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Abstract. We consider the Navier–Stokes equation for an incompressible viscous fluid on a square, satisfying Navier boundary
conditions and being subjected to a time-independent force. As the kinematic viscosity is varied, a branch of stationary
solutions is shown to undergo a Hopf bifurcation, where a periodic cycle branches from the stationary solution. Our proof
is constructive and uses computer-assisted estimates.
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1. Introduction and Main Result

We consider the Navier–Stokes equations

∂tu − νΔu + (u · ∇)u + ∇p = f, ∇ · u = 0 on Ω, (1.1)

for the velocity u = u(t, x, y) of an incompressible fluid on a planar domain Ω, satisfying suitable boundary
conditions for (x, y) ∈ ∂Ω and initial conditions at t = 0. Here, p denotes the pressure, and f = f(x, y)
is a fixed time-independent external force.

Our focus is on solution curves and bifurcations as the kinematic velocity ν is being varied. In order
to reduce the complexity of the problem, the domain Ω is chosen to be as simple as possible, namely the
square Ω = (0, π)2. Following [28], we impose Navier boundary conditions on ∂Ω, which are given by

u1 = ∂xu2 = 0 on {0, π} × (0, π),

u2 = ∂yu1 = 0 on (0, π) × {0, π}.
(1.2)

Navier boundary conditions are appropriate in many physically relevant cases [3], which includes the
presence of permeable walls [4] or turbulent boundary layers [13,16]. The conditions (1.2) are a special
case of periodic boundary conditions. As Temam writes in the introduction of [5], the choice of space-
periodic boundary conditions “leads to many technical simplifications while retaining the main difficulties
of the problem”. We refer to [28] for a detailed discussion of the Navier boundary conditions and for
additional bibliography.

A fair amount is known about the (non)uniqueness of stationary solutions. This includes the existence
of a bifurcation between curves of stationary solutions with different symmetries [28]. Here we prove
the existence of a Hopf bifurcation for the Eq. (1.1) with boundary conditions (1.2), and with a forcing
function f that satisfies

(∂xf2 − ∂yf1)(x, y) = 5 sin(x) sin(2y) − 13 sin(3x) sin(2y). (1.3)
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At a Hopf bifurcation, a stationary solution becomes unstable and a small-amplitude limit cycle branches
from the stationary solution [1,7,8]. Among other things, this introduces a time scale in the system and
increases its complexity. In this capacity, Hopf bifurcations in the Navier–Stokes equation constitute an
important first step in the transition to turbulence in fluids, as was described in the seminal work [6].

Numerically, there is plenty of evidence that Hopf bifurcations occur in the Navier–Stokes equation,
but proofs are still very scarce. An explicit example of a Hopf bifurcation was given in [10] for the
rotating Bénard problem. Bifurcation results exist also for the Couette-Taylor problem [11,12,15] and
for the Ekman flow [9]. Sufficient conditions for the existence of a Hopf bifurcation in a Navier–Stokes
setting are presented in [20].

Before giving a precise statement of our result, let us replace the vector field u in the Eq. (1.1) by
ν−1u. The equation for the rescaled function u is

α∂tu − Δu + γ(u · ∇)u + ∇p = f, ∇ · u = 0 on Ω, (1.4)

where γ = ν−2. The value of α that corresponds to (1.1) is ν−1, but this can be changed to any positive
value by rescaling time.

Numerically, it is possible to find stationary solutions of (1.4) for a wide range of values of the
parameter γ. At a value γ0 ≈ 83.1733117 . . . we observe a Hopf bifurcation that leads to a branch of
periodic solutions for γ > γ0.

For a fixed value of α, the time period τ of the solution varies with γ. Instead of looking for τ -periodic
solution of (1.4) for fixed α, we look for 2π-periodic solutions, where α = 2π/τ has to be determined. To
simplify notation, a 2π-periodic function will be identified with a function on the circle T = R/(2πZ).
Our main theorem is the following.

Theorem 1.1. There exists a real number γ0 = 83.1733117 . . ., an open interval I including γ0, and a real
analytic function (γ, x, y) �→ uγ(x, y) from I × Ω to R2, such that uγ is a stationary solution of (1.4)
and (1.2) for each γ ∈ I. In addition, there exists a real number α0 = 4.66592275 . . ., an open interval J
centered at the origin, two real analytic functions γ and α on J that satisfy γ(0) = γ0 and α(0) = α0,
respectively, as well as two real analytic functions (s, t, x, y) �→ us,e(t, x, y) and (s, t, x, y) �→ us,o(t, x, y)
from J ×T×Ω to R2, such that the following holds. For any given β ∈ C satisfying β2 ∈ J , the vector field
u = us,e + βus,o with s = β2 is a solution of (1.4) and (1.2) with γ = γ(s) and α = α(s). Furthermore,
u0,e(t, ., .) = uγ0 and ∂tu0,o(t, ., .) �= 0.

We note that none of the solutions involved in this bifurcation are known exactly. By contrast with the
work cited earlier, our methods also apply in cases where one does not have an explicit formula for the
stationary branch and the bifurcating point. What we need instead is a good numerical approximation
for the expected solution uγ0 .

Our proof of this theorem involves estimates that have been verified with the aid of a computer.
The solutions are obtained by rewriting (1.4) and (1.2) as a suitable fixed point equation for the scalar
vorticity of u. Here we take advantage of the fact that the domain is two-dimensional. We isolate the
periodic branch from the stationary branch by using a scaling that admits two distinct limits at the
bifurcation point. The approach taken here is novel, but it falls into the category of blow-up method,
which is a common tool in the study of singularities and bifurcations [14].

The fixed point equation for the stationary branch is solved via a Newton-type map, using the con-
traction mapping theorem. This is a common strategy in many computer-assisted proofs. But for the
periodic branch, this approach is not practical, due to the presence of a large number of oscillatory modes
that contract very poorly. For this part of the analysis, we use a more linear approach, where much of
the effort goes into controlling the spectrum.

Computer-assisted methods have been applied successfully to many different problems in analysis,
mostly in the areas of dynamical systems and partial differential equations. Here we will just mention
work that concerns the Navier–Stokes equation or Hopf bifurcations. For the Navier–Stokes equation, the
existence of symmetry-breaking bifurcations among stationary solutions has been established in [17,28].
Periodic solutions for the Navier–Stokes flow in a stationary environment have been obtained in [27]. In
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Fig. 1. Snapshots at two distinct times of a time-periodic solution for γ ≈ 84.00 . . .

the case of periodic forcing, the problem of existence and stability of periodic orbits has been investigated
in [21]. Concerning the existence of Hopf bifurcations, a computer-assisted proof was given recently in [29]
for a finite-dimensional dynamical system; and an extension of their method to the Kuramoto–Sivashinsky
PDE is presented in [30]. For other recent computer-assisted proofs we refer to [23–26] and references
therein.

Figure 1 depicts snapshots at t = 0 and t = π of a solution u : T × Ω → R2 of the Eqs. (1.4) with
boundary conditions (1.2) and forcing (1.3), obtained numerically for the parameter value γ ≈ 84.00 . . ..

As mentioned earlier, a system similar to the one considered here is known to exhibit a symmetry-
breaking bifurcation within the class of stationary solutions [28]. The broken symmetry is y �→ π/2 − y.
Based on a numerical computation of eigenvalues, we expect an analogous bifurcation to occur here at
γ ≈ 1450. Interestingly, the Hopf bifurcation described here occurs at a significantly smaller value of γ.
We have not tried to prove the existence of a symmetry-breaking bifurcation for the forcing (1.3), since
such an analysis would duplicate the work in [28] and go beyond the scope of the present paper.

The remaining part of this paper is organized as follows. In Sect. 2, we first rewrite (1.4) as an equation
for the function Φ = ∂yu1 − ∂xu2, which is the scalar vorticity of −u. After a suitable scaling Φ = Uβφ,
the problem of constructing the solution branches described in Theorem 1.1 is reduced to three fixed
point problems for the function φ. These fixed point equations are solved in Sect. 3, based on estimates
described in Lemmas 3.3, 3.4, and 3.6. Section 4 is devoted to the proof of these estimates, which involves
reducing them to a large number of trivial bounds that can be (and have been) verified with the aid of
a computer (see the Electronic supplementary material).

2. Fixed Point Equations

The goal here is to rewrite the Eq. (1.4) with boundary conditions (1.2) as a fixed point problem. Applying
the operator curl2d : (u1, u2) �→ ∂2u1 − ∂1u2 on both sides of the Eq. (1.4), we obtain

α∂tΦ − ΔΦ + γu · ∇Φ = curl2df, Φ = curl2du. (2.1)

Here, we have used that curl2d (u · ∇)u = u · ∇Φ. The operator curl2d is (up to a sign) known as the
2d-curl. Using the divergence-free condition ∇ · u = 0, one also finds that

Δu = J∇Φ, J =
[

0 1
−1 0

]
. (2.2)
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If Φ vanishes on the boundary of ∂Ω, then the Eq. (2.2) can be inverted to yield

u = curl−1
2d Φ

def= J∇Δ−1Φ, (2.3)

where Δ denotes the Dirichlet Laplacean on Ω.
In Sect. 3 we will define a space of real analytic functions Φ that admit a representation

Φ(t, x, y) =
∑

j,k∈N1

Φj,k(t) sin(jx) sin(ky), (2.4)

with the series converging uniformly on a complex open neighborhood of T3. Here, and in what follows,
N1 denotes the set of all positive integers. If Φ admits such an expansion, then the Eq. (2.3) yields

u1(t, x, y) =
∑

j,k∈N1

−k

j2 + k2
Φj,k(t) sin(jx) cos(ky),

u2(t, x, y) =
∑

j,k∈N1

j

j2 + k2
Φj,k(t) cos(jx) sin(ky). (2.5)

It is straightforward to check that the corresponding vector field u = (u1, u2) satisfies the Navier boundary
conditions (1.2). So a solution u of (1.4) and (1.2) can be obtained via (2.5) from a solution Φ of the
Eq. (2.1). For convenience, we write (2.1) as

(α∂t − Δ)Φ + 1
2γL(Φ)Φ = curl2df, (2.6)

where L is the symmetric bilinear form defined by

L(φ)ψ = (∇φ) · curl−1
2d ψ + (∇ψ) · curl−1

2d φ. (2.7)

The coefficients Φj,k in the series (2.4) are 2π-periodic functions and thus admit an expansion

Φj,k =
∑
n∈Z

Φn,j,kcosin, cosin(t) =

{
cos(nt) ifn ≥ 0,

sin(−nt) ifn < 0.
(2.8)

Denote by N0 the set of all nonnegative integers. For any subset N ⊂ N0 we define

ENΦ =
∑
n∈Z

|n|∈N

∑
j,k∈N1

Φn,j,kcosin × sinj × sink, (2.9)

where sinm(z) = sin(mz). In particular, the even frequency part Φe (odd frequency part Φo) of Φ is
defined to be the function ENΦ, where N is the set of all even (odd) nonnegative integers. This leads to
the decomposition Φ = Φe + Φo that will be used below.

To simplify the discussion, consider first non-stationary periodic solutions. For γ near the bifurcation
point γ0, we expect Φ to be nearly time-independent. So in particular, Φo is close to zero. Consider the
function φ = φe + φo obtained by setting φe = Φe and φo = β−1Φo. The scaling factor β �= 0 will be
chosen below, in such a way that φe and φo are of comparable size. Substituting

Φ = Uβφ
def= φe + βφo (2.10)

into (2.6) yields the equation

(α∂t − Δ)φ + 1
2γLs(φ)φ = curl2df, (2.11)

where s = β2 and

Ls(φ)ψ = L(φe)ψe + L(φe)ψo + L(φo)ψe + sL(φo)ψo. (2.12)

Finally, we convert (2.11) to a fixed point equation by applying the inverse of α∂t − Δ to both sides.
Setting g = (−Δ)−1curl2df , the resulting equation is φ̃ = φ, where

φ̃ = g − 1
2γ|Δ|1/2(α∂t − Δ)−1φ̂, φ̂

def= |Δ|−1/2Ls(φ)φ. (2.13)
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One of the features of the Eq. (2.11) is that the time-translate of a solution is again a solution. We
eliminate this symmetry by imposing the condition φ1,1,1 = 0. In addition, we choose β = θ−1Φ−1,1,1,
where θ is some fixed constant that will be specified later. This leads to the normalization conditions

Aφ
def= φ1,1,1 = 0, Bφ

def= φ−1,1,1 = θ. (2.14)

Notice that β enters our main equation φ̃ = φ only via its square s = β2. It is convenient to regard s to
be the independent parameter and express γ as a function of s. The functions γ = γ(s) and α = α(s) are
determined by the condition that φ̃ satisfies the normalization conditions (2.14). Applying the functionals
A and B to both sides of (2.11), using the identities AΔ = −2A, A∂t = B, BΔ = −2B, B∂t = −A, and
imposing the conditions Aφ̃ = 0 and Bφ̃ = θ, we find that

γ = −23/2 θ

Bφ̂
, α = 2

Aφ̂

Bφ̂
. (2.15)

For a fixed value of s, define Fs(φ) = φ̃, where φ̃ is given by (2.13), with γ = γ(s, φ) and α = α(s, φ)
determined by (2.15). The fixed point equation for Fs is used to find non-stationary time-periodic solutions
of (2.11).

Remark 1. The choice (2.15) guarantees that Aφ̃ = 0 and Bφ̃ = θ, even if φ does not satisfy the nor-
malization conditions (2.14). Thus, the domain of the map Fs can include non-normalized function φ.
(The same is true for the map Fγ described below.) But a fixed point of this map will be normalized by
construction.

In order to determine the bifurcation point γ0 and the corresponding frequency α0, we consider the
map F : φ �→ φ̃ given by (2.13) with s = 0. The values of γ and α are again given by (2.15), so that
Aφ̃ = 0 and Bφ̃ = θ. We will show that this map F has a fixed point φ with the property that φn,j,k = 0
whenever |n| > 1. The values of γ and α for this fixed point define γ0 and α0.

A similar map Fγ : φ �→ φ̃, given by (2.13) with s = 0, is used to find stationary solutions of the
Eq. (2.6). In this case, the value of γ is being fixed, and φo is taken to be zero. The goal is to show that
this map Fγ has a fixed point φγ that is independent of time t. Then Φ = φγ is a stationary solution of
(2.6).

We finish this section by computing the derivative of the map Fs described after (2.15). The resulting
expressions will be needed later. Like some of the above, the following is purely formal. A proper for-
mulation will be given in the next section. For simplicity, assume that φ depends on a parameter. The
derivative of a quantity q with respect to this parameter will be denoted by q̇. Define

Lα = |Δ|1/2(α∂t − Δ)−1, L′
α = ∂t(α∂t − Δ)−1. (2.16)

Using that Fs(φ) = g − 1
2γLαφ̂ with φ̂ = |Δ|−1/2Ls(φ)φ, the parameter-derivative of Fs(φ) is given by

DFs(φ)φ̇ = − 1
2Lα

[(
γ̇ − γα̇L′

α

)
φ̂ + γ

˙̂
φ
]
,

˙̂
φ = 2|Δ|−1/2Ls(φ)φ̇, (2.17)

where

γ̇ = 2−3/2 γ2

θ
B

˙̂
φ, α̇ = 2−3/2 αγ

θ
B

˙̂
φ − 2−1/2 γ

θ
A

˙̂
φ. (2.18)

The above expressions for γ̇ and α̇ are obtained by differentiating (2.15).

3. The Associated Contractions

In this section, we formulate the fixed point problems for the maps F , Fγ , and Fs in a suitable functional
setting. The goal is to reduce the problems to a point where we can invoke the contraction mapping
theorem or the implicit function thorem. After describing the necessary estimates, we give a proof of
Theorem 1.1 based on these estimates.
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We start by defining suitable function spaces. Given a real number ρ > 1, denote by A the space of
all functions h ∈ L2(T) that have a finite norm ‖h‖, where

‖h‖ = |h0| +
∑

n∈N1

√
|hn|2 + |h−n|2ρn, h =

∑
n∈Z

hncosin. (3.1)

Here cosin are the trigonometric function defined in (2.8). It is straightforward to check that A is a
Banach algebra under the pointwise product of functions. That is, ‖gh‖ ≤ ‖g‖‖h‖ for any two functions
g, h ∈ A. We also identify functions on T with 2π-periodic functions on R. In this sense, a function in A
extends analytically to the strip T (ρ) = {z ∈ C : |Imz| < log ρ}.

Given in addition 
 > 1, we denote by B the space of all function Φ : T
2 → A that admit a

representation (2.4) and have a finite norm

‖Φ‖ =
∑

j,k∈N1

‖Φj,k‖
j+k. (3.2)

A function (x, y) �→ (t �→ Φ(t, x, y)) in this space will also be identified with a function (t, x, y) �→ Φ(t, x, y)
on T

3, or with a function on R3 that is 2π-periodic in each argument. In this sense, every function in B
extends analytically to T (ρ) × T (
)2.

We consider A and B to be Banach spaces over F ∈ {R,C}. In the case F = R, the functions in these
spaces are assumed to take real values for real arguments.

Clearly, a function Φ ∈ B admits an expansion (2.9) with N = N0. The sequence of Fourier coefficients
Φn,k,j converges to zero exponentially as |n| + j + k tends to infinity. If all but finitely many of these
coefficients vanish, then Φ is called a Fourier polynomial. The Eq. (2.9) with N ⊂ N0 non-empty defines
a continuous projection EN on B whose operator norm is 1. Using Fourier series, it is straightforward
to see that the Eq. (2.16) defines two bounded linear operators Lα and L′

α on B, for every α ∈ C. The
operator Lα is in fact compact. Specific estimates will be given in Sect. 4. The following will be proved
in Sect. 4 as well.

Proposition 3.1. If Φ and φ belong to B, then so does |Δ|−1/2L(Φ)φ, and∥∥|Δ|−1/2L(Φ)φ
∥∥ ≤ ∥∥|Δ|−1/2Φ

∥∥‖φ‖ + ‖Φ‖∥∥|Δ|−1/2φ
∥∥. (3.3)

This estimate implies e.g. that the transformation φ �→ φ̃, given by (2.13) for fixed values of s, γ and
α, is well-defined and compact as a map from B to B.

As is common in computer-assisted proofs, we reformulate the fixed point equation for the map φ �→ φ̃
as a fixed point problem for an associated quasi-Newton map. Since we need three distinct versions of
this map, let us first describe a more general setting.

Let F : D → B be a C1 map defined on an open domain D in a Banach space B. Let h �→ ϕ + Lh be
a continuous affine map on B. We define a quasi-Newton map N for (D,F , ϕ, L) by setting

N (h) = F(ϕ + Lh) − ϕ + (I − L)h. (3.4)

The domain of N is defined to be the set of of all h ∈ B with the property that ϕ + Lh ∈ D. Notice that,
if h is a fixed point of N , then ϕ + Lh is a fixed point of F . In our applications, ϕ is an approximate
fixed point of F and L is an approximate inverse of I − DF(ϕ).

The following is an immediate consequence of the contraction mapping theorem.

Proposition 3.2. Let F : D → B be a C1 map defined on an open domain in a Banach space B. Let
h �→ ϕ + Lh be a continuous affine map on B. Assume that the quasi-Newton map (3.4) includes a
non-empty ball Bδ = {h ∈ B : ‖h‖ < δ} in its domain, and that

‖N (0)‖ < ε, ‖DN (h)‖ < K, h ∈ Bδ, (3.5)

where ε,K are positive real numbers that satisfy ε + Kδ < δ. Then F has a fixed point in ϕ + LBδ. If L
is invertible, then this fixed point is unique in ϕ + LBδ.
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In our applications below, B is always a subspace of B. The domain parameter ρ and the constant θ
that appears in the normalization condition (2.14) are chosen to have the fixed values

ρ = 25, θ = 2−12. (3.6)

The domain parameter 
 is defined implicitly in our proofs. That is, the lemmas below hold for 
 > 1
sufficiently close to 1.

Consider first the problem of determining the bifurcation point γ0 and the associated frequency α0.
Let B = E{0,1}B over R. For every δ > 0 define Bδ = {h ∈ B : ‖h‖ < δ}. Let s = 0, and denote by D
the set of all functions φ ∈ B with the property that Bφ̂ �= 0. Define F : D → B to be the map φ �→ φ̃
given by (2.13), with γ = γ(φ) and α = α(φ) defined by the Eq. (2.15). Clearly, F is not only C1 but real
analytic on D.

Lemma 3.3. With F as described above, there exists an affine isomorphism h �→ ϕ + L1h of B and
real numbers ε, δ,K > 0 satisfying ε + Kδ < δ, such that the following holds. The quasi-Newton map
N associated with (B,F , ϕ, L1) includes the ball Bδ in its domain and satisfies the bounds (3.5). The
domain of F includes the ball in B of radius r = δ‖L1‖, centered at ϕ. For every function φ in this ball,
γ(φ) = 83.1733117 . . . and α(φ) = 4.66592275 . . ..

Our proof of this lemma is computer-assisted and will be described in Sect. 4.
By Proposition 3.5, the map F has a unique fixed point φ∗ ∈ ϕ + L1Bδ. We define γ0 = γ(φ∗) and

α0 = α(φ∗).
Our next goal is to construct a branch of periodic solutions for the Eq. (2.6). Consider B = B

over F ∈ {R,C}. By continuity, there exists an open ball J0 ⊂ F centered at the origin, and an open
neighborhood D of φ∗ in B, such that Bφ̂ = B|Δ|−1/2Ls(φ)φ is nonzero for all s ∈ J0 and all φ ∈ D. For
every s ∈ J0, define Fs : D → B to be the map φ �→ φ̃ given by (2.13), with γ = γ(s, φ) and α = α(s, φ)
defined by the Eq. (2.15).

Lemma 3.4. Let F = R. There exists a isomorphism L of B such that the following holds. If N0 denotes
the the quasi-Newton map associated with (D,F0, φ

∗, L), then the derivative DN0(0) of N0 at the origin
is a contraction.

Our proof of this lemma is computer-assisted and will be described in Sect. 4. As a consequence we
have the following.

Corollary 3.5. Consider F = C. There exists an open disk J ⊂ C, centered at the origin, and an analytic
curve s �→ φs on J with values in D, such that Fs(φs) = φs for all s ∈ J . If s belongs to the real interval
J ∩ R, then φs is real. Furthermore, φ0 = φ∗.

Proof. Consider still F = C. For s ∈ I0, the derivative of Ns on its domain is given by

DNs(h) = DFs(φ∗ + Lh)L + I − L. (3.7)

Assume that some function ψ ∈ B satisfies DF0(φ∗)ψ = ψ. We may assume that ψ takes real values
for real arguments. A straightforward computation shows that DN0(0)L−1ψ = L−1ψ. Since DN0(0) is a
contraction in the real setting, by Lemma 3.4, this implies that ψ = 0. So the operator DF0(φ∗) does not
have an eigenvalue 1. This operator is compact, since it is the composition of a bounded linear operator
with the compact operator Lα. Thus, DF0(φ∗) has no spectrum at 1. By the implicit function theorem,
there exists a complex open ball J , centered at the origin, such that the fixed point equation Fs(φ) = φ
has a solution φ = φs for all s ∈ J . Furthermore, the curve s �→ φs is analytic, passes through φ∗ at
s = 0, and there is a unique curve with this property. By uniqueness, we also have φs̄ = φs for all s ∈ J ,
so φs is real for real values of s ∈ J . �

A branch of stationary periodic solutions for (2.6) is obtained similarly. Consider B = E{0}B over
F ∈ {R,C}. For every γ ∈ F, define Fγ : B → B to be the map φ �→ φ̃ given by (2.13), with s = α = 0.
Notice that φ∗

e is a fixed point of Fγ0 .
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Lemma 3.6. Let F = R. There exists an isomorphism L0 of B such that the following holds. If Nγ0

denotes the the quasi-Newton map associated with (B,Fγ0 , φ
∗
e , L0), then the derivative DNγ0(0) of Nγ0

at the origin is a contraction.

Our proof of this lemma is computer-assisted and will be described in Sect. 4. As a consequence we
have the following.

Corollary 3.7. Consider F = C. There exists an open disk I ⊂ C, centered at γ0, and an analytic curve
γ �→ φγ on I with values in B, such that Fγ(φγ) = φγ for all γ ∈ I. If γ belongs to the real interval
I ∩ R, then φγ is real. Furthermore, φγ0 = φ∗

e .

The proof of this corollary is analogous to the proof of Corollary 3.5.
We note that the disk I 
 γ0 is disjoint from the disk J 
 0 described in Corollary 3.5. So there is no

ambiguity in using the notation γ �→ φγ and s �→ φs for the curve of stationary and periodic solutions,
respectively, of the Eq. (2.11),

Based on the results stated in this section, we can now give a

Proof of Theorem 1.1. As described in the preceding sections, the curve γ �→ φγ for γ ∈ I yields a curve
γ �→ uγ of stationary solutions of the equation (1.4), where uγ = curl−1

2d φγ . By our choice of function
spaces, the function (γ, x, y) �→ uγ(x, y) is real analytic on I × T

2, where I = I ∩ R.
Similarly, the curve s �→ φs for s ∈ J defines a family of of non-stationary periodic solutions for (1.4),

with γ = γs and α = αs determined via the Eq. (2.15). To be more precise, the even frequency part φs,e

of φs determines a vector field us,e = curl−1
2d φs,e, and the odd frequency part φs,o determines a vector

field us,o = curl−1
2d φs,o. If β is a complex number such that s = β2 ∈ J , then u = us,e +βus,o is a periodic

solution of (1.4), with γ = γs and α = αs. Here, we have used the decomposition (2.10). By our choice
of function spaces, the functions (s, t, x, y) �→ us,e(t, x, y) and (s, t, x, y) �→ us,o(t, x, y) are real analytic
on J × T

3, where J = J ∩ R. Clearly, ∂tu0,o(t, ., .) �= 0, due to the normalization condition φ−1,1,1 = θ
imposed in (2.14). And by construction, we have u = uγ0 for s = 0. �

4. Remaining Estimates

What remains to be proved are Lemmas 3.3, 3.4, and 3.6. Our method used in the proof of Lemma 3.3
can be considered perturbation theory about the approximate fixed point ϕ of F . The function ϕ is a
Fourier polynomial with over 11000 nonzero coefficients, so a large number of estimates are involved.

We start by describing bounds on the bilinear function L and on the linear operators Lα and L′
α.

These are the basic building blocks for our transformations F , Fs, and Fγ . The “mechanical” part of
these estimates will be described in Sect. 4.4.

4.1. The Bilinear form L and a Proof of Proposition 3.3

Consider the bilinear form L defined by (2.7). Using the identity (2.3), we have

L(Φ)φ = (∇Φ) · J∇Δ−1φ + (∇φ) · J∇Δ−1Φ

=
[
(∂xΦ)Δ−1∂yφ − (∂yΦ)Δ−1∂xφ

] − [
(Δ−1∂xΦ)∂yφ − (Δ−1∂yΦ)∂xφ

]
. (4.1)

In order to obtain accurate estimates, it is useful to have explicit expressions for L(Φ)φ in terms of the
Fourier coefficients of Φ and φ. Given that L is bilinear, and that the identity (4.1) holds pointwise in t,
it suffices to compute L(Φ)φ for the time-independent monomials

Φ = sinJ × sinK , φ = sinj × sink, (4.2)
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with J,K, j, k > 0. A straightforward computation shows that

L(Φ)φ = Θ(Jk + jK)
[
sinJ+j × sinK−k − sinJ−j × sinK+k

]
+ Θ(Jk − jK)

[
sinJ+j × sinK+k − sinJ−j × sinK−k

]
, (4.3)

with Θ as defined below. As a result we have

|Δ|−1/2L(Φ)φ =
∑

σ,τ=±1

Nσ,τ sinσJ+j × sinτK+k, (4.4)

where

Nσ,τ = Θ
σJk − τKj√

(σJ + j)2 + (τK + k)2
, Θ =

1
4

(
1

J2 + K2
− 1

j2 + k2

)
. (4.5)

Proof of Proposition 3.3. Using the Cauchy–Schwarz inequality in R2, we find that

|Nσ,τ | = |Θ| |(σJ + j)k − (τK + k)j|√
(σJ + j)2 + (τK + k)2

≤ |Θ|
√

j2 + k2. (4.6)

Since the absolute value of Nσ,τ is invariant under an exchange of (j, k) and (J,K), this implies that

|Nσ,τ | ≤ 1/4√
j2 + k2

∨ 1/4√
J2 + K2

, (4.7)

where a ∨ b = max(a, b) for a, b ∈ R. As a result, we obtain the bound∥∥|Δ|−1/2L(Φ)φ
∥∥ ≤ ∥∥|Δ|−1/2Φ

∥∥
�,ε

‖φ‖ + ‖Φ‖∥∥|Δ|−1/2φ
∥∥. (4.8)

Using the nature of the norm (3.2), and the fact that A is a Banach algebra for the pointwise product of
functions, this bound extends by bilinearity to arbitrary functions Φ, φ ∈ B. �

We note that the bound (4.8) exploits the cancellations that lead to the expression (4.3). A more
straightforward estimate loses a factor of 2 with respect to (4.8). But it is not just this factor of 2
that counts for us. The expressions (4.5) for the coefficients Nσ,τ and the bounds (4.7) are used in our
computations and error estimates. The expression on the right hand side of (4.7) is a decreasing function
of the wavenumbers j, k, J,K, so it can be used to estimate L(Φ)φ when Φ and/or φ are “tails” of Fourier
series.

4.2. The Linear Operators Lα and L′
α

Consider the linear operators Lα and L′
α defined in (2.16), with α real. A straightforward computation

shows that

ψn,j,k =
√

j2 + k2
(j2 + k2)φn,j,k − αnφ−n,j,k

(j2 + k2)2 + α2n2
, ψ = Lαφ. (4.9)

Using the Cauchy–Schwarz inequality in R2, this yields the estimate√
|ψn,j,k|2 + |ψ−n,j,k|2 ≤ Cn,j,k

√
|φn,j,k|2 + |φ−n,j,k|2, (4.10)

with

Cn,j,k =

√
j2 + k2

(j2 + k2)2 + α2n2
≤ 1√

2|αn| ∧ 1√
j2 + k2

(4.11)

for n �= 0, where a∧ b = min(a, b) for a, b ∈ R. The last bound in (4.11) is a decreasing function of |n|, j, k
and can be used to estimate Lαφ when φ is the tail of a Fourier series.
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For the operator L′
α we have

ψn,j,k = n
(j2 + k2)φ−n,j,k + αnφn,j,k

(j2 + k2)2 + α2n2
, ψ = L′

αφ. (4.12)

A bound analogous to (4.10) holds for ψ = L′
αφ, with

Cn,j,k =

√
n2

(j2 + k2)2 + α2n2
. (4.13)

As can be seen from (2.17), this bound is needed only for n = ±1, since these are the only nonzero
frequencies of the function φ̂ = |Δ|−1/2L0(φ)φ with φ ∈ E{0,1}B. And for fixed n, the right hand side of
(4.13) is decreasing in j and k.

4.3. Estimating Operator Norms

Recall that a function φ ∈ B admits a Fourier expansion

φ =
∑
n∈Z

∑
j,k∈N1

φn,j,kθn,j,k, θn,j,k
def= cosin × sinj × sink, (4.14)

and that the norm of φ is given by

‖φ‖ =
∑

j,k∈N1

[
|φ0,j,k| +

∑
n∈N1

√
|φn,j,k|2 + |φ−n,j,k|2 ρn

]

j+k. (4.15)

Let now n ≥ 0. A linear combination c+θn,j,k + c−θ−n,j,k will be referred to as a mode with frequency
n and wavenumbers (j, k) or as a mode of type (n, j, k). We assume of course that c− = 0 when n = 0.
Since (4.15) is a weighted �1 norm, except for the �2 norm used for modes, we have a simple expression
for the operator norm of a continuous linear operator L : B → B, namely

‖L‖ = sup
j,k∈N1

sup
n∈N0

sup
u

‖Lu‖/‖u‖, (4.16)

where the third supremum is over all nonzero modes u of type (n, j, k).
Let now n, j, k ≥ 1 be fixed. In computation where Lθ±n,j,k is known explicitly, we use the following

estimate. Denote by Ln,j,k the restriction of L to the subspace spanned by the two functions θ±n,j,k. For
q ≥ 1 define

‖Ln,j,k‖q = sup
0≤p<q

‖Lvp‖, vp = cos
(πp

q

) θn,j,k

ρn
j+k
+ sin

(πp

q

) θ−n,j,k

ρn
j+k
. (4.17)

Since every unit vector in the span of θ±n,j,k lies within a distance less than π
q of one of the vectors vp

or its negative, we have ‖Ln,j,k‖ ≤ ‖Ln,j,k‖q + π
q ‖Ln,j,k‖. Thus

‖Ln,j,k‖ ≤ q

q − π
‖Ln,j,k‖m, q ≥ 4. (4.18)

Consider now the operator DFs(φ) described in (2.17), with φ ∈ E{0,1}B fixed. If φ̇ = un is a nonzero

mode with frequency n ≥ 3, then ˙̂
φ = 2|Δ|−1/2L0(φ)φ̇ belongs to ENB with N = {n− 1, n, n+1}. Thus,

we have γ̇ = α̇ = 0, and

DF0(φ)un = −γLα|Δ|−1/2L0(φ)un. (4.19)

Due to the factor Lα in this equation, if un = c+θn,j,k +c−θ−n,j,k with (j, k) and c± fixed, then the ratios

‖DF0(φ)un‖/‖un‖ (4.20)

are decreasing in n for n ≥ 3. And the limit as n → ∞ of this ratio is zero.
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So for the operator L = DF0(φ), the supremum over n ∈ N0 in (4.16) reduces to a maximum over
finitely many terms. The same holds for the operator L = DN0(0) = DF0(φ∗)L + I − L that is described
in Lemma 3.4. This is a consequence of the following choice.

Remark 2. The operator L chosen in Lemma 3.4 is a “matrix perturbation” of the identity, in the sense
that Lθn,j,k = θn,j,k for all but finitely many indices (n, j, k). The same is true for the operators L1 and
L0 chosen in Lemma 3.3 and Lemma 3.6, respectively.

4.4. Computer Estimates

Lemmas 3.3, 3.6, and 3.4 assert the existence of certain objects that satisfy a set of strict inequalities.
The goal here is to construct these objects, and to verify the necessary inequalities by combining the
estimates that have been described so far.

The above-mentioned “objects” are real numbers, real Fourier polynomials, and linear operators that
are finite-rank perturbations of the identity. They are obtained via purely numerical computations. Ver-
ifying the necessary inequalities is largely an organizational task, once everything else has been set up
properly. Roughly speaking, the procedure follows that of a well-designed numerical program, but instead
of truncation Fourier series and ignoring rounding errors, we determine rigorous enclosures at every step
along the computation. This part of the proof is written in the programming language Ada [32]. The
following is meant to be a rough guide for the reader who wishes to check the correctness of our programs.
The complete details can be found in Electronic supplementary material.

Let us start with an informal description of the type of sets that can be controlled with the aid of
a computer. In Rn, a standard bound on a vector c = (c1, c2, . . . , cn) is defined by an collection of n
intervals Ci with the property that ci ∈ Ci for all i ≤ n. The same type of bound can be used e.g. for
an odd Fourier polynomial p = c1 sin1 +c2 sin2 + . . . + cn sinn. As an extension to infinite dimensions,
consider for simplicity odd functions in A. An odd function y ∈ A may be decomposed as y = p + e,
where p is as above and

e =
m∑

i=1

ei, ei =
∞∑

j=i

ei,j sinj , (4.21)

for some fixed positive integer m. Our bounds on the error terms ei are specified by m representable
numbers εi ≥ 0 with the property that ‖ei‖ ≤ εi for each i ≤ m. Setting Ei = [0, εi], the collection of
intervals (C1, . . . , Cn, E1, . . . , Em) defines a set Y ⊂ A that encloses the function y. Given an enclosure Z
of this type for another odd function z ∈ A, is is clearly possible to determine a rigorous enclosure X for
the sum x = y + z, using n + m interval operations with controlled rounding. Extending this procedure
to arbitrary function in A, it is straightforward to obtain enclosures for products of functions and other
basic operations on A. We note that the non-uniqueness of the representation (4.21) is deliberate; it
allows for a flexible choice of enclosures.

An enclosure for a function φ ∈ B is a set in B that includes φ and is defined in terms of (bounds on)
a Fourier polynomial and finitely many error terms. We define such sets hierarchically, by first defining
enclosures for elements in simpler spaces. In this context, a “bound” on a map f : X → Y is a function
F that assigns to a set X ⊂ X of a given type (Xtype) a set Y ⊂ Y of a given type (Ytype), in such a
way that y = f(x) belongs to Y for all x ∈ X. In Ada, such a bound F can be implemented by defining
a procedure F(X: in Xtype; Y: out Ytype).

Our most basic enclosures are specified by pairs S=(S.C,S.R), where S.C is a representable real
number (Rep) and S.R a nonnegative representable real number (Radius). Given a Banach algebra X
with unit 1, such a pair S defines a ball in X which we denote by 〈S,X〉 = {x ∈ X : ‖x− (S.C)1‖ ≤ S.R}.

When X = R, then the data type described above is called Ball. Bounds on some standard functions
involving the type Ball are defined in the package Flts Std Balls. Other basic functions are covered
in the packages Vectors and Matrices. Bounds of this type have been used in many computer-assisted
proofs; so we focus here on the more problem-specific aspects of our programs.
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Consider now the space A for a fixed domain radius 
 > 1 of type Radius. As mentioned before
Remark 2, we only need to consider Fourier polynomials in A. Our enclosures for such polynomials are
defined by an array(-Ic .. Ic) of Ball. This data type is named NSPoly, and the enclosure associated
with data P of this type is

〈P,A〉 def=
Ic∑

i=−Ic

〈
P(i),R

〉
cosiν(i), (4.22)

where ν is an increasing index function with the property that ν(−i) = −ν(i). The type NSPoly is defined
in the package NSP, which also implements bounds on some basic operations for Fourier polynomials in
A. Among the arguments to NSP is a nonnegative integer n (named NN). Our proof of Lemma 3.6 and
Lemma 3.3 uses Ic = n = 0 and Ic = n = 1, respectively, and ν(i) = i. Values n ≥ 2 are uses when
estimating the norm of Lu for the operator L = DN0(0), with u a mode of frequency n. In this case, ν
takes values in {−n, n} or {−n−1,−n,−n+1, 0, n−1, n, n+1}, depending on whether n is odd or even.
(The value ν = 0 is being used only for n = 2.) The package NSP also defines a data type NSErr as an
array(0.. Ic) of Radius. This type will be used below.

Given in addition a positive number 
 ≥ 1 of type Radius, our enclosures for functions in B are defined
by pairs (F.C,F.E), where F.C is an array(1.. Jc, 1.. Kc) of NSPoly and F.E is an array(1.. Je, 1.. Ke)
of NSErr; all for a fixed value of the parameter NN. This data type is named Fourier3, and the enclosure
associated with F=(F.C,F.E) is

〈F,B〉 def=
Jc∑

j=1

Kc∑
k=1

〈
F.C(j,k),A〉 × sinj × sink +

Je∑
J=1

Ke∑
K=1

HJ,K(F.E(J,K)). (4.23)

Here, HJ,K(E) denotes the set of all functions φ =
∑Ic

i=0 φi with ‖φi‖ ≤ E(i), where φi can be any
function in B whose coefficients φi

n,j,k vanish unless j ≥ J , k ≥ K, and |n| = ν(i).
The type Fourier3 and bounds on some standard functions involving this type are defined in the

child package NSP.Fouriers. This package is a modified version of the package Fouriers2 that was
used earlier in [18,22,28]. The procedure Prod is now a bound on the bilinear map |Δ|−1/2L0. The
error estimates used in Prod are based on the inequality (4.7). The package NSP.Fouriers also includes
bounds InvLinear and DtInvLinear on the linear operators Lα and L′

α, respectively. These bounds use
the estimates described in Sect. 4.3.

As far as the proof of Lemma 3.3 is concerned, it suffices now to compose existing bounds to obtain a
bound on the map F and its derivative DF . This is done by the procedures GMap and DGMap in Hopf.Fix.
Here we use enclosures of type NN=1.

The type of quasi-Newton map N defined by (3.4) has been used in several computer-assisted proof
before. So the process of constructing a bound on N from a bound on F has been automated in the generic
packages Linear and Linear.Contr. (Changes compared to earlier versions are mentioned in the program
text.) This includes the computation of an approximate inverse L1 for the operator I − DF(ϕ). A bound
on N is defined (in essence) by the procedure Linear.Contr.Contr, instantiated with Map => GMap. And
a bound on DN is defined by Linear.Contr.DContr, with DMap => DGMap. Bounds on operator norms
are obtained via Linear.OpNorm. Another problem-dependent ingredient in these procedures, besides Map
and DMap, are data of type Modes. These data are constructed by the procedure Make in the package Hopf.
They define a splitting of the given space B into a finite direct sum. For details on how such a splitting
is defined and used we refer to [23].

If the parameter NN has the value 0, then the procedures GMap and DGMap define bounds on the map
Fγ and its derivative, respectively. The operator L0 used in Lemma 3.6 has the property that M0 = L0−I
satisfies M0 = P0M0P0, where P0 = E{0}Pm0 for some positive integer m0. Here, and in what follows, Pm

denotes the canonical projection in B with the property that Pmφ is obtained from φ by restricting the
second sum in (4.14) to wavenumbers j, k ≤ m.

If NN has a value n ≥ 2, then the procedure DGMap defines a bound on the map (φ, ψ) �→ DF0(φ)ψ,
restricted to the subspace E{0,1}B × E{n}B. The linear operator L that is used in Lemma 3.4 admits a
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decomposition L = I + M1 + M2 + . . . + MN of the following type. After choosing a suitable sequence
n �→ mn of positive integers, we set Mn = Pn(L − I)Pn, where P1 = E{0,1}Pm1 and Pn = E{n}Pmn

for
n = 2, 3, . . . , N . This structure of L simplifies the use of (4.16) for estimating the norm of L = DN0(0).
Furthermore, to check that L is invertible, it suffices to verify that I + Mn is invertible on the finite-
dimensional subspace PnB, for each positive n ≤ N .

The linear operator L1 that is used in Lemma 3.3 is of the form L1 = I + M1 with M1 as described
above.

All the steps required in the proofs of Lemmas 3.3, 3.6, and 3.4 are organized in the main program
Check. As n ranges from 0 to N = 305, this program defines the parameters that are used in the proof for
NN = n, instantiates the necessary packages, computes the appropriate matrix Mn, verifies that I+Mn is
invertible, reads ϕ from the file BP.approx, and then calls the procedure ContrFix from the (instantiated
version of the) package Hopf.Fix to verify the necessary inequalities.

The representable numbers (Rep) used in our programs are standard [34] extended floating-point
numbers (type LLFloat). High precision [35] floating-point numbers (type MPFloat) are used as well, but
not in any essential way. Both types support controlled rounding. Radius is always a subtype of LLFloat.
Our programs were run successfully on a 20-core workstation, using a public version of the gcc/gnat
compiler [33]. For further details, including instruction on how to compile and run our programs, we refer
to the Electronic supplementary material.
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