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Abstract: This manuscript develops a detection framework using Bayesian philosophy by adaptation of
Shiryaev (1963) and Roberts (1966) methods. We propose two unifying versions directly applicable in
industrial process control; and easily extendable to public health infectious disease surveillance via some
data detrending and/or demodulation. The root idea uses the sum of likelihood ratios upon which an optimal
stopping criterion is based. It sets a prior on the epoch of a change, allows the flexibility to elicit a prior
distribution on other process parameters, and attempts to minimize an expected loss function. A sensitiv-
ity analysis is conducted for validation and performance assessment, and analytical formulas derived. The
methods are successfully applied to the European Union Centre for Disease Control (ECDC) open source
global COVID-19 incidence data. We further lay out scenarios where interest may switch to the detection of
separate outbreaks with similar syndromes during an already evolving epidemics. We view our approach as
a toolkit with a potential to augment early reports to sentinels in syndromic surveillance and in biosurveil-
lance.

Keywords: Bayesian sequential update; Biosurveillance; Change point; COVID-19; Dynamic process-
ing, Shiryaev–Roberts procedure, Syndromic surveillance.

Subject Classifications: 62L10; 60G15; 60G40; 62F15.

1. INTRODUCTION

Biosurveillance, like any other sequential aberration detection field, relies on watchdog-type of
statistical procedure for early detection of unanticipated change in stochastic measurements that
occur in real-time or near real-time. In countries around the world, medical data are being used
to assess data-driven evidence of natural epidemics or intentional release of biological agents with
operations similar to natural epidemics. The real-time watchdog-type of platform created in bio-
surveillance has allowed a shift in disease surveillance from the classical retrospective disease chart
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review to a prospective and early disease detection, where medical characteristics become investi-
gational tools used to augment early reports to sentinels. Examples of these medical characteristics
and investigational parameters are emergency room visits, over-the-counter sales, veterinary data
and medical and public health information. See for example Arnon et al. (2001); Dennis et al.
(2001); Henderson et al. (1999); Inglesby et al. (1999); Inglesby et al. (2000); Buehler et al.
(2003); Green and Kaufman (2002) and Pavlin (2003) for relevant publications.

The optimality of surveillance procedures is usually assessed through minimizing a desired
detection delay penalty function, subject to a constraint on a preset false alarm rate. These known
facts of standard control theory have long been a central part of classical disease surveillance,
laboratory-based outbreak detection algorithms, so that tools that are usually employed to reach op-
timality have incorporated false alarm rates, and reluctance to act in the presence of contaminants,
as part of their operating characteristic. In the US for example, the Centers for Disease Control and
Prevention (CDC) has routinely applied cumulative sum techniques (Cusum) to laboratory-based
data for outbreak detection; see Hutwagner et al. (1997) and Stern and Lightfoot (1999). As
most industrial control tools rely on strict statistical underpinnings, and on a relative knowledge of
distributional parameters, their transition to medical data application has fallen short of optimality.
As an example in biosuveillance, the main incidence parameters may be unknown, or too raw for
a steady-state inference. Sometimes the main incidence parameter may be unstable or depict some
unusual structural breaks. In the case of infectious diseases with seasonal trend such as influenza,
for example, it has been recognized that their year-to-year incidence parameter behaves like a con-
stantly moving target, thereby generating new data processes to be monitored each year de novo.
In cases such as these, statistical optimality becomes clouded by the background of variability
and structural changes inherent to the data. For some in-depth discussion on biosurveillance and
control methods in medical surveillance, see Woodall (2006); Zamba et al. (2008); Zamba et al.
(2013), Shmueli and Burkom (2010). Stoto et al. (2004) was quick to point out that as background
variability and structural changes affect these data, the monitoring scheme used for signal detection
yields more false signals than anticipated; thus resulting in sub-par optimality and sometimes coin
toss decisions.

The contextual platform on which biosurveillance operates usually demands individual data
monitoring. Cusums, exponentially weighted moving averages (Ewma), and change point meth-
ods might seem to be first-blush natural candidates. These tools are limited when faced up with
health-related data–as their performance tends to be governed by statistical assumptions such as
independent readings, normal distribution with known parameters and a requirement of stable and
steady-state historical data set (HDS); which clearly lack in biosurveillance; see Hawkins and
Olwell (1997). For example the statistical underpinnings of Cusums make them lesser suitable
candidates for monitoring real-time biosurveillance data. In addition, Cusums are better known for
responding to step (not gradual) changes. Ewma requires advance knowledge and stability of the
process parameters. Change point methods, although less demanding in their calibration needs,
and better suited for handling individual reading and start-up processes, rely on independent and
identically distributed normal assumption along with the assumption of change from a constant
set of distributional parameters to another constant set; see for example Hawkins et al. (2003);
Hawkins and Zamba (2005a); and Hawkins and Zamba (2005b). Other methods usually applied
to autocorrelated data can be found in Zhang (1997) and Winkel and Zhang (2007).

The current manuscript presents a surveillance method based on Bayesian philosophy. The
Bayesian approach to SPC was spearheaded by the pioneering work of Shiryaev (1963) and
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Roberts (1966), which considered change point types of modeling with Bayesian thinking in
view. Hodley (1981), for example, offered a Bayesian alternative to c-chart, while Woodward
and Naylor (1993) applied Bayesian approaches to handling short runs in normal data. Recently,
Tsiamyrtzis and Hawkins (2005), Tsiamyrtzis and Hawkins (2010) and Tsiamyrtzis and Hawkins
(2019) provide Bayesian change point approaches using a mixture of distributions in modeling
Gaussian or Poisson phase I data, and Apley (2012) introduced posterior distribution plots for
phase II monitoring.

The approach we propose herein is based on the Shiryaev–Roberts change point detection
method such as outlined in Shiryaev (1963) and Roberts (1966). It uses a sequential scheme
to build an optimal stopping criterion based on the sum of likelihood ratios while not necessarily
requiring independent observations. The approach sets a prior distribution for the epoch of aberra-
tion τ , and attempts to minimize an expected loss function. An optimal decision is reached based
on the partial sum of likelihood ratios exceeding a threshold directly related to a preset false alarm
rate. The Shiryaev–Roberts approach can be generalized to accommodate settings where the pre-
and post-change densities are unknown, in accordance with Lorden and Pollack (2005), and can
be adapted to autocorrelated series via adequate transformations. Historically, Bayesian methods
have been slow to percolate into control theory and biosurveillance due in part to their theoreti-
cal and computational intimidation and also to problems surrounding prior density specifications.
Regardless, they appear to be quite appealing in modeling the type of data gathered in medi-
cal settings where short runs and unknown parameters are prevalent. Our penchant for Bayesian
thinking in this context relates to their ease of adaptation to individual monitoring, their ease of
handling unknown parameters, added to the luxury that comes with deriving posterior predictive
distributions–key ingredients for error management.

The manuscript is organized as follows: Section 2 defines the proposed Shiryaev and Shiryaev-
Roberts Bayesian frameworks and the algebraic formulas entailed. In Section 3, we study the oper-
ating characteristics of the methods using simulations, and apply the methods to ECDC COVID-19
global incidence data. Section 4 outlines a sensitivity analysis, documenting performance for over-
lapping epidemics. In Section 5, we close our manuscript with discussion and conclusion.

2. DATA AND BAYESIAN MODEL

2.1. The Data Structure

Biosurveillance data can be likened to readings from a propagated outbreak in which incidence
flattens at first, then slowly increases to an apex, after which it slowly decreases as a function of
decreasing transfer rate associated with herd immunity, public health measures and/or other erad-
icative measures. As these infective states are likely related to influenza-like-illnesses, their inci-
dence follows similar epic curves as those observed in diseases of human vector and those spread
by contacts through bodily fluids or droplets. Regardless of their etiology, statistical observations
suggest an underlying latent serial process fluctuating across a constant value (corresponding to a
baseline noise, or a walk segment) before epic surges are observed. Immediately following this
segment is a ramp model, or a rise segment where the incidence data display positive association
with time scale, which continues until the apex, a turning point from which recordings have a
negative trend (a decay segment), which later transitions into a constant noise segment. The slope
indicating the ramp model and the decay segment may be epidemic-by-year specific; and so is the
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beginning of the ramp model, the peak infective time, and the end of the decay segment. See for
example the top panel of figure 1 for an illustration of the serial evolution of COVID-19 incidence
data. Firstly, we focus our attention to the baseline and rise sections of the data with the goal to
capture the beginning of the inflection (i.e. the epoch τ ) while optimizing the false alarm proba-
bility. Next, by using an adequate demodulation we switch attention to the entire epidemic curve,
on which spikes of additional outbreaks co-occur during an epidemic. For the latter of these foci,
a good argument can be made for surveillance of COVID-19 during a regular flu season or vice
versa.

2.2. The Statistical Model

Assume Xi to be time-indexed normally distributed readings, or approximately so, observed with
the goal to identify an epoch τ of a persistent increase in their mean structure. Relating back to the
epidemic curve, this epoch τ can be viewed as the juncture between the walk and the ramp model
segments. In that case, one is led to consider:
Baseline data: for i = 1, 2, . . . , τ − 1

Xi
iid∼ N

(
µ, σ2

)
Rise data: for j = τ, τ + 1, . . . , n

Xj
iid∼ N

(
µ+ (j − τ + 1)δ, σ2

)
.

Assuming demodulated data and/or a first difference detrending filter Yi as follows:
for 1 ≤ i < τ we have

Yi = Xi −Xi−1 ∼ N
(
0, 2σ2

)
,

while for j ≥ τ one has
Yj = Xj −Xj−1 ∼ N

(
δ, 2σ2

)
.

The Yi process defines a walk upon which there is a shock starting time τ .

The mixture of likelihood functions that encapsulate the process Yi may be summarized as:

Yi|σ2, δ, τ ∼
{
fo ≡ N (0, 2σ2) if 1 ≤ i < τ
f1 ≡ N (δ, 2σ2) if τ ≤ i ≤ n

}
. (2.1)

Note that the model in (2.1) is similar to a family of change point models with random change
point τ . In order to find the epoch τ of change in Yi process, we resort to methods from Bayesian
Statistical Control, namely those of Shiryaev and Shiryaev-Roberts; see Shiryaev (1963) and
Roberts (1966). The methods are documented for their optimality properties in detecting persistent
shifts. One is inclined to consider the baseline segment as the statistical in-control state, and the
ramp portion as an out-of-control state. In the classical implementation of the Shiryaev and the
Shiryaev-Roberts methods, it is necessary to pre-specify both the in-and out-of-control states, and
to target the one-parameter change point problem as dictated by the random variable τ ; along
the same vein as known parameter control schemes. Our current development differs from the
classical approach in that we allow the parameters in the likelihood function (2.1) to follow a prior
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distribution while keeping our gaze on the change point τ . By so doing, we relax the known-
parameter distributional assumption by allowing the remaining parameters (δ, σ2) to be nuisance
in (2.1), thereby creating a generalized version of the classical application of the Shiryaev and the
Shiryaev-Roberts methods. Within the Bayesian paradigm, the nuisance parameters are handled
as random variables for which one can elicit a prior distribution before any data are recorded. The
hierarchical structure adopted follows:

δ|σ2 ∼ N(δ0, kσ2) (2.2)
σ2 ∼ Inv.Gamma(α, β); (2.3)

where the four hyper-parameters δ0, k, α and β remain to be exposed. This structure assumes
(δ, σ2) ⊥ τ , and will require the hyper-parameters to operate. This is not an over-parametrization
of the detection scheme, but rather an attempt to generalize our schema to account for a background
of variability such as those observed in syndromic surveillance settings. To elaborate further,
δ0 refers to the size of the shock one wishes to detect. This shock is intuitively expected to be
greater than the maximum possible fluctuation one can anticipate in the baseline segment; barring
false signal. The hyper-parameter k reflects the uncertainty around the mean choice of δ0. The
suggestion is to keep k ≈ 1, or k > 1 if one wishes to be as less informative as possible. Finally,
α and β will handle the prior regarding σ2; with small values associated with more vague priors,
which are usually connected to robustness due to finite dimensionality of the parameter space; see
for example Gelman et al. (2014).

Theorem 2.1. Using the likelihood in (2.1) and the prior settings in (2.2) & (2.3), the marginal
distribution of the data point is as follows:

Yi|τ ∼ fo(yi) =
Γ(α + 1

2
)

Γ(α)

1√
4πβ

[
1 +

y2
i

4β

]−α− 1
2

if 1 ≤ i < τ

Yi|τ ∼ f1(yi) =
Γ(α + 1

2
)

Γ(α)

1√
2(k + 2)πβ

[
1 +

(yi − δ0)2

2(k + 2)β

]−α− 1
2

if τ ≤ i ≤ n.

For proof, please see the technical appendix section.

2.3. The Shiryaev–Roberts Approach to Biosurveillance

The sequential change detection criterion, under the Shiryaev and Shiryaev-Roberts approaches,
makes use of the likelihood ratio (see technical appendix for proof):

f1(yi)

f0(yi)
=

√
2

k + 2

 1 +
y2i
4β

1 + (yi−δ0)2

2(k+2)β

α+ 1
2

.

Under the assumption that τ follows a geometric prior distribution, i.e.

τ ∼ Geometric(p),
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and in accordance with Shiryayev (1963), we base our stopping criterion on the posterior proba-
bilities

P (τ ≤ n|y1, y2, . . . , yn) = Pn =
RS
n

RS
n + 1

;

where

RS
n =

p

(1− p)n+1

n∑
k=1

(1− p)k
n∏
j=k

f1(yj)

f0(yj)
;

and stopping time:
inf{n : Pn ≥ p?}, (2.4)

with p? predetermined by optimizing a required false alarm rate.
Roberts (1966) set p→ 0 and derived the recursive formula known as Shiryaev-Roberts approach:

RSR
n =

n∑
k=1

n∏
j=k

f1(yj)

f0(yj)
=
(
1 +RSR

n−1

) f1(yn)

f0(yn)
;

with initial value RSR
0 = 0 and stopping time:

inf{n : RSR
n ≥ γ}, (2.5)

where γ is predetermined, just like in the Shiryayev case, according to the required false alarm
rate. Direct mathematical optimization of these formulas so as to obtain (p?, γ) is a daunting task;
thus, we resort to numerical optimization to approximate the solutions.

3. OPERATING CHARACTERISTICS AND APPLICATION

A solution to the stopping criteria (2.4) and (2.5) is not amenable to direct mathematical formulas;
points that have been extensively discussed by Pollack (1987) and Yakir (1995). Instead of direct
mathematical optimization, we resort to a simulation study in order to 1.) establish p? and γ, and
2.) assess the operating characteristics under both normal and contaminated persistent regimes.
Note that some key factors may influence the performance of any sequential detection algorithm.
Among these one can identify the size of a shift (δ) and its epoch–i.e. the position of the shift
relative to the series length and relative to the volume of the walk prior to the shock segment.
As an example, shifts that occur after short walk series may rarely enjoy the same detection rate
as those occurring after long and steady-state series. To calibrate p? and γ, we conduct a Monte
Carlo simulation to define empirical thresholds, on the basis of false alarm probability, when both
systems are tuned to detect κ × σ-shift in standard Gaussian series. We target series of various
lengths; although a window of size 365 would be realistic for the sake of the current application–in
which real-time daily incidence is measured all year around. One hundred thousands (100,000)
Monte Carlo simulations were used for tuning purposes. After establishing the stopping rules, we
then spike the series with contaminations after τ = 10, 20, 30, 40, 50 steady-state observations,
then subsequently by step 50 till 300. We also include shifts at mid-series; after 182 observations.
We only report a few tables as an exposition of our methods in this manuscript. The R functions
used to generate these thresholds are appended to the manuscript. Users can modify these functions
as they have firsthand knowledge or some educated estimates of their process parameters. These
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functions serve as means to simplify practitioners’ lives so they can proceed straight to charting
after these thresholds are generated. The entries in table 1 are optimal thresholds for 1/2- and 1σ-
shift in a data window of 365 walk series. The limits are derived from the quantiles of the maximum
Shiryaev and maximum Shiryaev-Roberts statistics. We use the R software version R.4.0.0 on
LINUX platform with generator seed 123321.

Table 1. Threshold as function of False Alarm Probability

σ/2 σ
0.050 0.025 0.010 0.001 0.050 0.025 0.010 0.001

Shiryaev (p?) .0378 .0436 .0521 .0807 .0543 .0673 .0881 .1686
Shiryaev-Roberts (γ) 38.84 45.08 54.19 86.51 56.98 71.55 95.65 200.03

Table 2. Achieved False Alarm Probability

Shiryaev 0.044
Shiryaev-Roberts 0.044
DI Cusum-K 0.045
DI Cusum-U 0.043

3.1. Operating Characteristics

A combination of methods are used to measure the operating characteristic of the Shiryaev se-
quential Bayesian methods, and compare them to other monitoring schemes. These characteristics
are:

• NS: The proportion of series that have gone degenerate; i.e. the series failed to signal in the
presence of contamination

• FS: The proportion of signals prior to contamination time τ

• DS: The average length of time from contamination time τ and detection time ι ≥ τ .

The shifts considered are {0.25, 0.50, 0.75, 1, 2}-σ; which are introduced after steady state obser-
vations in a window of size 365. The idea behind these simulation settings is to be able to document
the systems’ reaction to early or late shifts during the monitoring period. We used the false alarm
probability (FAP) approach to design the optimal schemes at an in-control nominal FAP of 0.05.
The FAP concept finds its niche in sequential multiple hypotheses testing procedure in which we
ensure the overall family wise error rate is set at some predetermined level, which is 5% in our
case. To maintain an overall low false alarm probability we adopt the Sidák correction, Sidák
(1967), which accounts for conservativeness or anti-conservativeness associated with dependent
tests. The FAP, based on joint probability assessment, is defined as the probability of obtaining
at least one false alarm during the monitoring period. This approach is preferred in low volume
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Table 3. Operating characteristic measured by delay to signal (DS)

τ
δ 10 20 30 40 50 100 150 182 200 300

.50 67.4 68.8 69.1 64.0 67.3 66.5 62.2 58.3 56.4 34.7
SH .75 26.9 25.8 25.9 24.8 25.6 25.6 25.8 24.9 25.3 23.0

1.0 15.6 14.7 14.6 14.5 14.6 14.6 13.9 14.5 14.5 14.4
2.0 6.0 5.6 5.4 5.5 5.6 5.5 5.5 5.5 5.5 5.5

.50 67.7 69.4 70.1 64.4 67.5 67.1 62.3 58.6 56.7 34.8
SHR .75 26.9 25.8 26.0 24.8 25.6 25.6 25.9 25.0 25.4 23.0

1.0 15.6 14.7 14.6 14.5 14.7 14.6 13.9 14.5 14.5 14.5
2.0 6.0 5.6 5.4 5.5 5.6 5.5 5.5 5.5 5.5 5.5

.50 43.9 43.6 43.8 43.3 44.6 43.5 43.0 42.6 42.4 35.8
Cusum-K .75 23.6 23.2 23.2 22.3 23.2 22.9 22.9 23.0 23.0 22.4

1.0 16.1 15.8 15.8 15.7 15.7 15.6 15.3 15.7 15.6 15.6
2.0 7.2 7.0 6.9 7.0 7.1 7.0 6.9 6.9 6.9 7.0

.50 137.7 89.2 79.7 67.6 74.8 63.0 56.7 52.4 50.0 36.5
Cusum-U .75 84.7 60.8 49.7 44.2 41.1 30.1 27.4 26.9 26.1 23.9

1.0 61.5 41.0 30.8 26.0 22.9 18.7 17.1 17.2 18.7 16.4
2.0 23.9 12.1 10.1 9.3 8.7 7.8 7.5 7.5 7.3 7.3

startup productions because it takes into account issues pertaining to multiplicity of testing crite-
rion, simultaneity and dependence. For more on FAP, see King (1954), Jones and Champ (2002),
Chakraborti et al. (2008). The FAP probability is different from the usual false alarm rate (FAR),
which is the probability of a false alarm at every sampling stage–computation of which is based on
the marginal distribution of the charting statistics in state of in-control. The FAR, used as an oper-
ating characteristic, does not take into account multiplicity and dependence among tests. Table 2
shows the achieved FAP when thresholds are chosen at a nominal FAP value of 0.05; with the cor-
responding (p?, γ) = (0.03784, 38.8434) respectively for Shiryaev and Shiryaev-Roberts. These
limits were obtained when n = 365, δ0 = 0.5, k = α = β = 1; while p = 0.001 for Shiryaev;
and Shiryaev-Roberts is free of the parameter p. We next compare the Bayesian Shiryaev and
Shiryaev-Roberts schemas to two decision interval cusums. The first decision interval cusum is
a known parameter cusum (Cusum-K), while the second is a cusum with sequentially estimated
parameters (Cusum-U). For Cusum-U, the mean and the variance at time k are running mean and
running variance up till time k-1. Needless to say that by design, Cusum-K, the known parameter
cusum, would be optimal for small and persistent shifts. The setting of Cusum-K would be the best
case scenario if a long historical dataset is available for parameter estimation. In our current study
though, this safety net is unavailable and the parameters have to be estimated on the fly–thus, the
necessity of Cusum-U.

Results: All four monitoring methods show a bit of conservativeness, as their achieved FAP fall
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a little below the nominal value of 0.05 (see table 2). Their performance being similar in the FAP
department, we can compare them on the basis of other operating characteristics. That Cusum-K
outperforms all other methods in detecting persistent small shifts is not a surprise (see table 3). This
is the hallmark of known parameter DI cusums. But this advantage is quickly offset by the Shiryaev
and the Shiryaev-Roberts nearly equal, if not better, performance in moderate to large shifts. What
has been abundantly clear is the poor performance of the estimated parameter cusum (Cusum-U)
compared to all other methods–specifically when shifts occur after a small sample of in-control
observations. This is not too difficult to see. As parameters are estimated to build Cusum-U, this
scheme behaves like a self-starting cusum. When contaminated values are fed into the running
mean, they are also fed into both the estimated means and variances. The combined effect is that
the cusum now sees these contaminations as a normal part of its process; and even if it started out
rising initially, it will progressively adapt to the readings and end up falling below the decision
threshold. Consequently, it will take a very long time for Cusum-U to signal. As the in-control
gathering gains in size, we will eventually find ourselves in the Law of Large Numbers territory;
as a result its performance will progressively compare to that of Cusum-K. This finding is not
new. It simply enhances the work by Hawkins and Olwell (1997) on unknown parameter cusums.
What transpires from this early prescription is, when the monitoring parameters are unknown,
the Shiryaev and Shiryaev-Roberts methods are respectable candidates for post-shift operating
characteristics. Given that the previous simulation study is designed for sustained and persistent
post-shift distribution, what remains to be exposed is whether the system could function in the
presence of isolated temporary causes of variability. This latter inquisition reflects the hallmark of
epidemics and the nature of data gathered in public health arena. On a separate note, it has been
observed that for a system designed for 0.5σ shift in the mean of a standard Gaussian process,
there were no degeneracy by the moment contaminations of size 1σ have been introduced. All
such series have signaled from 1σ onwards.

3.2. Application to EU COVID-19 Data

The European Centre for Disease Prevention and Control (ECDC) was created in 2004 with a
mission to strengthen Europe’s defense against infectious diseases. In 2019, a strain of the severe
acute respiratory syndrome (SARS) species, SARS-CoV-2, was discovered and linked to COVID-
19, a disease that brought a global COVID-19 pandemic. During the COVID pandemic, ECDC
publishes real-time data related to the global outbreak as well as the number of people affected in
the EU. The data are in public domain and available at https://www.ecdc.europa.eu/en.
We provide a pictorial representation of the global COVID cases from ECDC after applying a
seven-day smoothing filter to the real-time observations starting December 31, 2019. We also
provide a second graph in which we zoom in on the early real-time data gathering on COVID-
19 infections. This early part of the data is the object of our illustrative example (see figure 1).
Our goal throughout this prescription is to assess how fast our sequential algorithm reacts to real-
time data gathering in order to sound and report alarms to sentinels. Three methods, tuned at the
same FAP, were compared with respect to their ability to detect early surge in reported cases of
the pandemic. These are the Shiryaev, the Shiryaev-Roberts and the Cusum-U. We sequentially
compute their statistics as the data stream evolves and compared them to their individual threshold.
The Shiryaev and the Shiryaev-Roberts statistics after crossing their thresholds suggest unusual
surge as far back as observation 20, while the Cusum-U took a two-day delay to signal at 22.
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These correspond to January 19 and January 21 respectively. Parts of the sequence of actual counts
leading up to those dates are (0, 0, 1, 0, 1, 0, 5, 17, 136, 20, 153), and the
first biggest global daily surge was observed on January 19, 2020. The Shiryaev and the Shiryaev-
Roberts jumped on the first biggest surge, while the cusum focussed on the second.
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Figure 1. EU global COVID-19 surveillance data. The top panel is the daily cases spanning December 31, 2019 to
July 20, 2020. The bottom panel highlights the early forty-day observations. In red, Shiryaev and Shiryaev-Roberts
detections, in blue the unknown parameter Cusum.

4. SENSITIVITY ANALYSIS FOR OVERLAPPING EPIDEMICS

Now we switch our attention to co-occurring outbreaks during an epidemics. A primary problem
of interest to researchers and policy makers is the ability for a surveillance tool to detect an epi-
demic in general, provide a backup data based evidence to medical diagnosis, and augment reports
to sentinels. This concern can be put to rest by devising a surveillance algorithm rooted in time-
liness between activity and detection while optimizing the statistical type I and type II errors, to
a reasonable degree, as it is traditionally the case. A different set of more challenging problems
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create itself when two different epidemics with similar syndromes overlap. For example, one may
be interested in the usual influenza operation when a SARS-CoV-2 epidemics is underway or an-
other biological agent is released. This scenario presents one of the most challenging problems
in the area of syndromic surveillance especially if one or both infectious diseases under investiga-
tion have a paucity of historical data while sharing similar syndromes. Medical timely screening
and diagnosis would be paramount in those settings, while most surveillance tools would rather
be reactionary, taking a back sit to firsthand medical expertise. Our hope is, at best, one of the
two overlapping epidemics would have some respectable history available before the operation
of the subsequent one; and these serial readings, or a demodulated version can be used in error
management fashion. In what follows we adopt some of the techniques similar to Zamba et al.
(2013) to investigate this issue. Zamba et al. (2013) simulated outbreaks in different ways that
a pathogen could alter syndromes daily counts. Simulated extra cases are superposed on another
infectious disease serial evolution and the data run through a surveillance scheme for signal detec-
tion. Within this paradigm, we simulate outbreaks of one and of two weeks and use them to spike
the COVID-19 data stream. Care has been taken so that the simulated outbreaks represent multiple
ways pathogens could spread through a community. Among the pathways considered, a flat out-
break corresponds to point-source infections such as Bacillus Anthracis. Linear, exponential and
sigmoid outbreaks may relate to infectious diseases that are highly infectious, such as smallpox,
SARS and the seasonal flu variants. These infections tend to have common flu-like symptoms such
as high temperature, fever, respiratory illness, shortness of breath and cough–no wonder they are
labeled in the literature influenza-like-illnesses. The belief is that these epidemics in turn would
reflect on any COVID daily counts and potentially create confounding. Thus, a strategy consists of
overlaying these additional counts on the detrended COVID-19 stream while mimicking a known
pattern and shape that reflects the hallmark of an infective curve, according to a seasonal trend and
a varying error profile. Since it is assumed that the COVID data stream has considerably gained
in size, its demodulated and detrended error profile seems a reasonable baseline candidate for the
simulated outbreaks. To illustrate, assuming one is interested in a 2σ-shift. If at day d the count
is 100 cases and the running standard deviation up to d is 20, for the subsequent 7 (or 14) days,
each day can generate between 0 to 40 extra cases. Thus, one can easily generate the extra cases
and readjust their volumes to fit the distributional pathway under study. As the error profile varies
between summer, fall, winter and spring, one can also implement seasonal moving windows to get
a handle on various error profiles. In our simulation various error profiles are used as we space
outbreaks by 10, 20, and 50 days throughout the support of the data (S). We clean the system
between outbreaks so that response to one outbreak does not impede on the other. For an out-
break of duration d (7 days, 14 days), pathway q (flat, linear, exponential, sigmoid), and yearly hit
frequency f (once, twice), on can proceed as follows:

• Choose n1 ∈ {1, . . . ,S − d} for the beginning of the outbreak with duration d

• Overlay the outbreak on the original series from n1, . . . , n1 + d according to pathway q

• Run the simulated data through the system for signal detection

• If the hit frequency f is twice, space both outbreaks either by 10, 20, or 50 observations

• Assess signal detection.
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This algorithm has been followed for 10,000 Monte Carlo each combination. The flat outbreak
can be likened to a temporary sustained shift after an in-control state. However, this sustained
shift lasts only for 7 or 14 days, after which the readings return to normal. This may be viewed
as a snapshot of an isolated cause of variability over a span of 7 or 14 days in a data window of
365 observations. Consequently, the systems are at competitive distributional disadvantage from
the get go–as shifts were just occasional spikes; not continually sustained as we may wish in the
perfect scenario. The linear, exponential and sigmoid are rather viewed as temporary gradual shifts
that increase in size toward the end of the outbreak where they may turn out to resemble outliers
around day 7 or 14. However, these also quickly fade away, making ways to the normal series to
pursue its course. We define the following operating characteristics:

• NS: The series have gone degenerate as they failed to signal

• TS: The series signal during the epidemics; i.e. within d days from n1

• FS: The series signal before n1

• DS: The series signal after n1 + d.

A final point that remains to be exposed is detrending the series. This may be done heuristically
through first difference recursively Gaussian transformed, more elegantly using a Kalman filtering,
Kalman (1960), or an adaptation of the Hodrick-Prescott (HP) one-sided filter with the Ravn-Uhlig
adjustment to sensitivity (see Hodrick and Prescot (1997); Ravn and Uhlig (2002)). For more on
dynamic time series detrending, see Shumway and Stoffer (2000); Mills (2003) or Enders (2010).

Results: We report the results for the 14-day outbreak. We observe an overall high FS rate with the
Cusum when shifts are introduced after a long history of steady observations. These FS increase to
around 50% in some cases while TS have plateaued at a maximum of 65%. In most combinations,
the Cusums yield the lowest number of degenerate series compared to the Bayesian methods.
The Shiryaev and the Shiryaev-Roberts have displayed consistent behaviors across combination
of epidemics and pathways. In those cases the rate of degeneracy is relatively high (ranging from
4% to 23%); but the silver lining is their ability to stay true to the FS rate while maintaining a
respectable proportion of true signal. The FS rate ranges between 0 and 8%; the NS rate (ranging
from 4% to 23%). In the TS department, they performed reasonably well above and beyond a coin
toss (ranging from 75% to 90%). The DS ranges between 3 to 31%. What has been abundantly
clear in this comparison is the ability of the Cusum to be easily confused when the in-control series
gain in volume. Having started to gain some confidence in the process parameter estmation, the
Cusum tends to regret not having previously identified sources of variability that crept into the
system under low volume. The Cusum tries to correct these sources but triggers them too early
as they become false signals. This tendency has led the Cusum to interpret most early flukes as
signals; although the true signals have yet to be observed. Several authors have raised the red
flag on the confusion that may ensue when using the unknown parameter Cusum; see Hawkins
and Olwell (1997). Note too that similar performances were obtained in disease surveillance by
Zamba et al. (2013) and Stoto et al. (2004) to name a few.
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5. DISCUSSION AND CONCLUSION

As pointed out by Stoto et al. (2004), traditional tools for monitoring data pertaining to biosurveil-
lance fall short of capturing all the important structural changes depicted on these data and also lose
in performance due to the inherent background variability in the readings. Our demonstration also
embeds a lesson that care is needed when traditional tools are being employed, especially the ones
that are sensitive to distributional assumptions or specifically designed for some type of character-
istics. In this paper, we provide generalized Shiryaev and Shiryaev-Roberts approaches to control
theory. The technicality allows us to elicit prior distributions on process parameters and chart in
the presence of unknowns. The proposed methods perform as well as, if not better than, the known
parameter Cusum for sustained post-shift series, and outperformed the self-starting Cusum for
sustained changes. Their adaptation to Biosurveillance and syndromic surveillance data suggests
these tools outperform Cusums over the range of flat, linear, exponential and sigmoid outbreaks.
The application to COVID-19 data gathered in the European Union by the ECDC, and its positive
results give us added incentive that our methods will find applicability across industrial processing,
health quality monitoring, and disease surveillance.

Like any Bayesian methodology, our proposal relies on prior parameter elicitation; and this
needs some extra caution. While one can alleviate the need for prior derivation by using objective
(non-informative) prior distributions, we rather recommend subjective priors for the following two
reasons: 1.) relevant information does typically exist and could be wasted if one opts for the
objective approach, and 2.) the subjective prior will offer a head-start in the monitoring approach,
enhancing performance, especially when shifts can be identified soon after the beginning of the
process at the lower tail of the observation window. For subjective priors, highly informative ones,
i.e. those with “very small” variability, should be avoided as they tend to cause high false alarm
rates if mis-specified. Thus, the safest choice would be to select hyper-parameter values that yield
low information priors, i.e. with some non-negligible variance, so that we do not impact false
alarm probability, but increase detection power at startup of the process and finally allow the prior
settings to wash out quickly in the recursive updating stage as data accrues.

To provide assistance and succor practitioners less familiar with Bayesian methods and com-
puting, we document our codes and make the main functions available. The ultimate goal is to
create an open source R menu program to generate thresholds needed for any parameter combina-
tion specific to their setting. Given the dynamic nature of the detection problem, we recommend
HP filters with Ravn-Uhlig adjustment at detrending stage. In medical settings, we believe the
current proposal will augment early reports of natural epidemics and intentional operations to sen-
tinels. Though we view our approach as self-reliant, we also recognize that our proposal is not
a ‘one size fits all’. In the health science, Biosurveillance data may differ from one location to
another even within the same country. As one switches from one geographic proximity to another,
or from one syndromic variable to the next, the general philosophy behind our proposal holds; but
parameters and their prior distributions will require some tweaking.
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Figure 2. Flat outbreak operating characteristics with self-starting cusum (?) and Shiryaev (•)

14



0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Degenerate

Epidemics Time

 %
 S

ig
na

l 

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Delayed Signals

Epidemics Time

 %
 S

ig
na

l 

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Signals

Epidemics Time

 %
 S

ig
na

l 

0 50 100 150 200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False Signals

Epidemics Time

 %
 S

ig
na

l 

Figure 3. Linear outbreak operating characteristics with self-starting cusum (?) and Shiryaev (•)
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Figure 4. Exponential outbreak operating characteristics with self-starting cusum (?) and Shiryaev (•)
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Figure 5. Sigmoid outbreak operating characteristics with self-starting cusum (?) and Shiryaev (•)
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6. TECHNICAL APPENDIX

6.1. Theoretical Formulas

The likelihood is given by:

Yi|σ2, δ, τ ∼
{
fo ≡ N (0, 2σ2) if 1 ≤ i < τ
f1 ≡ N (δ, 2σ2) if τ ≤ i ≤ n

}
while for the prior setting we have:

δ|σ2 ∼ N(δ0, kσ2)

σ2 ∼ Inv.Gamma(α, β) .

We will consider the two components of the likelihood separately.

Case I: 1 ≤ i < τ

f0(yi|τ) =

∫ +∞

0

f0(yi, σ
2|τ)dσ2 =

∫ +∞

0

f0(yi|σ2, τ)π(σ2|τ)dσ2

=

∫ +∞

0

1√
2π2σ2

exp

{
− y2

i

2(2σ2)

}
βα

Γ(α)

(
σ2
)−α−1

exp

{
− β

σ2

}
dσ2

=
βα

Γ(α)

1√
4π

∫ +∞

0

(
σ2
)−(α+ 1

2)−1
exp

{
− 1

σ2

[
β +

y2
i

4

]}
dσ2

=
βα

Γ(α)

1√
4π

Γ
(
α + 1

2

)[
β +

y2i
4

]α+ 1
2

=
Γ
(
α + 1

2

)
Γ(α)

1√
4πβ

1[
β +

y2i
4

]α+ 1
2

.

Case II: τ ≤ i ≤ n

f1(yi|τ) =

∫ +∞

0

[∫ +∞

−∞
f1(yi, δ, σ

2|τ)dδ

]
dσ2

=

∫ +∞

0

[∫ +∞

−∞
f1(yi|δ, σ2, τ)π(δ, σ2|τ)dδ

]
dσ2

=

∫ +∞

0

[∫ +∞

−∞
f1(yi|δ, σ2, τ)π(δ|σ2, τ)dδ

]
π(σ2|τ)dσ2

=

∫ +∞

0

[I1] π(σ2)dσ2 = (*) ;

but:
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I1 =

∫ +∞

−∞
f1(yi|δ, σ2)π(δ|σ2, τ)dδ

=

∫ +∞

−∞

1√
2π2σ2

exp

{
−(yi − δ)2

2(2σ2)

}
1√

2πkσ2
exp

{
−(δ − δ0)2

2(kσ2)

}
dδ

=
1√

8π2kσ4

∫ +∞

−∞
exp

{
− 1

4kσ2

[
ky2

i − 2ky2
i δ + kδ2 + 2δ2 − 4δ0δ + 2δ2

0

]}
dδ

=
1√

8π2kσ4

∫ +∞

−∞
exp

{
− 1

4kσ2

[
(k + 2)δ2 − 2(kyi + 2δ0)δ

]}
dδ × exp

{
−ky

2
i + 2δ2

0

4kσ2

}

=
1√

8π2kσ4
× exp

{
−ky

2
i + 2δ2

0

4kσ2

}
× exp


(kyi+2δ0)2

(k+2)2

4kσ2

k+2

×
×
∫ +∞

−∞
exp

{
− 1

2
(

2k
k+2

)
σ2

[
δ2 − 2

(
kyi + 2δ0

k + 2

)
δ +

(
kyi + 2δ0

k + 2

)2
]}

dδ

=
1√

8π2kσ4
× exp

{
−ky

2
i + 2δ2

0

4kσ2

}
× exp


(kyi+2δ0)2

(k+2)2

4kσ2

k+2

×
√

4kπ

k + 2
σ2

=

√
4kπ
k+2

σ2

√
8π2kσ4

× exp

{
− 1

2[2k(k + 2)]σ2

[
k(k + 2)y2

i + 2(k + 2)δ2
0 − (kyi + 2δ0)2

]}
=

1√
2(k + 2)πσ2

exp

{
k2y2

i + 2ky2
i + 2kδ2

0 + 4δ2
0 − k2y2

i − 4kyiδ0 − 4δ2
0

2[2k(k + 2)]σ2

}
=

1√
2(k + 2)πσ2

exp

{
2k

2(2k)(k + 2)σ2

(
y2
i − 2yiδ0 + δ2

0

)}
=

1√
2(k + 2)πσ2

exp

{
(yi − δ0)2

2(k + 2)σ2

}
.

Then:

(*) =

∫ +∞

0

1√
2(k + 2)πσ2

exp

{
(yi − δ0)2

2(k + 2)σ2

}
βα

Γ(α)

(
σ2
)−α−1

exp

{
− β

σ2

}
dσ2

=
βα

Γ(α)
√

2(k + 2)π

∫ +∞

0

(
σ2
)−α−1− 1

2 exp

{
− 1

σ2

[
β +

(yi − δ0)2

2(k + 2)

]}
dσ2

=
βα

Γ(α)

1√
2(k + 2)π

Γ
(
α + 1

2

)[
β + (yi−δ0)2

2(k+2)

]α+ 1
2

=
Γ
(
α + 1

2

)
Γ(α)

1√
2(k + 2)πβ

1[
1 + (yi−δ0)2

2(k+2)β

]α+ 1
2

.
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Thus:

Yi|τ ∼ fo(yi) =
Γ(α + 1

2
)

Γ(α)

1√
4πβ

[
1 +

y2
i

4β

]−α− 1
2

if 1 < i < τ

Yi|τ ∼ f1(yi) =
Γ(α + 1

2
)

Γ(α)

1√
2(k + 2)πβ

[
1 +

(yi − δ0)2

2(k + 2)β

]−α− 1
2

if τ ≤ i ≤ n;

and therefore we have:

f1(yi)

f0(yi)
=

Γ(α+ 1
2

)

Γ(α)
1√

2(k+2)πβ

[
1 + (yi−δ0)2

2(k+2)β

]−α− 1
2

Γ(α+ 1
2

)

Γ(α)
1√
4πβ

[
1 +

y2i
4β

]−α− 1
2

=

√
2

k + 2

 1 +
y2i
4β

1 + (yi−δ0)2

2(k+2)β

α+ 1
2

.

6.2. Useful Functions for Recursive Implementation

In the following functions the argument y is the data, d is the shift δ0, k is the multiplier of σ2 for
the variance term in the prior distribution of the jump parameter δ0, a is the hyperparameter α of
the Inverse Gamma prior distribution on σ2, and b is the hyperparameter β. For Shiryaev, p is the
hyperparameter for the assumed geometric prior distribution.

6.2.1. The Likelihood Ratio Function

LR <- function(y, d, k, a, b)
(sqrt(2/(k+2))*((1+yˆ2/(4*b))/(1+(y-d)ˆ2/(2*(k+2)*b)))ˆ(a+1/2))

6.2.2. The Shiryaev Function

S<-function(y,p,d,k,a,b)
{

n<- length(y)
PLRn<- 1

Sn<- 0
for (j in n:1){

PLRn<- LR(y[j],d,k,a,b)*PLRn
Sn<- ((1-p)ˆj)*PLRn + Sn
}

Sn<- p/((1-p)ˆ(n+1))*Sn
Sn<- Sn/(Sn+1)
Sn
}

6.2.3. The Shiryaev-Roberts Function

SR<-function(y,d,k,a,b)
{
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n<- length(y)
PLRn<- 1
SRn<- 0

for (j in 1:n){
SRn<- (1+SRn)*LR(y[j],d,k,a,b)
}

SRn
}
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