϕδ dt = B(ϕδ) − B(ϕ)

δ
dW ,
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μδ − μ

δ
= −�

(
ϕδ − ϕ

δ

)
+ � ′(ϕδ) − � ′(ϕ)

δ
,

(
ϕδ − ϕ

δ

)
(0) = 0 ,

whose natural variational formulation reads

(
ϕδ − ϕ

δ
(t), ζ

)
H

−
∫
Qt

μδ − μ

δ
�ζ −

∫
Qt

(ϕδh + ϕδ − ϕ

δ
u) · ∇ζ

=
(∫ t

0

B(ϕδ(s)) − B(ϕ(s))

δ
dW (s), ζ

)
H

∀ ζ ∈ V2 , ∀ t ∈ [0, T ] , P-a.s.

(5.12)

Now, by the continuous dependence estimate (2.4), we deduce that there exists a
constant c > 0 independent of δ such that

∥∥∥∥ϕδ − ϕ

δ

∥∥∥∥
L p
P (�;C0([0,T ];V ∗

1 )∩L2(0,T ;V1))
≤ c ,

∥∥∥∥ϕδ − ϕ

δ

∥∥∥∥
L p/3
P (�;C0([0,T ];H)∩L2(0,T ,V2))

+
∥∥∥∥μδ − μ

δ

∥∥∥∥
L p/3
P (�;L2(0,T ;H))

≤ c ,

so that there exist (θh, νh) with

θh ∈ L p
w(�; L∞(0, T ; V ∗

1 )) ∩ L p
P (�; L2(0, T ; V1)) ∩ L p/3

w (�; L∞(0, T ; H))

∩ L p/3
P (�; L2(0, T ; V2)) ,

νh ∈ L p/3
P (�; L2(0, T ; H)) ,

such that, as δ → 0 possibly on a subsequence,

ϕδ − ϕ

δ

∗
⇀ θh in L p

w(�; L∞(0, T ; V ∗
1 )) ∩ L p/3

w (�; L∞(0, T ; H)) , (5.13)

ϕδ − ϕ

δ
⇀θh in L p

P (�; L2(0, T ; V1)) ∩ L p/3
P (�; L2(0, T ; V2)) , (5.14)

μδ − μ

δ
⇀νh in L p/3

P (�; L2(0, T ; H)). (5.15)

It follows in particular that

ϕδ → ϕ in L p
P (�;C0([0, T ]; V ∗

1 ) ∩ L2(0, T ; V1))
∩L p/3

P (�;C0([0, T ]; H) ∩ L2(0, T , V2)). (5.16)
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Furthermore, since u ∈ U , by the inclusion V1 ↪→ L6(O), the Hölder inequality, and
the convergence (5.14), it holds that

(
ϕδ − ϕ

δ

)
u⇀θhu in L p

P (�; L 2p
p+2 (0, T ; Hd)). (5.17)

As far as the nonlinear term is concerned, thanks to the mean-value theorem we have

� ′(ϕδ) − � ′(ϕ)

δ
− � ′′(ϕ)θh

= � ′(ϕδ) − � ′(ϕ) − � ′′(ϕ)(ϕδ − ϕ)

δ
+ � ′′(ϕ)

(
ϕδ − ϕ

δ
− θh

)

= ϕδ − ϕ

δ

∫ 1

0

(
� ′′(ϕ + s(ϕδ − ϕ)) − � ′′(ϕ)

)
ds + � ′′(ϕ)

(
ϕδ − ϕ

δ
− θh

)
.

Now, by the strong convergence (5.16) and the continuity of � ′′, we have

� ′′(ϕ + s(ϕδ − ϕ)) − � ′′(ϕ) → 0 ∀ s ∈ [0, 1] , a.e. in � × (0, T ) × O ,

where, recalling that by C1 � ′′ has quadratic growth, thanks to the embedding V1 ↪→
L6(O) the left-hand side is uniformlybounded in the space L p/2(�; L∞(0, T ; L3(O))),
so that

∫ 1

0

(
� ′′(ϕ + s(ϕδ − ϕ)) − � ′′(ϕ)

)
ds → 0 in L�′

P (�; L�′′
(0, T ; L3(O)))

for every �′ ∈ [1, p/2) and �′′ ∈ [1,+∞). Taking (5.14) into account, we infer in
particular that

ϕδ − ϕ

δ

∫ 1

0

(
� ′′(ϕ + s(ϕδ − ϕ)) − � ′′(ϕ)

)
ds⇀0 in L�′

P (�; L�′′
(0, T ; H))

for every �′ ∈ [1, p/3) and �′′ ∈ [1, 2). Similarly, thanks to C1 and the regularity of
ϕ, we have � ′′(ϕ) ∈ L p/2(�; L∞(0, T ; L3(O))), and the same argument as above
yields

� ′′(ϕ)

(
ϕδ − ϕ

δ
− θh

)
⇀0 in L�′

P (�; L�′′
(0, T ; H))

for every �′ ∈ [1, p/3) and �′′ ∈ [1, 2). It follows that
� ′(ϕδ) − � ′(ϕ)

δ
⇀� ′′(ϕ)θh in L�′

P (�; L�′′
(0, T ; H)) ∀ �′ ∈ [1, p/3) , ∀ �′′ ∈ [1, 2).

(5.18)
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Lastly, let us handle the stochastic integral. By the Lipschitz-continuity of B in A3,
we have

B(ϕδ) − B(ϕ)

δ
− DB(ϕ)θh

= B(ϕδ) − B(ϕ) − DB(ϕ)(ϕδ − ϕ)

δ
+ DB(ϕ)

(
ϕδ − ϕ

δ
− θh

)

=
∫ 1

0
(DB(ϕ + s(ϕδ − ϕ)) − DB(ϕ))

ϕδ − ϕ

δ
ds + DB(ϕ)

(
ϕδ − ϕ

δ
− θh

)
.

Now, the strong convergence (5.16), the continuity and boundedness of DB in C2
imply together with the dominated convergence theorem that

∫ 1

0
(DB(ϕ + s(ϕδ − ϕ)) − DB(ϕ)) ds → 0 in L�(�; L�(0, T ;L (V1,L

2(K , H))))

for every � ∈ [1,+∞). Since ϕδ−ϕ
δ

is bounded in L p/3(�; L4(0, T ; V1)) by interpo-
lation of (5.13)–(5.14), it follows that

∫ 1

0
(DB(ϕ + s(ϕδ − ϕ)) − DB(ϕ))

ϕδ − ϕ

δ
ds⇀0 in L�(�; L2(0, T ;L 2(K , H)))

for every � ∈ [1, p/3). Similarly, by the boundedness of DB inC2 and the convergence
(5.14), we have also

DB(ϕ)

(
ϕδ − ϕ

δ
− θh

)
⇀0 in L p

P (�; L2(0, T ;L 2(K , H))).

Hence, we obtain that

B(ϕδ) − B(ϕ)

δ
⇀DB(ϕ)θh in L�(�; L2(0, T ;L 2(K , H))) ∀ � ∈ [1, p/3).

(5.19)

Finally, letting δ → 0 in (5.12) using convergences (5.13)–(5.19), we deduce that
actually (θh, νh) is the unique solution of the linearised system (2.6)–(2.9) in the
sense of Theorem 2.5.

It remains to show now the strong convergence of ϕδ−ϕ
δ

. To this end, note that by
the Lipschitz-continuity of B in A3 and (5.14), we have

∥∥∥∥ B(ϕδ) − B(ϕ)

δ

∥∥∥∥
L p/3(�;L∞(0,T ;L 2(K ,H)))

≤ c ,

from which, thanks to the classical result (Flandoli and Gatarek 1995, Lem. 2.1) we
get
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∥∥∥∥
∫ ·

0

B(ϕδ(s)) − B(ϕ(s))

δ
dW (s)

∥∥∥∥
L p/3
P (�;Wr ,p/3(0,T ;H))

≤ cr ∀ r ∈ (0, 1/2).

By comparison in the equation (5.12) and the estimates proved above, we infer then
that

∥∥∥∥ϕδ − ϕ

δ

∥∥∥∥
L p/3(�;Wr ,p/3(0,T ;V ∗

2 ))

≤ cr ∀ r ∈ (0, 1/2).

Now, recalling that by (Simon 1987, Cor. 5), we have

L2(0, T ; V2) ∩ Wr ,p/3(0, T ; V ∗
2 ) ↪→ L2(0, T ; V1) compactly ,

so that the laws of (
ϕδ−ϕ

δ
)δ are tight on L2(0, T ; V1). By using again Lemma 3.12

together with the uniqueness of the limit problem at δ = 0, proceeding as in Sect. 3.4,
we also get the strong convergence

ϕδ − ϕ

δ
→ θh in L2(0, T ; V1) , P-a.s.

which in turn yields, together with (5.14), the strong convergence of Theorem 2.5.
This proves that S1 is Gâteaux-differentiable, and its derivative is a solution to the
linearised system, in the sense of Theorem 2.5.

5.4 Fréchet-Differentiability

We are only left to show the Fréchet-differentiability of S1. To this end, since Ũad

is open in U , there is a U-ball BU
r (u) of radius r = ru > 0 centred at u such that

BU
r (u) ⊂ Ũad . For all h ∈ BU

r (0), we set (ϕh, μh) := S(u + h), yh := ϕh − ϕ − θh,
and zh := μh − μ − νh, so that

dyh − �zh dt + u · ∇ yh dt + h · ∇(ϕh − ϕ) dt = (B(ϕh) − B(ϕ) − DB(ϕ)θh) dW ,

zh = −�yh + F ′(ϕh) − F ′(ϕ) − F ′′(ϕ)θh.

Noting that (yh)O = 0, Itô’s formula yields

1

2
‖∇N yh(t)‖2H +

∫
Qt

|∇ yh|2 +
∫
Qt

(F ′(ϕh) − F ′(ϕ)

− F ′′(ϕ)θh)yh −
∫
Qt

(ϕh − ϕ)h · ∇N yh

=
∫
Qt

yhu · ∇N yh +
∫ t

0
(N yh(s), (B(ϕh(s)) − B(ϕ(s)) − DB(ϕ(s))θh(s)) dW (s))H

+ 1

2

∫ t

0
‖∇N (B(ϕh(s)) − B(ϕ(s)) − DB(ϕ(s))θh(s))‖2L 2(K ,H)

ds

∀ t ∈ [0, T ] , P-a.s.
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Now, the Young and Hölder inequalities give, together with the embedding V1 ↪→
L6(O),

∫
Qt

yhu · ∇N yh ≤ ε

∫
Qt

|∇ yh|2 + cε

∫ t

0

(
1 + ‖u(s)‖2U

) ‖∇N yh(s)‖2H ds ∀ ε > 0

and similarly

∫
Qt

(ϕh − ϕ)h · ∇N yh ≤
∫
Qt

|∇N yh|2 + c ‖ϕh − ϕ‖2L4(0,T ;V1) ‖h‖2L4(0,T ;U )
.

Moreover, note that by the mean value theorem and assumption A1 we have

∫
Qt

(F ′(ϕh) − F ′(ϕ) − F ′′(ϕ)θh)yh

=
∫
Qt

∫ 1

0
F ′′(ϕ + σ(ϕh − ϕ))|yh|2 dσ

+
∫
Qt

∫ 1

0

(
F ′′(ϕ + σ(ϕh − ϕ)) − F ′′(ϕ)

)
θhyh dσ

≥ −C�

∫
Qt

|yh|2 +
∫
Qt

∫ 1

0

∫ 1

0
F ′′′(ϕ + στ(ϕh − ϕ))σ (ϕh − ϕ)θhyh dτ dσ ,

where, by the Hölder inequality, the compactness inequality (2.1), the embedding
V1 ↪→ L6(O), and assumption C1,

∫
Qt

∫ 1

0

∫ 1

0
F ′′′(ϕ + στ(ϕh − ϕ))σ (ϕh − ϕ)θhyh dτ dσ

≤ c
∫ t

0

(
1 + ‖ϕ(s)‖L6(O) + ‖ϕh(s)‖L6(O)

) ‖(ϕh − ϕ)(s)‖L6(O) ‖θh(s)‖L6(O) ‖yh(s)‖H ds

≤ ε

∫
Qt

|∇ yh|2 + cε

∫
Qt

|∇N yh|2

+ c
(
1 + ‖ϕ‖2L∞(0,T ;V1) + ‖ϕh‖2L∞(0,T ;V1)

)
‖ϕ − ϕh‖2L4(0,T ;V1) ‖θh‖2L4(0,T ;V1) .

Lastly, we have

B(ϕh) − B(ϕ) − DB(ϕ)θh =
∫ 1

0
[DB(ϕ + σ(ϕh − ϕ))yh

+ (DB(ϕ + σ(ϕh − ϕ)) − DB(ϕ)) θh] dσ

so that by A3, C2–C3, and the compactness inequality (2.1),

1

2

∫ t

0
‖B(ϕh(s)) − B(ϕ(s)) − DB(ϕ(s))θh(s)‖2L 2(K ,H)

ds
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≤ C2
B

∫
Qt

|yh|2 + c
∫ t

0
‖(ϕh − ϕ)(s)‖2V1 ‖θh(s)‖2V1 ds

≤ ε

∫
Qt

|∇ yh|2 + cε

∫
Qt

|∇N yh|2 + c ‖ϕ − ϕh‖2L4(0,T ;V1) ‖θh‖2L4(0,T ;V1) .

Consequently, taking all this information into account, we can choose ε small enough
and rearrange the terms to get

1

2
‖∇N yh(t)‖2H +

∫
Qt

|∇ yh|2

≤
∫ t

0

(
1 + ‖u(s)‖2U

)
‖∇N yh(s)‖2H ds + c ‖ϕh − ϕ‖2L4(0,T ;V1) ‖h‖2L4(0,T ;U )

+ c
(
1 + ‖ϕ‖2L∞(0,T ;V1) + ‖ϕh‖2L∞(0,T ;V1)

)
‖ϕ − ϕh‖2L4(0,T ;V1) ‖θh‖2L4(0,T ;V1)

+
∫ t

0
(N yh(s), (B(ϕh(s)) − B(ϕ(s)) − DB(ϕ(s))θh(s)) dW (s))H .

Thanks to the embedding L∞(0, T ; H)∩ L2(0, T ; V2) ↪→ L4(0, T ; V1), by (2.4) and
(5.13)–(5.14), we have

‖ϕh − ϕ‖
L p/3
P (�;L4(0,T ;V1)) + ‖θh‖L p/3

P (�;L4(0,T ;V1)) ≤ c ‖h‖U ,

while (2.2) yields

‖ϕh‖L p
P (�;L∞(0,T ;V1)) + ‖ϕ‖L p

P (�;L∞(0,T ;V1)) ≤ c ,

where the constant c is independent of h. Taking power p
14 at both sides, supremum

in time and expectations, on the right-hand side we use the Hölder inequality with
exponents 1

7 + 3
7 + 3

7 = 1 to get

∥∥∥
(
1 + ‖ϕ‖p/7

L∞(0,T ;V1) + ‖ϕh‖p/7
L∞(0,T ;V1)

)
‖ϕ − ϕh‖p/7

L4(0,T ;V1) ‖θh‖p/7
L4(0,T ;V1)

∥∥∥
L1(�)

≤ c ‖h‖2p/7U

and similarly

∥∥∥‖ϕh − ϕ‖p/7
L4(0,T ;V1) ‖h‖p/7

L4(0,T ;U )

∥∥∥
L1(�)

≤ c ‖h‖2p/7U .

Consequently, arguing again as in Sect. 3.1, using an iterative argument and the
Burkholder–Davis–GundyandYoung inequalities (see alsoMarinelli andScarpa2020,
Lem. 4.1) gives then

‖yh‖L p/7(�;C0([0,T ];V ∗
1 )∩L2(0,T ;V1)) ≤ c ‖h‖2U = o (‖h‖U ) as ‖h‖U → 0.

This proves the Fréchet-differentiability of S1 and concludes the proof of Theorem 2.5.
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6 Adjoint System

In this section, we study the adjoint problem (2.10)–(2.13), proving that it is well
posed in the sense of Theorem 2.6.

As we have anticipated in Introduction, the presence of the extra-random com-
ponent in the convection term calls for non-trivial mathematical tools when deriving
estimates on the solutions. Let us recall here a general backward version of the stochas-
tic Gronwall lemma that will be used in this section: for details we refer to (Hun et al.
2020, Thm. 1) and (Wang and Fan 2018).

Lemma 6.1 Let ξ ∈ L2(�,FT ) be non-negative, α ∈ L∞
P (�; L1(0, T )) with α ≥

α0 > 0 almost everywhere in � × (0, T ), and X ∈ L2
P (�;C0([0, T ])) be a non-

negative process such that

X(t) ≤ E

[
ξ +

∫ T

t
α(s)X(s) ds

∣∣∣∣Ft

]
∀ t ∈ [0, T ] , P-a.s.

Then, for every t ∈ [0, T ] it holds that

X(t) ≤ E

[
ξ exp ‖α‖L1(t,T )

∣∣∣Ft

]
P-a.s.

6.1 Approximation

For every λ > 0, using the approximations on � and u as in Sect. 3.2, we consider
the approximated problem

−dPλ − �P̃λ dt + � ′′
λ(ϕ)P̃λ dt − uλ · ∇Pλ dt

= α1(ϕ − ϕQ) dt + DB(ϕ)∗Zλ dt − Zλ dW in (0, T ) × O , (6.1)

P̃λ = −�Pλ in (0, T ) × O , (6.2)

n · ∇Pλ = n · ∇ P̃λ = 0 in (0, T ) × ∂O , (6.3)

Pλ(T ) = α2(ϕ(T ) − ϕT ) in O. (6.4)

This can be written in abstract form as:

−dPλ + Fλ(Pλ) dt = α1(ϕ − ϕQ) dt + DB(ϕ)∗Zλ dt − Zλ dW ,

Pλ(T ) = α2(ϕ(T ) − ϕT ) ,

where Fλ : � × [0, T ] × V2 → V ∗
2 is given by

〈Fλ(ω, t, y), ζ 〉 :=
∫
O

(
�y�ζ − � ′′

λ(ϕ(ω, t))�yζ + yuλ(ω, t) · ∇ζ
)

, y, ζ ∈ V2.

By construction it holds that � ′′
λ(ϕ) ∈ L∞(� × Q) and uλ ∈ L∞

P (� × (0, T );U ), so
that using similar arguments to the ones in Sect. 3.2, we have that the operator Fλ is
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progressively measurable, hemicontinuous, weakly monotone, weakly coercive, and
linearly bounded. Moreover, the Lipschitz-continuity of B inA3 implies that DB(ϕ)∗
is uniformly bounded as well. The classical variational theory for backward SPDEs
(Du and Meng 2010, Sec. 3) ensures then that such approximated problem admits a
unique variational solution (Pλ, Qλ), with

Pλ ∈ L2
P (�;C0([0, T ]; H) ∩ L2(0, T ; V2)) , Zλ ∈ L2

P (�; L2(0, T ;L 2(U , H))).

Actually, let us note that thanks to the assumption on the target ϕT and the regularity
of ϕ, the final value satisfies α2(ϕ(T ) − ϕT ) ∈ L2(�,FT ; V1). Consequently, by
a standard finite dimensional approximation of the approximated problem with λ >

0 fixed, it follows that the approximated solution actually inherits more regularity,
namely

Pλ ∈ L2
P (�;C0([0, T ]; V1) ∩ L2(0, T ; V3)) , Zλ ∈ L2

P (�; L2(0, T ;L 2(U , V1))).

We can then set

P̃λ := LPλ ∈ L2
P (�;C0([0, T ]; V ∗

1 ) ∩ L2(0, T ; V1)) ,

so that (Pλ, P̃λ, Zλ) satisfy, for every t ∈ [0, T ], P-almost surely, for every ζ ∈ V1,

(Pλ(t), ζ )H +
∫
QT
t

∇ P̃λ · ∇ζ +
∫
QT
t

� ′′
λ(ϕ)P̃λζ +

∫
QT
t

Pλuλ · ∇ζ

= (α2(ϕ(T ) − ϕT ), ζ )H +
∫
QT
t

α1(ϕ − ϕQ)ζ

+
∫
QT
t

DB(ϕ)∗Zλζ −
(∫ T

t
Zλ(s) dW (s), ζ

)
H

.

6.2 An Estimate by Duality Method

The first estimate that we prove is based on a dualitymethod between the approximated
adjoint system (6.1)–(6.4) and a suitably introduced approximated linearised system.
This step is fundamental as it allows to obtain some preliminary estimates on the
adjoint variables without working explicitly on the adjoint system, which may be not
trivial. Such duality method is extremely powerful, and it will be crucial in showing
well-posedness of the adjoint system.

The idea is the following: we consider the λ-approximated version of the linearised
system (2.6)–(2.9), in a more general version where the forcing term is given by an
arbitrary term

g ∈ L
2p
p+4

P (�; L2(0, T ; H)).
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Namely, for h ∈ U we consider

dθ gh,λ − �ν
g
h,λ dt + h · ∇ϕ dt + uλ · ∇θ

g
h,λ dt = DB(ϕ)θ

g
h,λ dW in (0, T ) × O ,

(6.5)

ν
g
h,λ = −�θ

g
h,λ + � ′′

λ(ϕ)θ
g
h,λ − g in (0, T ) × O ,

(6.6)

n · ∇θ
g
h,λ = n · ∇ν

g
h,λ = 0 in (0, T ) × ∂O ,

(6.7)

θ
g
h,λ(0) = 0 in O. (6.8)

Since � ′′
λ(ϕ) ∈ L∞(� × Q), the classical variational approach (see again Sects. 3.2

and 5.1) ensures that the system (6.5)–(6.8) admits a unique solution

θ
g
h,λ ∈ L

2p
p+4

P

(
�;C0([0, T ]; H) ∩ L2(0, T ; V2)

)
, ν

g
h,λ ∈ L

2p
p+4

P (�; L2(0, T ; H)).

Moreover, we can show that the system (6.5)–(6.8) is in duality with the approximated
adjoint system (6.1)–(6.4). To this end, by Itô’s formula we have that

d(θ gh,λ, Pλ)H

= −P̃λν
g
h,λ dt + ϕh · ∇Pλ dt + θ

g
h,λuλ · ∇Pλ dt + (Pλ, DB(ϕ)θ

g
h,λ dW )H

+ P̃λ(−�θ
g
h,λ + � ′′

λ(ϕ)θ
g
h,λ) dt + Pλuλ · ∇θ

g
h,λ dt − α1(ϕ − ϕQ)θ

g
h,λ dt

− (DB(ϕ)∗Zλ, θ
g
h,λ)H dt + (θ

g
h,λ, Zλ dW )H + (DB(ϕ)θ

g
h,λ, Zλ)L 2(K ,H) dt ,

which readily implies by comparison in the two systems that

α1E

∫
Q

θ
g
h,λ(ϕ − ϕQ) + α2E

∫
O

θ
g
h,λ(T )(ϕ(T ) − ϕT ) = E

∫
Q

ϕh · ∇Pλ + E

∫
Q
P̃λg.

(6.9)

Let us set now for brevity of notation θ
g
λ := θ

g
h,λ and ν

g
θ := ν

g
h,λ with the choice

h = 0. Noting that (θ gλ )O = 0, Itô’s formula for 1
2

∥∥∇N θ
g
λ

∥∥2
H yields

1

2

∥∥∇N θ
g
λ (t)

∥∥2
H +

∫
Qt

|∇θ
g
λ |2 =

∫
Qt

θ
g
λuλ · ∇N θ

g
λ −

∫
Qt

� ′′
λ(ϕ)|θ gλ |2 +

∫
Qt

gθ gλ

+ 1

2

∫ t

0

∥∥∇N DB(ϕ(s))θ gλ (s)
∥∥2
L 2(K ,H)

ds

+
∫ t

0

(N θ
g
λ (s), DB(ϕ(s))θ gλ (s) dW (s)

)
H .

Using the fact that� ′′
λ ≥ −C� and the boundedness of DB(ϕ) inL (V1,L 2(K , H)),

thanks to the Hölder–Young inequalities and the compactness inequality (2.1) we get,
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for all ε > 0,

∥∥∇N θ
g
λ (t)

∥∥2
H +

∫
Qt

|∇θ
g
λ |2

≤
∫
Q

|g|2 + ε

∫
Qt

|∇θ
g
λ |2 + cε

∫ t

0

(
1 + ‖u(s)‖2U

) ∥∥∇N θ
g
λ (s)

∥∥2
H ds

+
∫ t

0

(N θ
g
λ (s), DB(ϕ(s))θ gλ (s) dW (s)

)
H .

We take now power p
p+4 at both sides, supremum in time, and expectations. Thanks to

the Burkholder–Davis–Gundy inequality (see Marinelli and Scarpa 2020, Lem. 4.1),
assumption C2, and (2.1), we get

E sup
r∈[0,t]

∣∣∣∣
∫ r

0

(N θ
g
λ (s), DB(ϕ(s))θ gλ (s) dW (s)

)
H

∣∣∣∣
p

p+4

≤ 1

2
E

∥∥∇N θ
g
λ

∥∥ 2p
p+4
L∞(0,t;H)

+ cE
∥∥θ

g
λ

∥∥ 2p
p+4

L2(0,t;H)

≤ 1

2
E

∥∥∇N θ
g
λ

∥∥ 2p
p+4
L∞(0,t;H)

+ 1

2
E

∥∥∇θ
g
λ

∥∥ 2p
p+4

L2(0,t;H)
+ ct

p
p+4E

∥∥∇N θ
g
λ

∥∥ 2p
p+4
L∞(0,t;H)

.

Moreover, since u ∈ Ũad , by the Hölder inequality we have

E sup
r∈[0,t]

∣∣∣∣
∫ r

0

(
1 + ‖u(s)‖2U

) ∥∥∇N θ
g
λ (s)

∥∥2
H ds

∣∣∣∣
p

p+4

≤ cE
∣∣∣t1− 2

p

(
1 + ‖u‖2L p(0,T ;U )

) ∥∥∇N θ
g
λ

∥∥2
L∞(0,t;H)

∣∣∣
p

p+4 ≤ ct
p−2
p+4E

∥∥∇N θ
g
λ

∥∥ 2p
p+4
L∞(0,t;H)

.

Since p
p+4 > 0 and p−2

p+4 > 0, we can close the estimate rearranging all the terms
on [0, T0] for T0 sufficiently small (independent of both λ and g). Using once more a
classical iterative procedure on every subinterval until T , we infer that there exists a
constant c > 0, independent of both λ and g, such that

∥∥θ
g
λ

∥∥
L

2p
p+4
P (�;C0([0,T ];V ∗

1 )∩L2(0,T ;V1))
≤ c ‖g‖

L
2p
p+4
P (�;L2(0,T ;H))

. (6.10)

Now, by assumption C4 and the regularity of ϕ (since 2p
p−4 ≤ p for p ≥ 6), it holds

α1(ϕ − ϕQ) ∈ L
2p
p−4

P (�; L2(0, T ; H)) , α2(ϕ(T ) − ϕT ) ∈ L
2p
p−4 (�,FT ; V1) ,

so that the duality relation (6.9) (with h = 0) and the estimate (6.10) yield

E

∫
Q
P̃λg ≤ ∥∥θ

g
λ

∥∥
L

2p
p+4
P (�;L2(0,T ;H))

∥∥α1(ϕ − ϕQ)
∥∥
L

2p
p−4
P (�;L2(0,T ;H))
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+ ∥∥θ
g
λ

∥∥
L

2p
p+4
P (�;C0([0,T ];V ∗

1 ))

‖α2(ϕ(T ) − ϕT )‖
L

2p
p−4 (�,FT ;V1)

≤ c ‖g‖
L

2p
p+4
P (�;L2(0,T ;H))

.

By the arbitrariness of g we obtain

‖P̃λ‖
L

2p
p−4
P (�;L2(0,T ;H))

≤ c. (6.11)

6.3 Further Estimates

We show here that the initial estimate (6.11) allows to obtain uniform estimates on the
adjoint variables. To this end, Itô’s formula for 1

2 ‖Pλ‖2H + 1
2 ‖∇Pλ‖2H yields, recalling

that P̃λ = LPλ,

1

2
‖Pλ(t)‖2V1 +

∫ T

t
‖P̃λ(s)‖2V1 ds + 1

2

∫ T

t
‖Zλ(s)‖2L 2(K ,V1)

ds

= α2
2

2
‖ϕ(T ) − ϕT ‖2V1 −

∫
QT
t

� ′′
λ (ϕ)|P̃λ|2 −

∫
QT
t

� ′′
λ (ϕ)P̃λPλ +

∫
QT
t

(Pλ + P̃λ)uλ · ∇Pλ

+ α1

∫
QT
t

(ϕ − ϕQ)(Pλ + P̃λ) +
∫
QT
t

(DB(ϕ)∗Zλ)(Pλ + P̃λ)

−
∫ T

t

(
Pλ(s) + P̃λ(s), Zλ(s) dW (s)

)
H

∀ t ∈ [0, T ] , P-a.s. (6.12)

On the right-hand side,wehave alreadynoticed thatα2(ϕ(T )−ϕT ) ∈ L2(�,FT ; V1).
Moreover, by A1, the compactness inequality (2.1) and the fact that P̃λ = LPλ, for
the second and third terms we have

−
∫
QT
t

� ′′
λ(ϕ)|P̃λ|2 ≤ C�

∫
QT
t

|P̃λ|2 ≤ ε

∫
QT
t

|∇ P̃λ|2 + cε

∫
Qt

|∇Pλ|2

and, thanks to the Hölder–Young inequalities, the embedding V1 ↪→ L6(O), and C1,

−
∫
QT
t

� ′′
λ(ϕ)P̃λPλ ≤

∫ T

t
‖Pλ(s)‖2V1 ds + c

∫ T

t

∥∥� ′′
λ(ϕ(s))

∥∥2
L3(O)

‖P̃λ(s)‖2H ds

≤
∫ T

t
‖Pλ(s)‖2V1 ds + c

(
1 + ‖ϕ‖4L∞(0,T ;V1)

)
‖P̃λ‖2L2(0,T ;H)

.

Also, note that since P̃λ = LPλ, in particular it holds that (P̃λ)O = 0. Hence, using
the Young and Hölder inequalities, the embedding V1 ↪→ L6(O) yields, for all ε > 0,

∫
QT
t

(Pλ + P̃λ)uλ · ∇Pλ ≤ ε

∫ T

t
‖P̃λ(s)‖2V1 ds + cε

∫ T

t

(
1 + ‖u(s)‖2U

)
‖Pλ(s)‖2V1 ds ,
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and similarly

α1

∫
QT
t

(ϕ − ϕQ)(Pλ + P̃λ) ≤ α2
1

∫
Q

|ϕ − ϕQ |2 + 1

2

∫
QT
t

|Pλ|2 + 1

2

∫
QT
t

|P̃λ|2.

Lastly, thanks toA3 andC2, and again the compactness inequality (2.1), we have that

∫
QT
t

(DB(ϕ)∗Zλ)(Pλ + P̃λ) =
∫ T

t

(
Zλ(s), DB(ϕ(s))(Pλ + P̃λ)(s)

)
L 2(K ,H)

ds

≤ 1

4

∫ T

t
‖Zλ(s)‖2L 2(K ,H)

ds + 2C2
B

∫
QT
t

|Pλ|2

+ 2C2
B

∫
QT
t

|P̃λ|2

≤ 1

4

∫ T

t
‖Zλ(s)‖2L 2(K ,H)

ds + ε

∫
QT
t

|∇ P̃λ|2

+ cε

∫ T

t
‖Pλ(s)‖2V1 ds.

Choosing ε small enough, rearranging the terms in (6.12), and conditioning (6.12)
with respect toFt we are left with

‖Pλ(t)‖2V1 + E

[∫ T

t
‖P̃λ(s)‖2V1 ds +

∫ T

t
‖Zλ(s)‖2L 2(K ,V1)

ds

∣∣∣∣Ft

]

≤ c + cE
[(

1 + ‖ϕ‖4L∞(0,T ;V1)
)

‖P̃λ‖2L2(0,T ;H)

+
∫ T

t

(
1 + ‖u(s)‖2U

)
‖Pλ(s)‖2V1 ds

∣∣∣∣Ft

]
,

so that the backward version of the stochastic Gronwall Lemma 6.1 yields

‖Pλ(t)‖2V1 + E

[∫ T

t
‖P̃λ(s)‖2V1 ds +

∫ T

t
‖Zλ(s)‖2L 2(K ,V1)

ds

∣∣∣∣Ft

]

≤ E

[(
c + c

(
1 + ‖ϕ‖4L∞(0,T ;V1)

)
‖P̃λ‖2L2(0,T ;H)

)
exp

(
t + ‖u‖2L2(0,T ;U )

) ∣∣∣∣Ft

]
.

Consequently, taking expectations we infer that

E ‖Pλ(t)‖2V1 + E‖P̃λ‖2L2(t,T ;V1) + E ‖Zλ‖2L2(t,T ;L 2(K ,V1))

≤ c
(
1 + exp ‖u‖2U

)
E

[
1 +

(
1 + ‖ϕ‖4L∞(0,T ;V1)

)
‖P̃λ‖2L2(0,T ;H)

]
,
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where, by the Hölder inequality and the duality-estimate (6.11), we have

E

[(
1 + ‖ϕ‖4L∞(0,T ;V1)

)
‖P̃λ‖2L2(0,T ;H)

]

≤
∥∥∥1 + ‖ϕ‖4L∞(0,T ;V1)

∥∥∥
L

p
4 (�)

∥∥∥‖P̃λ‖2L2(0,T ;H)

∥∥∥
L

p
p−4 (�)

≤ c
(
1 + ‖ϕ‖4L p(�;L∞(0,T ;V1))

)
‖P̃λ‖2

L
2p
p−4 (�;L2(0,T ;H))

≤ c ,

which yields in turn

‖Pλ‖C0([0,T ];L2(�;V1)) + ‖P̃λ‖L2
P (�;L2(0,T ;V1)) + ‖Zλ‖L2

P (�;L2(0,T ;L 2(K ,V1)))
≤ c.

(6.13)

With this additional information, we can perform a classical refinement on the esti-
mates going back to the inequality (6.12), repeating the same steps but this time taking
first supremum in time and then expectations: the estimate (6.13) allows to apply the
Burkholder–Davis–Gundy inequality on the stochastic integral, so that we obtain,
thanks also to elliptic regularity,

‖Pλ‖L2
P (�;C0([0,T ];V1)∩L2(0,T ;V3)) + ‖P̃λ‖L2

P (�;C0([0,T ];V ∗
1 )∩L2(0,T ;V1)) ≤ c.

(6.14)

6.4 Passage to the Limit

From (6.13)–(6.14), we infer that there exists (P, P̃, Z) with

P ∈ L2
w(�; L∞(0, T ; V1)) ∩ L2

P (�; L2(0, T ; V3)) ,

P̃ = LP ∈ L2
w(�; L∞(0, T ; V ∗

1 )) ∩ L2
P (�; L2(0, T ; V1)) ,

Z ∈ L2
P (�; L2(0, T ;L 2(K , V1))) ,

such that as λ ↘ 0, possibly on a subsequence,

Pλ

∗
⇀ P in L2

w(�; L∞(0, T ; V1)) ∩ L2
P (�; L2(0, T ; V3)) , (6.15)

P̃λ

∗
⇀ P̃ in L2

w(�; L∞(0, T ; V ∗
1 )) ∩ L2

P (�; L2(0, T ; V1)) , (6.16)

Zλ⇀Z in L2
P (�; L2(0, T ;L 2(K , V1))). (6.17)

Now, thanks toC1 and the regularity ofϕ,wehave� ′′(ϕ) ∈ L3(�; L∞(0, T ; L3(O))),
so in particular

� ′′
λ(ϕ) → � ′′(ϕ) in L3(� × Q) ,
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and also, thanks to (6.16),

� ′′
λ(ϕ)P̃λ⇀� ′′(ϕ)P̃ in L6/5

P (�; L6/5(0, T ; L6/5(O))).

Similarly, since uλ → u in Lq
P (�; L p(0, T ;U )) for every q ≥ 1, from (6.15) we

have

uλ · ∇Pλ⇀u · ∇P in L�
P (�; L 2p

p+2 (0, T ; H)) ∀ � ∈ [1, 2).

Lastly, convergence (6.17) readily implies that

DB(ϕ)∗Zλ⇀DB(ϕ)∗Z in L2
P (�; L2(0, T ; H)) ,

while by the linearity and continuity of the stochastic integral we have

∫ T

·
Zλ(s) dW (s)⇀

∫ T

·
Z(s) dW (s) in L2

P (�;C0([0, T ]; V1)).

Consequently, we can let λ ↘ 0 in the variational formulation of the approximated
system (6.1)–(6.4) and deduce that (P, P̃, Z) solve the limit adjoint problem (2.10)–
(2.13). The pathwise continuity of P , hence by comparison also of P̃ , follows by
classical methods using Itô’s formula on the limit equation.

6.5 Uniqueness

By linearity of the adjoint system, it is enough to show that if (P, P̃, Z) is a solution
of (2.10)–(2.13) with α1 = α2 = 0, then ∇P = 0, P̃ = 0, and ∇Z = 0. To this end,
Itô’s formula for 1

2 ‖∇P‖2H yields

1

2
‖∇P(t)‖2H +

∫
QT
t

|∇ P̃|2 + 1

2

∫ T

t
‖∇Z(s)‖2L 2(K ,H)

ds

= −
∫
QT
t

� ′′(ϕ)|P̃|2 +
∫
QT
t

P̃u · ∇P +
∫
QT
t

(DB(ϕ)∗Z)P̃

−
∫ T

t

(
P̃(s), Z(s) dW (s)

)
H

Now, as the computations are similar to the ones of Sect. 6.3, we avoid details for
brevity. The terms on the right-hand side can be treated using A1, the Hölder–Young
inequalities, the embedding V1 ↪→ L6(O), and the compactness inequality (2.1) as

−
∫
QT
t

� ′′(ϕ)|P̃|2 +
∫
QT
t

P̃u · ∇P

≤ ε

∫
QT
t

|∇ P̃|2 + cε

∫ t

0

(
1 + ‖u(s)‖2U

)
‖∇P(s)‖2H ds ,
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and similarly, since DB(ϕ)P̃ isL 2(K , H0)-valued byA3, by the Poincaré–Wirtinger
inequality and C2 we have

∫
QT
t

(DB(ϕ)∗Z)P̃ =
∫ t

0
(Z(s), DB(ϕ(s))P̃(s))L 2(K ,H) ds

≤ 1

4

∫ T

t
‖∇Z(s)‖2L 2(K ,H)

ds + ε

∫
QT
t

|∇ P̃|2

+ cε

∫ T

t
‖∇P(s)‖2H ds.

Rearranging the terms and taking conditional expectations with respect toFt , we get
that

‖∇P(t)‖2H + E

[∫
QT
t

|∇ P̃|2 +
∫ T

t
‖∇Z(s)‖2L 2(K ,H)

ds

∣∣∣∣Ft

]

≤ cE

[∫ T

t
‖∇P(s)‖2H ds

∣∣∣∣Ft

]
,

so that applying the backward stochasticGronwall Lemma6.1 and then taking expecta-
tions yield∇ P̃ = 0 almost everywhere in�×Q, hence also P̃ = 0 almost everywhere
in�×Q since P̃O = 0. Consequently, the stochastic integral appearing in the estimate
above vanishes, and we deduce also∇P = 0 in L2

P (�;C0([0, T ]; Hd)), from which

P̃ = 0 in L2
P (�;C0([0, T ]; V ∗

1 )). Also,∇Z = 0 in L2
P (�; L2(0, T ;L 2(K , Hd))).

This concludes the proof of Theorem 2.6.

7 Necessary Conditions for Optimality

In this last section, we prove the two versions of necessary conditions for optimality
contained in Theorems 2.7–2.8. Let then u ∈ Uad be an optimal control for problem
(CP) and let us set (ϕ, μ) := S(u) as its corresponding optimal state. Let us also fix
an arbitrary v ∈ Uad .

By convexity of Uad we have u + δ(v − u) ∈ Uad for all δ ∈ [0, 1]. Hence, setting
(ϕδ, μδ) := S(u + δ(v − u)), for every δ ∈ [0, 1] the minimality of u yields

J (ϕ,u) ≤ α1

2
E

∫
Q

|ϕδ − ϕQ |2 + α2

2
E

∫
O

|ϕδ(T ) − ϕT |2 + α3

2
E

∫
Q

|u + δ(v − u)|2 ,

which entails in turn

α1

2
E

∫
Q

(
|ϕδ|2 − |ϕ|2 − 2(ϕδ − ϕ)ϕQ

)

+ α2

2
E

∫
O

(
|ϕδ(T )|2 − |ϕ(T )|2 − 2(ϕδ − ϕ)(T )ϕT

)
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+ α3

2
E

∫
Q

(
δ2|v − u|2 + 2δu · (v − u)

)
≥ 0.

Now, the functions ζ �→ E
∫
Q |ζ |2 and ζ �→ E

∫
O |ζ |2 are Fréchet-differentiable

on L2
P (�; L2(0, T ; H)) and L2(�,FT ; H), respectively. Hence, the mean-value

theorem yields

α1E

∫
Q

ϕδ − ϕ

δ

∫ 1

0

(
(ϕ + τ(ϕδ − ϕ)) − ϕQ

)
dτ

+ α3E

∫
Q
u · (v − u) + α3

2
δE ‖v − u‖2L2(0,T ;Hd )

+ α2E

∫
O

ϕδ − ϕ

δ
(T )

∫ 1

0
((ϕ(T ) + τ(ϕδ − ϕ)(T )) − ϕT ) dτ ≥ 0.

At this point, as δ → 0, we have u + δv → u in U , so (2.3)–(2.4) imply that

∫ 1

0

(
(ϕ + τ(ϕδ − ϕ)) − ϕQ

)
dτ → ϕ − xQ in L p

P (�; L2(0, T ; V1)) ,

∫ 1

0
((ϕ(T ) + τ(ϕδ − ϕ)(T )) − ϕT ) dτ → ϕ(T ) − ϕT in L p/3(�,FT ; H).

Moreover, Theorem 2.5 ensures that

ϕδ − ϕ

δ
⇀θv−u in L p

P (�; L2(0, T ; H)) ,

ϕδ − ϕ

δ
(T )⇀θv−u(T ) in L p/3(�,FT ; H).

Hence, noting that p
3 ≥ 2, letting δ → 0 we obtain exactly (2.14), and Theorem 2.7

is proved.
Lastly, we note that (2.15) follows directly from (2.14) provided to show the duality

relation

α1E

∫
Q

θv−u(ϕ − ϕQ) + α2E

∫
O

θv−u(T )(ϕ(T ) − ϕT ) = E

∫
Q

ϕ(v − u) · ∇P.

In order to prove this, we can take g = 0 and h = v − u in the duality relation (6.9),
and then let λ ↘ 0 thanks to the convergences (5.9)–(5.10). This concludes the proof
of Theorem 2.8.
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