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Abstract

The understanding of the mechanics of turbulent dispersion is of primary importance in estimat-

ing the effects of mixing processes involved in a variety of events playing a significant role in our

daily life. This motivates research on the characterisation of statistics and the complex temporal

evolution of passive scalars in turbulent flows. A key aspect of these studies is the modelling of the

probability density function (PDF) of the passive scalar concentration and the identification of its

link with the mixing properties. In order to investigate the dynamics of passive scalars, as observed

in nature and in laboratory experiments, we perform here direct numerical simulations (DNS) of

a passive tracer injected in the stationary phase of homogeneous isotropic turbulence (HIT) flows,

in a setup mimicking the evolution of a fluid volume in the reference frame of the mean flow. In

particular, we show how the gamma distribution proves to be a suitable model for the PDF of the

passive scalar concentration and its temporal evolution in a turbulent flow throughout the different

phases of the mixing process. Then, assuming a gamma distribution, we develop a simple mixing

model by which we can estimate a mixing time scale, which regulates the decay rate of the intensity

of the concentration fluctuations.

Keywords: concentration fluctuations, direct numerical simulation, gamma distribution, homogeneous

isotropic turbulence, passive scalar dispersion, probability density function, turbulent mixing
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FIG. 1. Plume generated by a chimney (i.e., an elevated continuous source in a non-isotropic and

non-homogeneous turbulent flow field) (a); volcanic ash and steam in the Sunda Strait released by

Anak Krakatau volcano in Indonesia three months before its eruption in December 2018 (b).

I. INTRODUCTION

Turbulent dispersion and mixing of passive scalars are ubiquitous in nature. As it is well

known, the turbulent character of high Reynolds number flows is reflected on the fluctuations

of the passive scalar concentration occurring over a wide range of spatial and temporal scales

[1]. The statistical characterisation of these fluctuations is essential for the modelling of

several processes occurring in industrial, biological, and environmental flows (see Figure 1

as examples). To this aim, over the years this issue has been tackled by several authors

considering a large variety of flow configurations [2–8].

In a number of applications of interest in physics, chemistry, biology, and engineering, a

key aspect is the prediction of the spatial variability of the one-point PDF of the scalar field.

Previous works have shown that, depending on the flow configuration, this can be modelled

by different distributions [2–9], including the Weibull, the lognormal, and the gamma dis-

tributions. Notably, the latter was shown to be a suitable model for both dispersion and

mixing in internal flows [2–7] and in the atmosphere [6–8, 10–14].

The present work aims at further exploring the above features, through the investigation

of concentration statistics and mixing in a framework mimicking the evolution of the passive

scalar in a homogeneous isotropic turbulent flow. To this purpose, we performed DNS of

a stationary turbulent velocity field (with zero mean) where a puff of passive scalar was

released and let evolve to get insights on its diffusion and mixing properties (Section II). In
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Section III concentration statistics and PDF computed on the point-wise simulated fields

were first checked to ascertain their reliability and, then, linked to the main mechanisms

involving the mixing. Finally, we discuss the consistency between spatial statistics computed

by the DNS (seeing the puff as evolving in a Lagrangian framework moving with the mean

flow) and the temporal statistics based on one-point wind-tunnel measurements (Section IV).

II. NUMERICAL SIMULATION

In order to investigate the dispersion and mixing of a passive scalar in HIT, the Navier-

Stokes equations for an incompressible fluid together with the convection-diffusion equation

for the concentration are integrated by means of the Geophysical High-Order Suite for Tur-

bulence (GHOST) code [15], a highly parallelised (hybrid MPI-OpenMP) pseudo-spectral

framework with second order explicit Runge-Kutta time stepping. The Navier-Stokes equa-

tions have been integrated on a cubic grid of 5123 points (corresponding to a box whose linear

size in adimensional units is L0 = 2π), with periodic boundary conditions. A stochastic forc-

ing F was used to inject energy into the velocity field to achieve and maintain a statistically

stationary state. The forcing is random in time and isotropic in Fourier space, with the

energy being injected at large scales in a spherical shell of wavenumbers 2 ≤ |ki| ≤ 3. A puff

of passive scalar modelled with a Gaussian concentration peaked in the centre of the box is

injected at an arbitrary time in the statistically stationary state of the simulation and is let

to diffuse. The full system of equations implemented is reported here:
∇ · u = 0,

∂tu + (u · ∇)u = −∇p+ F +
1

Re
∇2u,

∂tc+ u · ∇c =
1

PrRe
∇2c,

(1)

u being the velocity field, p the pressure, and c the passive scalar concentration. The DNS

governing parameters are the Prandtl (Pr) and the Reynolds (Re) numbers. The former,

defined as Pr ≡ ν/κ, is set equal to 1 (being ν and κ the kinematic viscosity and the

diffusivity, respectively). The latter is instead Re ≡ UL
ν

, where U =
√

3σ2
u (being σ2

u = σ2
v =

σ2
w ∼ 1 the variances of the 3 velocity components averaged over the computational domain)

and L = 2π
ki∼2.5

are respectively the characteristic velocity and the integral length scale of

the background fluid (the latter being estimated as the scale at which energy is injected
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FIG. 2. Visualisation of different instants of the DNS solutions and corresponding concentration

PDFs: at the top (t0), the initial condition can be observed; at the bottom right (t4), the passive

scalar homogenises itself within the box.

into the system). Based on these quantities we can estimate the turnover time t∗ ≡ L/U ,

the characteristic time scale of the simulation, whose total extension is about 10 t∗. The

simulations have been performed at two Reynolds numbers, namely 3000 and 3500. For

Re = 3000 the Kolmogorov length scale is η = (ν3/ε)
1/4

= 8.15 × 10−3 (ε is the turbulent

kinetic energy dissipation rate), which is three order of magnitude lower than the integral

length scale (η/L = 3.24 × 10−3). Note that the (periodic) boundary conditions induce

the concentration averaged over the domain (c) to be constant throughout the simulation

duration.

III. RESULTS

The concentration statistics provided by the DNS results allow the temporal evolution

of the mixing process to be investigated. To that purpose, we focus on two main statistical
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FIG. 3. Behaviour of the concentration fluctuations intensity ic over time: four instants t1, t2, t3,

and t4 are highlighted.

indicators: the shape of the PDF of the spatial distribution of the concentration and the

(volume averaged) concentration fluctuations intensity ic (defined as the ratio between the

standard deviation of the concentration σc and c). The first feature that is worth noting is

the strict connection between the temporal evolution of these two indicators.

Notably, once excluded the early transient of the simulation (lasting less than one turnover

time t∗) during which the system progressively “looses memory” of the initial concentration

distribution (Figure 2, t0), we can identify two main stages of the process, by linking the

shape of the PDFs (Figure 2) to ic (Figure 3). To allow the reader to suitably capture this

connection between the concentration PDF and ic, we provided a movie as Supplemental

Material [16]. During the first phase, starting at the inflection point of ic, the scalar is

progressively transported throughout the domain, as shown in Figure 2 at t1. This stage

presents specific features: i) ic is larger than 1, ii) the concentration PDF is characterised by

a large number of zero-values (mostly distributed at the edge of the evolving puff), and iii)

it approximates an exponential-like shape. The second phase begins when the domain gets

completely filled by the passive scalar (Figure 2 at t2) and ic = 1 (Figure 3), and it is mostly

characterised by the diffusion. During this stage the scalar field progressively homogenises

(as shown in Figure 2 at t3) and the concentration PDFs assume a lognormal-like shape.

The increasing scalar homogenisation (Figure 2 at t4) induces a further transition of the
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PDFs towards a clipped Gaussian [13].

The results of the simulations performed with two different Reynolds number (i.e., Re =

3000 and Re = 3500) did not show any relevant difference one to the other. In what follows

we will therefore presents results for the case Re = 3000. ncentration statistics recover those

obtained with the smaller blob as t/t∗ > 2.

A. Concentration PDF

In order to identify the statistical distribution showing the best agreement with the

presented numerical results, we tested different models for the scalar PDF. To do this, we

therefore computed the PDF of the concentration for each time step. The agreement between

the PDFs obtained from the DNS and the analytical model distributions is estimated here

using the Kullback-Leibler divergence DKL [17], defined as:

DKL(p ‖ q) ≡ −
∑

p log2

(
p

q

)
, (2)

where p is the PDF from the DNS, q is the distribution assumed as model. According to

this definition, the best agreement is observed when p/q → 1, i.e. for DKL → 0.

We tested three different distributions which have been proposed over the years as suitable

models for the passive scalar concentration PDF within a turbulent flow [2–9]. These are:

� the gamma distribution:

p(χ|λ, θ) =
1

Γ(λ)θ

(χ
θ

)λ−1

exp
(
−χ
θ

)
, (3)

where χ is the sample space variable for the concentration, Γ(·) is the Gamma special

function [18], and λ = i−2
c and θ = σ2

c/c are the shape and scale parameters, respec-

tively. It is worth noting that normalising the distribution as χ′ ≡ χ/c allows us to

reduce the problem to only the shape parameter λ [2, 19, 20];

� the lognormal distribution:

p(χ|µl, σl) =
1

χσl
√

2π
exp

[
−(ln χ− µl)2

2σ2
l

]
, (4)

for χ > 0 and with the parameters:

µl = ln

(
c2/
√
σ2
c + c2

)
,

σl =
√

ln (σ2
c/c

2 + 1);

(5)
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FIG. 4. Kullback-Leibler divergence of the PDF from the DNS results (semi-logarithmic plot):

comparison between the gamma, the lognormal, and the Weibull 2p distributions. The two vertical

dashed lines indicate different phases of the mixing processes, as defined in Section III. The KL

divergence of the gamma distribution presents a good overall behaviour and it is the most suitable

choice for modelling the scalar-field PDF for all the time steps.

� the Weibull 2p distribution:

p(χ|aw, bw) =
bw
aw

(
χ

aw

)bw−1

exp

[
−
(
χ

aw

)bw]
, (6)

being aw and bw the scale and the shape parameters, respectively, set as:

i2c + 1−
Γ
(

1 + 2
bw

)
[
Γ
(

1 + 1
bw

)]2 = 0,

aw =
c

Γ
(

1 + 1
bw

) . (7)

We point out that the computation of bw requires to solve the non-linear Eq. 7. We

mention that for practical application the shape parameters can be conveniently ap-

proximated as bw ≈ (1/ic)
1.086 [e.g., 21].

As shown in Figure 4, close to t0 the lognormal distribution is not appropriate since it is

not able to reproduce the effects of the meandering process in the near-field, as observed close

to the scalar source in wind-tunnel experiments. Conversely, it provides accurate estimates
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of the scalar PDF after the homogenisation process induced by the relative dispersion. The

Weibull 2p distribution performs suitable approximations of the concentration PDF in the

near-field, whereas it fails to model the distribution of the scalar at large values of t/t∗.

The gamma distribution shows a more accurate overall behaviour providing a good agree-

ment with the numerical solutions both in the near and in the far field. Such behaviour

suggests that the gamma PDF is a robust model being able to replicate the main features

of the mixing process over the entire DNS.

B. Mixing

As a second step, we discuss here the implications of a mixing process due to the in-

teraction of pollutant particles, assuming, based on the results presented in the previous

paragraph, that the PDF of the concentration within our reference volume is a gamma dis-

tribution. In order to analyse the mixing process, we focus on the fluctuations intensity

ic, that progressively goes to zero. Note that, because of the imposed boundary conditions

(Section II), the decay of ic is entirely due to the reduction of the standard deviation σc,

since the spatially averaged concentration c(t) remains unaltered.

We represent the passive-scalar puff as constituted of an ensemble of “marked” fluid

particles, so that the mixing process is modelled as a “discrete” phenomenon resulting

by the interaction of pairs of marked fluid particles. This is a classical pattern in PDF

methods for the prediction of concentration fluctuations (referred as micromixing models)

implemented in Lagrangian one-particle dispersion models [9, 22]. In this kind of models,

each fluid particle exchanges mass with the surrounding particles and, as a consequence,

the concentration statistics defined by an ensemble of neighbouring particles evolve in time.

Then, following this analogy, the concentrations of the fluid particles can be considered as

single realisations of the same random variable whose statistical behaviour is modelled by

a distribution that we assume to be a gamma PDF. The two fluid particles, denoted as ‘1’

and ‘2’, exchange mass each other, so that the temporal evolution of their concentrations

develops as a system of two ordinary differential equations:
dc1

dt
= −c1 − c2

τm
,

dc2

dt
= −c2 − c1

τm
,

(8)
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where τm is the characteristic time scale of the mixing process. The solution of the system

above in the time interval [t′, t′ + ∆t] is:c1(t′ + ∆t) = (1− α) c1(t′) + α c2(t′),

c2(t′ + ∆t) = α c1(t′) + (1− α) c2(t′),
(9)

where:

α ≡ 1

2

[
1− exp

(
−2

∆t

τm

)]
. (10)

Generalising this approach to any pair of fluid particles i and j within the domain, we

conclude that predicting the effect of mixing is equivalent to estimate the PDF of a new

random variable ck given by a weighted sum of ci and cj:

ck(t
′ + ∆t) = (1− α)ci(t

′) + αcj(t
′). (11)

The PDF of ck is then given by the convolution of the PDFs for ci and cj. Since ci(t
′) and

cj(t
′) are both distributed according to the same gamma PDF p(λ, θ), we have that:(1− α) ci(t

′) follows pi(λ, (1− α)θ),

α cj(t
′) follows pj(λ, αθ).

(12)

As far as we are aware, simple expressions for the convolution of two gamma distributions

having different scale parameters (as in Eq. 12) are not known. Moschopoulos [23] and Sim

[24] provided the exact convolution as a sum of infinite terms, and Mathai [25] and Akkouchi

[26] proposed some complicated formulas. An alternative approach was investigated in

Stewart et al. [27] who showed that the sum of gamma PDFs is suitably approximated by a

gamma distribution if the scale parameters differ no more than a factor of 10 and the shape

parameters are not below 0.1. In our case these conditions are generally satisfied. The first

condition is fulfilled for ∆t ≥ 0.2 τm, and the second one for ic . 3.2. Therefore, the PDF

pk(λk, θk) of ck (Eq. 11) is suitably approximated as a gamma distribution [27] and its scale

and shape parameters can be determined by computing mean and variance as follows:

ck = λkθk = λ(1− α)θ + λαθ = λθ,

σ2
c,k = λkθ

2
k = λ(1− α)2θ2 + λα2θ2 = λθ2[(1− α)2 + α2],

θk =
σ2
c,k

ck
= θ

[
α2 + (1− α)2

]
,

λk =
c2
k

σ2
c,k

=
λ

α2 + (1− α)2
.

(13)
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As a consequence of the mixing process, the first two moments of the concentration PDF

evolve as (dropping the indexes for clarity):

c(t′ + ∆t) = c(t′),

σ2
c (t
′ + ∆t) = βσ2

c (t
′),

(14)

where:

β ≡ α2 + (1− α)2 =
1

2

[
1 + exp

(
−4

∆t

τm

)]
. (15)

Performing a limited development of this process for short intervals and neglecting the

higher-order terms, we obtain the evolution of the characteristics of the distribution between

t′ and t′ + ∆t:

c(t′ + ∆t) = c(t′)

σ2
c (t
′ + ∆t) =

(
1− 2

∆t

τm

)
σ2
c (t
′).

(16)

Since Eq. 16 represents the incremental ratio of σc, we can write the time derivative of the

concentration variance as:

lim
∆t→0

σ2
c (t
′ + ∆t)− σ2

c (t
′)

∆t
=
dσ2

c

dt
= − 2

τm
σ2
c . (17)

which essentially expresses the dissipation rate of the scalar variance εc ≡ −2ν 〈∂c′/∂xi〉2.

The above expression can be integrated in order to obtain the temporal evolution of σ2
c :

σ2
c (t) = σ2

c (0) exp

(
−2

t

τm

)
, (18)

and therefore:

σc(t) = σc(0) exp

(
− t

τm

)
. (19)

Since we have c(t) = c(0), we finally obtain that the temporal decay of ic evolves as:

ic(t) = ic(0) exp

(
− t

τm

)
, (20)

showing that the assumption of the gamma distribution for the concentration PDF implies

that the fluctuations intensity is given by a negative exponential, whose decay is governed

by a typical mixing time scale.

The mixing time scale τm can be estimated from our numerical experiments by locally

fitting Eq. 20 (i.e., over short intervals) with the DNS results for ic, having τm as free

parameter (evolving in time). Once excluded the initial transient (t/t∗ < 1), this time scale
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FIG. 5. Mixing time scale τm vs t/t∗. In the far field τm reaches the asymptotic value of k/ε.

exhibits a smoothly growing trend in the first phase and oscillates around a constant value

in the second phase. At later times, in the second phase of the simulation τm attains an

asymptotic value equal to the dissipative time scale τ ≡ k/ε (where k ≡ 3
2
σ2
u is the turbulent

kinetic energy and ε ≡ 2ν 〈sijsij〉 is its dissipation rate) [28, 29], as pointed out in Figure 5.

We highlight that the numerical results show that for large values of t/t∗ the ratio τ/τm ≈ 1,

which is in agreement with the findings of other authors that reported values in the range

0.3–1.56 for different configurations [22, 30–33].

IV. ANALOGIES WITH WIND-TUNNEL RESULTS AND CROSS-VALIDATION

OF THE GAMMA MODEL

In Section III we have shown the temporal evolution of the normalised PDF of the passive

scalar concentration and pointed out its link with the value of ic: the shape of the PDF

exhibits an exponential-like form as far as ic > 1, it abruptly changes shape for ic = 1

and evolves as a Gaussian-like distribution as ic → 0. This same behaviour, observed here

adopting statistics over a control fluid volume for each time step, was observed in wind-

tunnel experiments when analysing one-point statistics obtained from concentration time

series measured at a fixed location downwind a continuous scalar release in a turbulent

boundary layer, as described in [13]. Indeed, wind-tunnel experiments have shown that
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FIG. 6. Comparison between the normalised PDFs of the passive scalar concentration from the

DNS, the wind-tunnel measurements by Nironi et al. [13], and the gamma distribution of Eq. 3 at

decreasing values of ic: (a) ic = 2.25 at t1, (b) ic = 1 at t2, (c) ic = 0.53 at t3, (d) ic = 0.33 at t4.

the statistics of the concentration of a continuous scalar plume in a boundary layer (i.e.,

a non-isotropic and non-homogeneous velocity field) can be fully described by a gamma

distribution as reported in Eq. 3.

In Figure 6 we show a comparison between the present DNS results, the one-point wind-

tunnel statistics performed by Nironi et al. [13] and the gamma distribution (Eq. 3) for the

same values of ic (being t1, t2, t3, t4 the same as in Figure 3). Here, we can appreciate

how the DNS solutions and the wind-tunnel measurements exhibit a similar behaviour and

that the gamma distribution can be assumed as a suitable model for both numerical and

experimental PDFs. To explain this evidence from a phenomenological stand point, we can

rely on the depiction in Figure 7, proposing the analogy between the present DNS simulation

of an unsteady decaying puff and the wind-tunnel results of a steady release of a passive

scalar in a turbulent wall-bounded flow.
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FIG. 7. Top panel: sketch of a plume as made of multiple puffs, Eulerian approach. Bottom panel:

numerical point of view, Lagrangian approach. We observe the relationship between space and

time in the two different approaches, as well as the regions of meandering and relative dispersion.

A peculiar aspect of the dispersion of localised atmospheric releases is the appearance

of a meandering motion of the plume [12], due to the action of turbulent eddies larger

than the plume size. The meandering highly affects the dispersion process in the near field

of the source and is gradually attenuated moving away from it, as the size of the plume

increases under the action of the relative dispersion (due to eddies smaller than the puff

size). As the relative dispersion finally induces the plume size to exceed the size of the

larger scale structure of the flow, the plume meandering is suppressed. At first sight, we can

consider that the transition between these two regimes occurs as ic drops below 1 and the

intermittency is suppressed in the core of the plume [13].

In the puff, at each time step, every point of the simulation domain can be considered

as a possible realisation of the plume along the source axis at a given distance from the

source, in the equivalent reference wind-tunnel experiment. In other words, we can consider

that the DNS results mimic the evolution of the scalar puffs released in the wind tunnel

as they get translated horizontally by the mean flow while undergoing turbulent advection.
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Invoking the ergodicity of both numerical and experimental flows, we could therefore com-

pare the spatial statistics computed on the simulation output (Figure 7 bottom) with the

single-point temporal statistics computed in the wind tunnel (Figure 7 top). Thus, taking

a specific instant of the DNS, the spatial statistics of the concentration over the entire sim-

ulation box would match the temporal statistics of the concentration signal measured at

the corresponding position (always on the plume centreline, i.e. at the source height) in

the wind-tunnel experiment. In this framework, the near-source meandering region in the

experiments (Figure 7 top panel), in which one-point statistics exhibit high intermittency,

corresponds to the first phase of the DNS simulation (Figure 7 bottom panel, t1), in which

the scalar has not filled the domain yet and the spatial concentration statistics are affected

by the presence of zero-values of the concentration in part of it. Similarly, the far-field rel-

ative dispersion region, in which the intermittency in the one-point statistics is suppressed,

corresponds to the second phase of our DNS results (Figure 7 bottom panel, t3 and t4), in

which the scalar has filled the box and the mixing acts towards a complete homogenisation

of the concentration.

In the description of the dispersion process made so far, we adopted a jargon familiar to

researchers working in the field of the atmospheric pollutant dispersion. Other researcher

working reactive and non-reactive scalar mixing in turbulent flows adopt a different terminol-

ogy to identify different regimes of the time evolution of the tracer distribution. According

to this terminology, the second phase of our numerical simulations shows a behaviour sim-

ilar to that of the “confined mixture” regime in which, following Duplat and Villermaux

[7], a self-convolution mechanism leads to a sequence of gamma distributions until complete

mixing is reached. The dispersion in the near-source region where the plume meanders in an

unbounded environment has been instead referred as “ever dispersion mixture” by Duplat

et al. [34]. The near-source region investigated by Duplat et al. [34] is however more similar

to the initial transient of our simulations, in which the concentration PDFs are not consis-

tent with the gamma model (see Figure 2 between t0 and t1), rather than what we referred

to as the first-phase, where gamma model actually holds. Similar considerations about the

lack of accuracy of the gamma distribution as a model for the concentration PDFs very close

to the release point were also presented by Sawford and Stapountzis [35] and Ardeshiri et al.

[14].
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V. CONCLUSIONS

We employed direct numerical simulations to investigate the passive-scalar dispersion and

the related mixing processes within turbulent flows in a synergistic approach that involved

the use of wind-tunnel measurements for the cross-validation (numerical and experimental)

of the gamma model for the scalar distribution concentration. In particular, we simulated a

single puff in homogeneous isotropic turbulence in a cubic domain with a regular grid and

periodic boundary conditions.

Focus of our work is the analysis of the evolution in time of the spatial statistics of the

scalar concentration within a fluid volume as seen in a reference frame following the mean

flow. As first step, we tested the capability of different model distributions (the gamma,

the lognormal, and the Weibull 2p) in reproducing the spatial PDF of the concentration

showing that the gamma distribution is the most robust and convenient model to describe

the whole temporal evolution of the dispersion process. Assuming the gamma distribution as

the PDF describing the scalar concentration within a given volume, we developed a simple

probabilistic mixing model, that allows us to link the decay rate of the intensity of the

concentration fluctuations ic to a characteristic mixing time scale.

Finally, drawing an analogy between the present DNS results and previous experimental

data allows us to explain the similarity observed between the spatial statistics in the system

considered here and the one-point statistics registered in wind-tunnel experiments. Notably,

the first phase of the simulations provides a PDF that can be observed in wind-tunnel

experiments by registering the concentration signal close to the source, when the meandering

of the plume is intense. Instead, in the second phase of the simulation, when the scalar has

filled the whole domain, the concentration PDF corresponds to experimental PDF registered

far from the source, where the plume meandering is suppressed and the plume spread is

governed by the relative dispersion.

A comparison between DNS and wind-tunnel measurements of stratified turbulence will

be the subject of a future investigation along the lines of the present work. Indeed, unlike

the HIT case, in presence of stratification, sporadic extreme events develop in the vertical

component of the velocity and in the temperature affecting mixing and transport properties

of turbulent flows as shown in previous works [36–39].
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