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Abstract

Performing online monitoring for short horizon data is a challenging, though cost

effective benefit. Self-starting methods attempt to address this issue adopting a hybrid

scheme that executes calibration and monitoring simultaneously. In this work, we pro-

pose a Bayesian alternative that will utilize prior information and possible historical

data (via power priors), offering a head-start in online monitoring, putting emphasis

on outlier detection. For cases of complete prior ignorance, the objective Bayesian

version will be provided. Charting will be based on the predictive distribution and the

methodological framework will be derived in a general way, to facilitate discrete and

continuous data from any distribution that belongs to the regular exponential family

(with Normal, Poisson and Binomial being the most representative). Being in the

Bayesian arena, we will be able to not only perform process monitoring, but also draw

online inference regarding the unknown process parameter(s). An extended simulation

study will evaluate the proposed methodology against frequentist based competitors

and it will cover topics regarding prior sensitivity and model misspecification robust-

ness. A continuous and a discrete real data set will illustrate its use in practice.

Technical details, algorithms, guidelines on prior elicitation and R-codes are provided

in appendices and supplementary material. Short production runs and online phase I

monitoring are among the best candidates to benefit from the developed methodology.

Key Words: Statistical Process Control and Monitoring, Self-Starting, Online Phase

I Monitoring, Outlier Detection, Regular Exponential Family.
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1 Introduction

In Statistical Process Control/Monitoring (SPC/M) of either discrete or continuous uni-

variate data, various frequentist based parametric methods have been developed, with the

Shewhart type control charts, CUSUM and EWMA being the most dominant representatives.

All these methods utilize the information coming from the likelihood to draw control limits,

aiming to detect when the process moves from the in control (IC) state, where it runs under

random natural variation, to the out of control (OOC) state, where exogenous to the process

variation is present (Deming, 1986). Typically, although not necessarily, in SPC/M the OOC

state reflects either transient shifts (of large size) or persistent shifts (of medium/small size)

that occurs in the unknown parameter(s), with detection being of main interest. The She-

whart type charts are employed to detect large transient shifts, while CUSUM and EWMA

are more effective in identifying small persistent shifts. All these methods require knowledge

of the IC process parameter(s), a matter handled in practice by the employment of an offline

calibration (phase I) period, prior to the online monitoring of the process (phase II). Phase

I estimation requires a relatively long sequence of independent and identically distributed

(iid) data points from the IC distribution. Once the phase I data collection completes, the

unknown parameter(s) estimation and the chart construction begins. Initially, all the phase

I data are analyzed retrospectively and in case of alarms, observations might be removed

and control limits might be revised. Next, once the control chart is finalized, online mon-

itoring starts for phase II data, where we test whether the phase II data conform to the

control limits established during phase I. It is well established and documented that phase

I plays a crucial role, as undetected phase I issues (like masked outlying observations), will

contaminate the parameter(s) estimates and the resulting control limits, jeopardizing the

phase II performance. Jensen et al. (2006) provided a nice review on the effect of estimation

error, while Zhang et al. (2013, 2014) and Lee et al. (2013) showed that an excessively large

amount of IC phase I data is required for a similar performance as if the IC parameter(s) were

known. More recently, Dasdemir et al. (2016) evaluated the phase I analysis and Atalay et

al. (2019) provided guidelines for automating phase I considering the phase II performance.

The phase I/II setup is known to have certain limitations. For example, it is

not applicable in short runs, as the data size is too small to allow a phase I procedure (an
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industrial example of this type is presented in Section 6). Furthermore, it cannot be employed

when the process under study requires online and not retrospective monitoring during phase

I, as it happens in health type variables (such as the medical laboratory monitoring case

that we present in Section 6). Jones - Farmer et al. (2014), presented a detailed overview of

methods that could be employed for short runs, with the self-starting methods probably being

the ones most often applied in practice. As the name declares, such methods do not require

a phase I/II separation and they are able to be up and running soon after the process starts.

The idea behind the frequentist-based self-starting methods is to perform calibration and

testing simultaneously. Focusing in outlier detection, Quesenberry (1991a,b,c) introduced

the self-starting versions of standard Shewhart type control charts, known as Q-charts. On

the other hand, when the aim is in detecting small persistent shifts, self-starting CUSUMs

and EWMA were suggested by Hawkins and Olwell (1998) and Qiu (2014) respectively. In

more recent studies, a bootstrap based self-starting EWMA monitoring scheme for Poisson

count data was proposed by Shen et al. (2016). Within the frequentist-based approach,

non-parametric methods, like the recursive segmentation and permutation (RS/P) (Capizzi

and Masarotto, 2013) or the sequential non-parametric tests (Madrid Padilla et al., 2019),

have been also suggested to handle univariate data. Non-parametric methods are capable to

identify small persistent shifts, while for transient shifts they require subgrouped data and/or

a relative long sequence of observations. From all the aforementioned start-up frequentist

based methods, only the Q-charts are built to identify transient shifts of large size (outliers)

in short individual data, while the rest are more powerful in detecting small persistent shifts,

like step changes.

The Bayesian approach to SPC/M is rather restricted. Menzefricke (2002) sug-

gested the use of the predictive distribution for constructing a control chart, which was next

compared to Shewhart type charts for Normal and Binomial data. Kumar and Chakraborti

(2017) along with Ali (2020), presented Bayesian versions of Shewhart type charts for time

between events monitoring, while Kadoishi and Kawamura (2020) suggested a hierarchical

Bayesian modeling when we have data from a time series model IMA(1,1). Apley (2012),

introduced the posterior distribution plots that aim to monitor the process mean during

phase II. Regarding phase I analysis, Woodward and Naylor (1993) used Bayesian modeling

to handle short runs of Normal data, while Tsiamyrtzis and Hawkins (2005, 2010, 2019)
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provided a Bayesian change point approach using a mixture of distributions in modeling

Normal or Poisson phase I data.

In this work, we propose a general Bayesian method that intends to provide ef-

ficient online monitoring of a process for short runs, without the requirement of a phase

I/II separation, focusing on outlier detection. As a self-starting Bayesian method, it will

utilize the available prior information (or adopt an objective Bayesian approach in scenarios

of complete prior ignorance), providing a sequentially updated scheme that will be based

on the predictive distribution. Precisely, we will introduce the Predictive Control Chart

(PCC), which will be able to perform online monitoring, directly after the first observable

becomes available. PCC will be formed as a sequentially updated region, against which

every incoming data will be plotted, providing either conformance of the data with what has

been foreseen from the predictive distribution or non-conformance, raising an alarm. PCC

will be introduced in a general form, allowing to handle data of any (discrete or continu-

ous) distribution, as long as this distribution is a member of the regular exponential family.

The vast majority of the distributions used in SPC/M, with Normal, Poisson and Binomial

being the most indicative cases, are members of the regular exponential family. The core

idea of PCC, i.e. the sequential testing on the updated predictive distribution, can be ex-

tended in other distributions. However, the regular exponential family guarantees a general

closed-form predictive distribution.

In Section 2, we provide the PCC derivation, along with the necessary formulas

for several discrete and continuous univariate distributions that belong to the regular ex-

ponential family. We also present the PCC options that allow the use of possibly available

historical data, via a power prior mechanism, and the possibility of employing a Fast Ini-

tial Response (FIR) PCC, which enhances its performance during the early stages of the

process. Next, in Section 3 we provide the PCC based decision making, where apart from

being able to control and monitor the process, we are capable of deriving online inference

(in terms of point/interval estimates or hypothesis testing) for the unknown parameter(s)

and perform forecasting. In Section 4, we present an extended simulation study, where we

evaluate the PCC performance against its frequentist-based alternative, i.e. Q-chart (Que-

senberry, 1991a,b,c) and we additionally examine issues regarding prior sensitivity. The
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PCC robustness when we have dependent data or distribution misspecifications is examined

in Section 5. The PCC application to real data follows in Section 6, where a continuous

(Normal) and a discrete (Poisson) real-data case from a medical lab and an industrial set-

ting respectively, are being explored. Finally, Section 7 provides the concluding remarks.

Technical details, algorithms and guidelines regarding choices of prior distributions are pro-

vided as appendices along with R-codes as online supplementary material, and via GitHub

at https://github.com/BayesianSPCM/BSPCM.

2 Predictive Control Chart

Being in the Bayesian framework, our goal is to utilize the available prior information

and provide a control chart with enhanced performance compared to existing self-starting

frequentist-based methods. The proposed Predictive Control Chart (PCC) will be formed

by the predictive distribution and it will provide a sequentially updated region against which

every new observable will be plotted. Observations falling outside the predictive region will

ring an alarm triggering further investigation and potentially some form of corrective action.

Initially, we need to derive the predictive distribution (Geisser, 1993), which de-

pends on the likelihood of the observed univariate data. From a process under study, we

sequentially obtain the data X = (x1, . . . , xn), which we consider to be a random sample

from the distribution Xj|θ, where Xj, j = 1, . . . , n, is univariate, while the unknown pa-

rameter θ can be either univariate or multivariate, e.g. Xj|θ ∼ Bin(Nj, θ), Xj|θ ∼ P (θ),

Xj|θ ∼ N(θ1, θ
2
2) etc. Our main interest is in detecting in an online fashion and without

employing a phase I exercise, the presence of large transient shifts on the unknown parame-

ter(s) θ. We assume that the likelihood, is a member of the univariate k-parameter regular

exponential family (denoted from this point on as k-PREF), and by following Bernardo and

Smith (2000), it can be written as:

f(X|θ) =

[
n∏
j=1

g(xj)

]
[c(θ)]n exp

{
k∑
i=1

ηi(θ)
n∑
j=1

hi(xj)

}
, (1)

where g(xj) ≥ 0, h1(xj), . . . , hk(xj) are real-valued functions of the univariate observation
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xj that do not depend on θ, while c(θ) ≥ 0 and η1(θ), . . . , ηk(θ) are real-valued functions of

the unknown parameter(s) θ that cannot depend on X. PCC will be developed for any like-

lihood that belongs to the k-PREF, providing a general platform where binary (Binomial),

count (Poisson, Negative Binomial) or various continuous (Normal, Gamma, Lognormal etc.)

univariate data can be analyzed using the same methodology.

The prior distribution is of key importance in the Bayesian approach. Since in

practice, historical data (of the same or a similar process, not to be confused with phase

I data) are typically available, we recommend the use of power priors (Ibrahim and Chen,

2000), which offer a framework to incorporate past data (when available) in the mechanism

of forming the prior distribution. The power prior is derived by:

π (θ|Y , α0, τ ) ∝ f (Y |θ)α0 π0 (θ|τ ) , (2)

where Y = (y1, . . . , yn0) refers to a vector of historical univariate data (under the same dis-

tribution law f(·|θ) that the current data obey), 0 ≤ α0 ≤ 1 is a scalar parameter, π0 (θ|τ )

is the initial prior for the unknown parameter(s) and τ is the vector of the initial prior

hyperparameters. The (fixed) parameter, α0, controls the power prior’s tail heaviness and

consequently the influence of the historical data on the posterior distribution. Essentially,

α0 represents the probability of the historical data being compatible with the current obser-

vations and at the extremes α0 = 0 or 1, the historical data will be ignored or taken fully

into account (just as the current data) respectively. A typical value for α0 is 1/n0, which

conveys the weight of a single observation to the prior information. In general, α0 should be

determined by the relevance of past with current data and how likely is the past data to pro-

vide reliable estimates for the unknown parameters (depending on the size n0). For relevant

historical data but with small (large) n0 it is recommended to use α0 < 1/n0 (α0 > 1/n0). It

should be noted that the power priors are robust in conflicts of historical and current data,

as they use only the sufficient statistic of the past data.

Generalizing the power prior concept, we could either assume α0 is unknown (mod-

eled by a prior distribution) or we could allow the use of multiple historical data: if Y and

Z are historical data from different sources weighted by α0 and β0 respectively, then the
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power prior is proportional to:

π (θ|Y ,Z, α0, β0, τ ) ∝ f (Y |θ)α0 f (Z|θ)β0 π0 (θ|τ ) . (3)

It is worth mentioning that, Ibrahim et al. (2003), proved that the power prior is 100%

efficient in the sense that the ratio of the output to input information is equal to one, with

respect to Zellner’s information rule (see Zellner, 1988).

In a subjective Bayesian manner, π0(·) should reflect all available information re-

garding the unknown parameter(s) before the data become available and its form can be

derived from prior knowledge, expert’s opinion etc. From an objective Bayesian point of

view and under the scenarios of lacking any prior knowledge, one can adopt a weakly infor-

mative or even non-informative initial prior, such as flat (uniform) prior, Jeffreys (Jeffreys,

1961) or reference (Bernardo, 1979, Berger et al., 2009) prior (see also the discussion regard-

ing prior elicitation in Appendix E).

To preserve closed form solutions for all scenarios, when implementing PCC, we

will adopt a conjugate prior for π0 (θ|τ ), which always exists for any likelihood that is a

member of the k-PREF (Bernardo and Smith, 2000) and its form is given by:

π0 (θ|τ ) = [K(τ )]−1 [c(θ)]τ0 exp

{
k∑
i=1

ηi(θ)τi

}
, (4)

where θ ∈ Θ (parameter space) and τ = (τ0, τ1, . . . , τk) is the (k + 1)-dimensional vector of

the initial prior hyperparameters, such that:

K(τ ) =

∫
Θ

[c(θ)]τ0 exp

{
k∑
i=1

ηi(θ)τi

}
dθ <∞. (5)

The conjugate prior, π0 (θ|τ ), is also a member of the exponential family. The choice of the

hyperparameters τ will reflect the prior knowledge, ranging from highly informative to vague

and even non-informative choices. Non-conjugate choices of the initial prior are allowed, at

the cost of not having PCC in closed form but evaluated numerically. A conjugate π0 (θ|τ )
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will lead to a conjugate power prior of the form (see Appendix A):

π (θ|Y , α0, τ ) ∝ π0 (θ|τ + α0tn0(Y )) , (6)

where tn0(Y ) =

(
n0,

n0∑
l=1

h1(yl), . . . ,

n0∑
l=1

hk(yl)

)
is a (k + 1)-dimensional vector, with Y =

(y1, . . . , yn0) referring to the vector of historical univariate data. Theorem 1 provides, in

closed form, the posterior and predictive distributions of any likelihood that belongs to the

k-PREF (proof is given in Appendix A):

Theorem 1 For any likelihood belonging to the k-PREF (1) and an initial conjugate prior

(4) via a power prior (6) mechanism we have:

(i)The posterior distribution of the unknown parameter(s) θ:

p (θ|X,Y , α0, τ ) = π0 (θ|τ + α0tn0(Y ) + tn(X)) , (7)

where tn(X) =

(
n,

n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj)

)
is a (k + 1)-dimensional vector, with X =

(x1, . . . , xn) being the observed univariate data.

(ii)The predictive distribution of the single future univariate observable Xn+1:

f (Xn+1|X,Y , α0, τ ) =
K (τ + α0tn0(Y ) + tn(X) + t1(Xn+1))

K (τ + α0tn0(Y ) + tn(X))
g(Xn+1), (8)

where t1(Xn+1) = (1, h1(Xn+1), . . . , hk(Xn+1)) is a (k + 1)-dimensional vector, function of

the future observable Xn+1.

PCC construction will be based on the predictive distribution and it can start as

soon as n = 2 (except when we have Normal likelihood with both parameters unknown,

α0 = 0 and we use the reference prior, where PCC starts at n = 3). The exact form of the

predictive distribution (under conjugate prior), for various likelihood choices (either discrete

or continuous data), used commonly in SPC/M, can be found in Table 1. To unify notation

in the table, we denote by D = (Y ,X) = (y1, . . . , yn0 , x1, . . . , xn) the vector of historical

and current univariate data, w = (α0, . . . , α0, 1, . . . , 1) the vector of weights corresponding

to each element dj in D and finally we call ND = n0 + n the length of the data vector D.
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The PCC is based on the sequentially updated form of the predictive distribution,

which is used to determine a region (Rn+1), where the future observable (Xn+1) will most

likely be, as long as the process is stable (i.e. no changes occurred). The region Rn+1

will be the 100(1 − α)% Highest Predictive Density (HPrD) region, which is the unique

shortest region, that minimizes the absolute difference with the predetermined coverage. We

will adopt the name HPrD, even for cases in which the predictive distribution is discrete,

where we derive the Highest Predictive Mass (HPrM) region (see Appendix B for the strict

definition of HPrD/M and details in deriving the HPrD region from a continuous or discrete

distribution). PCC will plot the sequentially updated HPrD region versus time, providing

the “in control” region of the next data point and thus give an alarm if a new observable does

not belong to the respective HPrD region. For unimodal predictive distributions, the region

Rn+1 will be an interval for continuous distributions, or a set with consecutive numbers for

the discrete case, while for a multimodal predictive, Rn+1 might be formed as a union of

non-overlapping regions.

2.1 On selecting α

The (predetermined) parameter 0 < α < 1, also known as False Alarm Rate (FAR),

will reflect our tolerance to false alarms and consequently the detection power. The pro-

posed PCC can be viewed as a sequential (multiple) hypothesis testing procedure, where

at each time point n we draw the HPrD region (Rn+1) for the future observable, so that

if no changes occurred in the process (IC state), the probability to raise an alarm is:

P (Xn+1 /∈ Rn+1|IC) = α. We suggest two metrics in selecting α, depending on whether

we know or not in advance the number of data points, N , that PCC will be used for (in

short runs or Phase I studies) and/or whether N is large.

If we have a (known) fixed horizon ofN data points, for which PCC will be employed

and N is not too large (typically up to a few dozens), then we suggest to control the Family

Wise Error Rate (FWER), which expresses the probability of raising at least one false alarm

out of a pre-determined number of N hypothesis tests. This is identical to the concept of

False Alarm Probability (FAP) introduced by Chakraborti et al. (2008) for phase I analysis.
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Among various proposals in controlling FWER, we adopt the Šidák’s correction (Šidák,

1967), which is slightly more powerful than the popular Bonferroni’s correction (Dunn, 1961).

Šidák’s correction assumes independence across tests and is more conservative in the presence

of positive dependence, compared with independent tests. If we define V to be the number

of false alarms observed in a PCC, applied on N observations in total, i.e. n = 1, . . . , N ,

from the IC state of the distribution (0 ≤ V ≤ N − 1, when PCC starts at n=2), then the

Šidák’s correction (assuming independence) will provide:

FWER = P (V ≥ 1) = 1− P (V = 0) = 1− P

(
N⋂
i=2

{Xi ∈ Ri|IC}

)

= 1−
N∏
i=2

P (Xi ∈ Ri|IC) = 1− (1− α)N−1 ⇒ α = 1− (1− FWER)
1

N−1 . (9)

So, once we know N and we set the desirable FWER, we can obtain the parameter

α needed in deriving the HPrD regions, Rn+1. It is evident that as N increases, α decreases

and approaches zero, it leads to an extremely conservative decision scheme, that will reduce

the OOC detection power.

We recommend to use the above approach, as long as α ≥ 10−3, even though this

can be adjusted depending on the type of process we monitor. However, in the cases where N

is either unknown in advance or it is too large, then we suggest to derive α using the metric

of IC Average Run Length (ARL0). Following Montgomery (2009), this corresponds to the

desired average number of data points that we will plot in the PCC before a false alarm

occurs, given that the process is under the IC state. As N increases, the updated posterior

distribution gets more informative (offering consistent estimates of the unknown parameters)

and thus the resulting hypothesis tests will tend to be nearly independent. Then, the value

of the desired (predetermined) ARL0 will be approximately:

ARL0 ≈
1

α
⇒ α ≈ 1

ARL0

. (10)

Based on either (9) or (10), we predetermine the coverage level 100(1− α)% that the HPrD

region (Rn+1) will have.
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2.2 Fast Initial Response (FIR) PCC

One of the most serious issues in self-starting methods, is the weak response to early shifts

(Goedhart et al., 2017, Capizzi and Masarotto, 2019). The Fast Initial Response (FIR)

feature is typically used to improve the performance of the standard charts for early shifts

in a process. Lucas and Crosier (1982) were the first to propose a FIR feature for CUSUM,

while Steiner (1999) introduced the FIR EWMA by narrowing the control limits. In the

latter, the time dependent effect of the FIR adjustment, decreases exponentially with time

and becomes negligible after a few observations. Precisely, Steiner’s adjustment is given by:

FIRadj = 1− (1− f)1+a(t−1) , (11)

where a > 0 is a smoothing parameter, t is the current number of hypotheses tests performed

and 0 < f < 1 represents the proportion of the adjusted limit over the initial test (i.e. t = 1).

As the PCC uses control limits, much like the EWMA, we will adopt Steiner’s

adjustment for a time-varying narrowing of the Rn+1 region in the start of the process.

Despite the head-start the FIR option can provide to PCC, we should make sure that we do

not significantly inflate the false alarms. Thus, the FIR parameters should be selected by

taking into account the false alarm behavior of PCC, which depends on the prior settings,

especially when the volume of available data is small. If an extremely informative prior

(near point mass) is used, then the PCC behavior acts like a typical Shewhart chart, as the

resulting Rn+1 region is not essentially updated by new observations. On the other hand, if

a non-informative prior, like the initial reference prior without historical IC data, is selected,

then the FAR depends only on the (iid) data. As a result for these two cases, the observed

FAR will meet the predetermined standards (even from the very first hypothesis testing)

and therefore we should avoid the use of a FIR adjustment (or otherwise the observed FAR

will be inflated).

However, in the case of a weakly informative prior, the Rn+1 region is quite wide (as

we combine prior and likelihood uncertainty), but at the same time the prior distribution

provides beneficial information for the IC state. Combining these two facts, the first IC

data points are more likely to be plotted within the Rn+1 region. This will result in a
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temporarily smaller (from what is anticipated) FAR, especially for the very early tests at

the start of a process. Thus, we could use a FIR adjustment without a negative effect on the

predetermined expected number of false alarms. We propose to be somewhat conservative

and use f = 0.99, i.e. the adjusted Rn+1 region will be the 99% of the original for the first

test and a = (−3/log10(1− f)− 1) /4, i.e. the adjusted Rn+1 region will be the 99.9% of

the original at the fifth test. We should note that t is the current number of tests, not the

number of observations, as for the first (or the second) observation PCC does not provide a

test.

A flowchart in Figure 1 synopsizes the general PCC scheme with all possible options

of its implementation, while in Appendix C we present it in a form of an algorithm.
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START

Choose the significance level α based on (9) or (10)

Choose the likelihood and the conjugate prior from the Table 1

FIR PCC?Determine f and a in (11) Set f = 1 in (11)

Prior
Information?

Determine the initial
prior hyperparameters τ

Set the initial reference
prior from Table 8

Historical
Data?

Provide the historical data
and determine α0 in (2)

Set α0 = 0

Obtain xn, (n = 1 or 2F)

Derive the predictive Xn+1| (X,Y , α0, τ ), form the
FIRadj · 100(1 − α)% HPrD region (Rn+1) and obtain xn+1

xn+1 ∈ Rn+1?n ← n + 1 ALARM!

Corrective
Action?

END

YES NO

YES NO

YES NO

YES NO

YES

NO

Figure 1: PCC flowchart. A parallelogram corresponds to an input/output information, a
decision is represented by a rhombus and a rectangle denotes an operation after a decision
making. In addition, the rounded rectangles indicate the beginning and end of the process.

FFor the Normal - NIG model using the initial reference prior and α0 = 0 we need
n = 2 to initiate PCC, while for all other cases PCC starts at after x1 becomes available.
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3 PCC based Decision Making

The major role of PCC is to control a process and identify transient large shifts (outliers),

in an online fashion and without a phase I exercise. As such, PCC performs a hypothesis

test as each new data point xn+1 becomes available and raises an alarm when xn+1 /∈ Rn+1,

indicating that the new observable is not in agreement with what is anticipated from the

predictive distribution (that was built from the previous data and the prior distribution). The

endpoints of Rn+1, formed from the predictive distribution, play the role of the control limits

of the chart. The range of these limits reflect the variability of the predictive distribution,

which is known to depend on both the length of the available data and the precision of the

prior distribution. For a weakly informative prior the range will be wider at the start of

the process and as more data become available it will become more narrow and eventually

stabilize, washing out the effect of the prior. Figure 2 provides illustrations of PCC for

data streams of length 30 that come from a continuous (Normal data with both parameters

unknown) and two discrete (Poisson and Binomial) cases, when the process is either IC or

has a large isolated shift at location 15 (OOC scenario).

As can be seen in Figure 2, the limits tend to become more narrow and finally stabilize

when the size of the data increases, forming a more informative posterior distribution of the

unknown parameter(s). The outlying observations in all scenarios are plotted outside the

Rn+1 region, hence raising an alarm. The region Rn+1 is formed online, after the data point

xn becomes available, and so when we get an alarm (i.e. xn+1 /∈ Rn+1), the suggestion is to

stop the process, perform some root cause analysis to identify external sources of variation,

possibly have an intervention and finally restart the PCC (the posterior we had right before

the alarm can act as the new prior, or the previous IC data can be used in the power prior

mechanism). However, if we will not react to an alarm, due to the Bayesian dynamic update

mechanism, the isolated change detected will be absorbed. As a consequence, the posterior

and predictive distribution will have inflated variance leading to wider Rn+1 regions. In the

OOC scenarios in Figure 2 we observe that the Rn+1 regions are wider at time 16 due to the

“no action” policy at the alarm for time 15. This effect is reduced with time but it is still

present until observation 30, where the Rn+1 is wider compared to the respective region of

the IC data.
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Figure 2: The IC and OOC illustration of PCC for Normal, Poisson and Binomial data.

For the IC Normal data Xi| (θ1, θ
2
2)

iid∼ N (θ1 = 0, θ2
2 = 1) and for the OOC case we sample

X15 ∼ N(4, 1). The initial prior was (θ1, θ
2
2) ∼ NIG (µ = 0, λ = 2, a = 1, b = 0.8). For

the IC Poisson data Xi|θ3
iid∼ P (θ3 = 4). For the OOC case X15 ∼ P (10), while θ3 ∼

G (c = 8, d = 2). For the IC Binomial data Xi|θ4
iid∼ Bin (N = 20, θ4 = 0.1). For the OOC

case X15 ∼ Bin(20, 0.368), while θ4 ∼ Beta (a = 0.5, b = 4.5). In all cases, α needed to
derive the 100(1 − α)% HPrD (Rn+1) was selected to satisfy FWER = 0.05 for N = 30
observations.

Apart from controlling a process, PCC can be used for monitoring the unknown

parameter(s). As we showed in Theorem 1, before deriving the predictive distribution at

each time point, we first obtain the posterior distribution for the unknown parameter(s).

Decision theory can be used to provide loss function based optimal point/interval estimates

and/or hypothesis testing for each parameter. For example, using the squared error loss

function, the Bayes rule (optimal point estimate) is known to be the mean of the posterior

distribution (Carlin and Louis, 2009), i.e. we have a (sequentially updated) point estimate

of the unknown process parameter(s). To illustrate this option, in Figure 2, we additionally

plot the posterior mean estimate of θ1 for the Normal and θ3 for the Poisson cases.
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Finally, PCC summarizes the predictive distribution through a region, but other

forecasting options (like point estimates) are straightforward to derive as well using decision

theory.

4 Competing Methods and Sensitivity Analysis

The PCC is developed in a general framework, allowing its use for any likelihood that belongs

to the k-PREF. In traditional SPC/M, significant amount of work has been dedicated for

Normal, Poisson and Binomial data. When the goal is to detect transient large shifts in

a short run process of individual univariate data, without employing a phase I calibration

stage, the Q-charts developed by Quesenberry (1991a,b,c) are probably the most prominent

representative methods for Normal, Binomial and Poisson data respectively. In absence of

phase I parameter estimates, the Q-charts provide a self-starting monitoring method, where

calibration and testing happens simultaneously, aiming to detect process disturbances (OOC

states) in an online fashion.

In this section we will compare the performance of the proposed PCC methodology

against Q-chart for Normal, Poisson and Binomial data, i.e. a Bayesian versus a frequentist

parametric approach. For the latter and precisely in the case of Normal data, Quesenberry

(1991a) presented three versions of Q-chart (we ignore the scenario that both parameters are

known) when either a parameter is known or both unknown, for which we have the following:

Lemma 2 All three versions of Q-Chart for Normal data are special cases of the respective

PCCs, when the initial prior is the reference prior and we do not make use of a power prior

option (i.e. α0 = 0).

Appendix D provides the proof of this lemma, which shows that the Normal Q-charts (in all

three cases) are identical to the respective PCC when neither prior information (i.e. use of

reference prior) nor historical data are available. What happens though when prior informa-

tion and/or historical data do exist? In such scenarios, the posterior distribution will be more

informative, enhancing the predictive distribution, which will boost the PCC performance.

For discrete data (Poisson and Binomial) the Q-charts use the uniform minimum variance
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unbiased (UMVU) estimation of the cumulative distribution function of the process, thus we

lose ability to compare analytically against the respective exact discrete PCC.

In what follows we will perform a simulation study to examine the performance

of Q-charts against PCC when we have N = 30 data points from N (θ1, θ
2
2), P (θ3) or

Bin (20, θ4) distributions. We will design charts to have a FWER = 0.05 at the last ob-

servation N = 30 (using Šidák correction). We will compare the running FWER(k) =

1 − P
(

k⋂
i=2

{Xi ∈ Ri|IC}
)

of Q-charts and PCC at each of the k = 2, . . . , 30 data points,

when we simulate IC sequences from N (θ1 = 0, θ2
2 = 1), P (θ3 = 2) and Bin (20, θ4 = 0.1) re-

spectively (see Keefe et al., 2015 for more details regarding the conditional IC performance of

self-starting control charts). To examine the OOC detection power of Q-charts and PCC we

will use the IC sequences generated and introduce large isolated shifts at one of the locations:

5 (early), 15 (middle) or 25 (late). The size of the shifts that we will consider are:

• Normal mean: δN = {2.5θ2 or 3θ2} = {2.5 or 3}, i.e. OOC states come from N(2.5, 1)

or N(3, 1).

• Poisson mean (or variance): δP = {2.5
√
θ3 or 3

√
θ3} = {2.5

√
2 or 3

√
2}, i.e. OOC

states come from P (2 + 2.5
√

2) = P (5.536) or P (2 + 3
√

2) = P (6.243).

• Binomial probability of success: δB =

{
2.5
√

θ4(1−θ4)
N

or 3
√

θ4(1−θ4)
N

}
=

{
2.5
√

0.1(1−0.1)
20

or 3
√

0.1(1−0.1)
20

}
, i.e. OOC states come from Bin(20, 0.268) or Bin(20, 0.301).

For detection, we will record the cases that a chart provides an alarm at the exact time

that the shift was introduced. More specifically, these cases will be denoted as the OOC

Detection (OOCD), where OOCD(k′) = P

(
{Xk′ /∈ Rk′ |OOC}

k′−1⋂
i=2

{Xi ∈ Ri|IC}
)

, where

k′ = {5, 15, 25}. Both FWER(k)% for IC data (at each time 2, . . . , 30) and OOCD(k′)%

at locations 5, 15 or 25 will be estimated over 100,000 iterations.

PCC will require to define a prior distribution and so within this simulation study

we will take advantage to examine the sensitivity of the PCC performance for various prior

settings. Precisely, for each setup described above, we will make use of two initial priors (ref-

erence and weakly informative) and two values for the α0 parameter (0 or 1/n0) representing
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the absence or presence of n0 historical data Y (we will use n0 = 10 historical data from the

IC likelihood). Therefore, for each scenario we will compare the Q-chart against one of the

four possible versions of PCC (with/without prior knowledge, with/without historical data).

The initial priors π0(·|τ ), which we will employ are (see Figure 3):

• Normal: reference prior π0 (θ1, θ
2
2) ∝ 1/θ2

2 ≡ NIG(0, 0,−1/2, 0) or the weakly informa-

tive NIG(0, 2, 1, 0.8).

• Poisson: reference prior π0 (θ3) ∝ 1/
√
θ3 ≡ G(1/2, 0) or the weakly informative G(4, 2).

• Binomial: reference prior π0 (θ4) ∝ 1/
√
θ4(1− θ4) ≡ Beta(1/2, 1/2) or the weakly

informative Beta(0.5, 4.5).
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Figure 3: The initial reference (i.e. non-informative) and the weakly informative prior
distributions used in the simulation study, along with the IC values (as vertical segments)
for the parameters θ1, θ

2
2, θ3 and θ4 of the simulation study.
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The simulation findings are summarized graphically in Figure 4 and analytically in

Table 2, where we observe that overall PCC outperforms Q-chart. Starting from the false

alarms in the case of Normal data, both methods reach the nominal 5% at time N = 30,

but at all time points k, the FWER(k) of PCC is always smaller. For both discrete cases,

the Q-chart’s FWER(k) becomes unacceptably high, something that is caused from the fact

that the true parameter values are near (even though not too close) to the parameter space

boundary, which in conjunction with the UMVU estimation, inflates drastically the false

alarms (the closer we get to the parameter boundary the worst the performance regarding

false alarms). Finally, the extremely small FWER(k) observed for PCC in the first 5 data

points motivates the use of the FIR-PCC described in Section 2.2.

For the Normal data, the simulations verify Lemma 2, as the Q-chart and the

PCC with reference prior and no historical data have identical performance. Moving to the

detection power, as it is measured by OOCD(k′), both methods improve as the size of the

shift increases (from 2.5 to 3 sd) or the shift delays its appearance (from k′ = 5 to 15 to 25),

just as it was expected. Especially for the shifts at time 5, PCC greatly outperforms Q-charts

thanks to the head-start from the prior and/or the historical data. Focusing at each location

of the shift, we observe that as we move from Q-chart to PCC with reference prior and next

to PCC with weakly informative prior the performance improves (quite significantly for some

scenarios). When relevant historical data are available, through the power prior mechanism,

they further boost the performance. The somewhat competitive performance of Q-chart in

one of the Binomial scenarios should be considered in conjunction with its quite high FWER,

when compared to the one achieved by PCC (see also Table 3, where the FWER of PCCs is

increased to align with the one that Q-chart can achieve in the Poisson and Binomial cases,

offering a straightforward comparison of detection power). In summary, PCC appears more

powerful to the respective Q-charts in detecting isolated shifts in short runs of individual

data.

Focusing on the performance of PCC at location k′ = 5, we observe that in the

Normal scenario we have smaller power compared to the respective setting in Poisson or

Binomial (as we move k′ to higher values, the differences vanish). This is caused from the

fact that in the Normal scenario we have two unknown parameters as opposed to the Poisson
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and Binomial cases where each has only one unknown parameter (a PCC built using four

data points for a setting with two unknown parameters will be a lot more challenging, as

opposed to a setting with only one unknown parameter). A Normal PCC scheme with either

the mean or the variance being known would radically improve the performance reaching

(or even overcoming) the levels achieved in the Poisson and Binomial. The effect of the two

unknown parameters (Normal) versus the single unknown parameter (Poisson and Binomial)

is responsible in the performance of PCC1 to PCC4 in detecting outliers at k′ = 25. With

one unknown parameter, the information collected from the 24 in control data points has

significantly reduced the posterior (and predictive) uncertainty, shrinking the effect of the

prior and providing a near uniform performance. For the Normal case though the posterior

(and predictive) uncertainty at k′ = 25 remains non-negligible, allowing the prior setting to

play some role and differentiate the performance across the four versions of PCCs (in general

the more the data the higher the shrinkage of the prior’s effect).

Regarding the prior sensitivity and its effect on the PCC performance (emphasizing

in Normal, Poisson and Binomial data), a more thorough discussion along with certain

guidelines on prior elicitation can be found in Appendix E. Wrapping up this section, we

should note that PCC was shown to be more powerful in detecting large isolated shifts

compared to Q-chart. The relative performance of Q-chart to PCC remains the same when

we use medium or small shifts, with detection power dropping as the size of the isolated shift

decreases.
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Jump k′

Q-chart PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%) (FWER%)

N
o
r
m

a
l

0σ (5.049) (5.049) (4.347) (4.776) (4.932)

5 1.901 1.901 1.492 4.205 6.271

2.5σ 15 12.791 12.791 14.249 17.433 18.407

25 17.025 17.025 17.691 20.005 20.371

5 2.873 2.873 2.816 9.024 12.556

3σ 15 22.809 22.809 24.914 30.112 31.426

25 30.095 30.095 31.021 34.410 34.880

P
o
i
s
s
o
n

0
√
λ (18.283) (4.515) (4.192) (4.409) (4.320)

5 12.437 12.696 14.793 16.265 16.928

2.5
√
λ 15 17.220 18.196 18.660 19.052 19.302

25 17.704 19.164 19.180 19.510 19.623

5 18.185 19.185 21.984 24.240 25.204

3
√
λ 15 24.930 26.826 27.434 27.972 28.345

25 25.740 28.153 28.196 28.683 28.823

B
i
n

o
m

i
a
l 0

√
p(1−p)
N

(17.878) (4.387) (3.991) (4.852) (4.381)

5 14.079 15.848 15.540 16.111 17.008

2.5

√
p(1− p)

N
15 20.057 18.845 19.319 20.084 20.067

25 20.284 19.878 20.035 19.839 20.315

5 21.646 24.078 24.098 24.509 26.039

3

√
p(1− p)

N
15 29.469 28.765 29.353 30.207 30.213

25 29.952 30.165 30.389 30.117 30.703

Table 2: The FWER for N = 30 (in parenthesis) and the outlier detection power at k′ =
{5, 15, 25}, of the Q-chart against PCC under a reference prior (PCC1), a reference prior
with historical data (PCC2), a weakly informative prior (PCC3) and a weakly informative
prior with historical data (PCC4). The results refer to Normal, Poisson and Binomial data.
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Jump k′

Q-chart PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%) (FWER%)

P
o
i
s
s
o
n

0
√
λ (18.283) (16.498) (15.646) (16.550) (16.183)

5 18.185 34.295 35.388 38.820 39.221

2.5
√
λ 15 24.930 38.634 39.192 39.899 40.388

25 25.740 37.823 38.215 38.456 38.679

5 12.437 25.410 26.138 28.906 29.157

3
√
λ 15 17.220 28.657 29.108 29.736 30.166

25 17.704 28.181 28.440 28.692 28.869

B
i
n

o
m

i
a
l 0

√
p(1−p)
N

(17.878) (16.606) (15.383) (17.950) (16.682)

5 21.646 38.442 38.898 38.345 40.992

2.5

√
p(1− p)

N
15 29.469 40.947 42.666 42.406 43.004

25 29.952 40.052 41.283 40.589 41.210

5 14.079 28.073 28.037 27.982 29.906

3

√
p(1− p)

N
15 20.057 29.549 30.984 30.920 31.351

25 20.284 29.040 30.053 29.662 30.039

Table 3: The FWER for N = 30 (in parenthesis) and the outlier detection power at k′ =
{5, 15, 25}, of the Q-chart against PCC under a reference prior (PCC1), a reference prior
with historical data (PCC2), a weakly informative prior (PCC3) and a weakly informative
prior with historical data (PCC4). The results refer to Poisson and Binomial data, where
PCC has aligned FWER with the one achieved by Q-chart.

5 Robustness

Apart from checking the prior sensitivity that was done in Section 4, we will also examine

how robust the suggested PCC performance is to possible model type misspecifications. For

the PCC construction we assume that the observed data are iid observations from a specific

likelihood. In this section, we will examine how robust is the PCC performance when:

(a) we violate the assumption of independence (i.e. the data are correlated)
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(b) the assumed likelihood function is invalid (i.e. data are generated from a different

random variable from the one assumed in the PCC construction).

Regarding (a) we will use a Normal (with both parameters unknown) PCC imple-

mentation, but the actual data will be generated as sequentially dependent Normal data via

an autoregressive (AR) model: Xn = c + φXn−1 + εn with c = 0 and εn ∼ N(0, 1). To

examine various degrees of dependence we will use φ = −0.4, 0.4 (moderate) or 0.8 (high).

For the outlying observations we will set c = 2.5 or 3, in order to introduce shifts of size of

2.5σ or 3σ respectively, at one of the locations 5, 15 or 25 (just as we did in Section 4).

For (b) we will examine the following scenarios:

• Use a Normal based PCC (both parameters unknown) while the data are generated

from a Student t7 distribution, i.e. we have heavier tails (t7 is symmetric, with the

same mean but 40% inflated variance compared with the standard Normal).

• Use a Normal based PCC (both parameters unknown) while the data are generated

from aGumbel (µ = −0.5, β = 0.8) distribution, i.e. we have skewed data (Gu (−0.5, 0.8)

has approximately the same mean and variance with the standard Normal, but it has

positive skewness ≈ 1.14).

• Use a Poisson based PCC while the data are generated from a NBin (r = 6, p = 1/4)

distribution, i.e. we have over-dispersed data (NBin (6, 1/4) has the same mean with

P (2), but its variance is ≈ 33% inflated).

The aforementioned likelihoods are illustrated in Figure 5.

For this misspecification scenario, we generate the OOC data from the introduced distribu-

tions in a manner that the isolated large shifts will correspond to either 2.5 or 3 standard

deviations, again at locations 5, 15 or 25 (similar to what we had in Section 4). Precisely:

• Student t: OOC states come from t7

(
µ = 2.5 ·

√
7/5, σ = 1

)
or t7

(
µ = 3 ·

√
7/5, σ = 1

)
.
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Figure 5: The various misspecification of the PCC distributional forms regarding the con-
tinuous (left panel) and discrete (right panel) data generation mechanisms.

• Gumbel: OOC states come from Gu (−0.5 + 2.5, 0.8) or Gu (−0.5 + 3, 0.8).

• Negative Binomial: OOC states come from NBin (6 · 2.5, 1/4) or NBin (6 · 3, 1/4).

The prior distributions (reference prior and weakly informative) along with the use

or not of n0 = 10 historical data (power prior with α0 = 0 or 1/n0) will be identical to the

ones used in Section 4.

Figures 6 and 7 summarize graphically the results of Tables 4 and 5, regarding the

performance (FWER(k) and OOCD(k′) are as defined in Section 4) for independence and

distributional misspecifications respectively. In the former, we observe that PCC is almost

unaffected in the presence of moderate autocorrelation. For highly dependent data (φ = 0.8

or larger), PCC is somewhat less robust as it decreases its detection power and slightly

increases the FWER percentages, however still achieving noticeable performance, especially

at the early stages thanks to the IC prior information.

In the distributional violation scenarios (Figure 7), we observe that PCC retains

its high detection percentages in all cases. However, the FWER(k) is significantly inflated.

This can be explained by considering the shape discrepancies among the assumed and actual

likelihood functions, where IC values are somewhat outlying under the misspecified assumed

model (a more strict α value in determining the HPrD region would reduce the FWER(k)
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in such scenarios at the cost of somewhat reducing power).

Jump k′

PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%)

A
R

(1
),

φ
=
−

0.
4 0sd (4.420) (3.293) (4.711) (4.480)

5 1.421 0.511 4.038 4.789

2.5sd 15 9.822 10.369 14.050 14.441

25 13.289 13.794 15.995 16.270

5 2.059 1.066 8.092 9.880

3sd 15 17.294 18.516 24.093 24.776

25 23.557 24.446 27.724 28.185

A
R

(1
),

φ
=

0.
4 0sd (6.319) (4.135) (5.530) (5.026)

5 2.535 0.531 4.082 4.755

2.5sd 15 12.724 12.915 16.640 16.669

25 15.511 15.943 18.120 18.308

5 3.671 1.155 8.615 10.138

3sd 15 21.836 22.571 28.115 28.342

25 26.773 27.656 30.740 31.135

A
R

(1
),

φ
=

0.
8 0sd (9.218) (5.637) (7.226) (6.795)

5 3.098 0.347 3.135 3.854

2.5sd 15 11.237 10.191 12.407 12.121

25 10.341 10.509 11.668 11.640

5 4.591 0.857 6.508 7.904

3sd 15 17.783 16.820 20.031 19.832

25 16.488 16.931 18.619 18.712

Table 4: The FWER at N = 30 (in parenthesis) and the outlier detection power at k′ =
{5, 15, 25} for the Normal distribution for PCC with both parameters being unknown, when
we actually have data from an AR(1) process. PCC process is under a reference prior
(PCC1), a reference prior with historical data (PCC2), a weakly informative prior (PCC3)
and a weakly informative prior with historical data (PCC4).
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Jump k′

PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%)

t
-

S
t

u
d

e
n

t
(d
f

=
7
)

0sd (15.338) (14.425) (19.128) (19.361)

5 2.543 1.366 8.282 9.606

2.5sd 15 14.576 15.417 19.861 20.468

25 17.560 18.313 20.427 20.847

5 3.782 2.737 15.511 18.167

3sd 15 25.243 27.059 33.409 34.462

25 30.435 31.765 34.518 35.183

G
u

m
b

e
l
(µ

=
−

0.
5,
β

=
0.

8) 0sd (21.903) (19.583) (23.849) (23.227)

5 3.488 1.245 6.320 6.953

2.5sd 15 15.614 15.528 18.505 18.180

25 16.654 17.021 18.387 18.333

5 4.911 2.279 10.943 12.150

3sd 15 27.444 25.030 29.539 29.259

25 26.648 27.426 29.420 29.549

N
e

g.
B

i
n
( r=

6,
p

=
1 4

) 0sd (17.526) (16.761) (17.686) (17.543)

5 11.626 12.478 13.976 14.055

2.5sd 15 14.766 15.035 15.442 15.504

25 14.499 14.601 14.772 14.848

5 19.709 21.374 23.701 24.010

3sd 15 24.251 24.690 25.254 25.351

25 23.790 23.997 24.171 24.290

Table 5: The FWER at N = 30 (in parenthesis) and the outlier detection power at k′ =
{5, 15, 25} for the Normal distribution for PCC violating the distributional assumption.
Panel 1 and 2 refer to the Normal PCC with both parameters being unknown while the data
come from a Student or Gumbel distribution respectively. In panel 3 we assume Poisson
based PCC while the data are from a Negative Binomial. PCC process is under a reference
prior (PCC1), a reference prior with historical data (PCC2), a weakly informative prior
(PCC3) and a weakly informative prior with historical data (PCC4).

Finally, for both the violation schemes, it is worth mentioning that PCC detection

seems to be stabilized and not necessarily improved when the outliers occur at location 25.
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This can be attributed to the contaminated estimates of the unknown parameters from the

data that violate the PCC assumptions, as well as the fact that the influence of the prior is

decreased. Overall, the PCC appears to be robust when we violate the assumptions, as its

performance is somewhat reduced but noticeably far from collapsing.

6 Real data application

In this section we will illustrate the use of PCC in practice. Specifically, we will apply

the proposed PCC methodology in two real data sets (one for continuous and one for dis-

crete data). Regarding the continuous case, we will use data that come from the daily

Internal Quality Control (IQC) routine of a medical laboratory. We are interested in the

variable “activated Partial Thromboplastin Time” (aPTT), measured in seconds. APTT

is a blood test that characterizes coagulation of the blood. It is a routine clotting time

test and can be used as a diagnosis of bleeding risk (e.g. aPTT value is higher in patients

with hemophilia or Willebrand disease) or for unfractionated heparin treatment monitor-

ing. We gathered 30 daily normal IQC observations (Xi) from a medical lab (see Table

6), where Xi|
(
θ1, θ2

2
)
∼ N

(
θ1, θ2

2
)
. Notice that these data are based on control sam-

ples and in regular practice will become available sequentially. The goal is to accurately

detect any transient parameter shift of large size, as this will have an impact on the re-

ported patient results. Thus, it is of major importance to perform on-line monitoring of

the process without a phase I exercise. Via available prior information, we elicit the prior

π0

(
θ1, θ2

2|τ
)
∼ NIG (29.6, 1/7, 2, 0.562). Furthermore, there were n0 = 30 historical data

(from a different reagent) available (see Table 6), with ȳ = 30.18 and var(y) = 0.32. We

set α0 = 1/30 and combining these two sources of information we get the power prior

π
(
θ1, θ2

2|Y , α0, τ
)
∼ NIG (30.1, 8/7, 5/2, 0.72). To examine prior sensitivity we will also

use as initial prior the reference prior π0

(
θ1, θ2

2|τ
)
∝ 1/θ2

2 ≡ NIG(0, 0,−1/2, 0) (to de-

clare a-priori ignorance) and so we will get two versions of PCC (one for each initial prior).

Figure 8 provides the two versions of PCC (continuous/dotted limits for weakly informa-

tive/reference prior) along with a plot of the historical data and the marginal distributions

of the mean (θ1) and variance (θ2
2) at the end of the data collection.
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y1 − y15 30.4 29.9 30.1 30.2 31.2 30.7 30.6 29.6 29.3 30.2 30.4 30.3 29.5 29.9 30.2

x1 − x15 30.8 30.2 30.9 30.2 30.5 30.4 30.9 30.2 30.3 30.1 30.6 29.9 30.5 29.8 30.5

y16 − y30 29.9 30.5 29.7 30.7 29.9 29.6 30.1 30.1 29.9 30.1 29.9 29.9 29.7 32.2 30.6

x16 − x30 28.8 30.3 30.4 30.6 30.2 30.8 30.7 31.0 30.3 30.7 30.2 30.3 30.6 30.4 30.2

Table 6: The aPTT (in seconds) internal quality control observations of the historical Y =
(y1, y2, . . . , y30) and the current X = (x1, x2, . . . , x30) data.
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Figure 8: The PCC application on Normal data. At the upper panels (left and right), we
have the marginal distributions for the mean and the variance respectively. With the dotted,
dashed and solid lines we denote the initial prior, the power prior and the posterior after
gathering all the current data respectively. At the lower panels, we provide the time series of
the historical data (open circles on left) and of the current data (solid points on the right).
The solid lines represent the limits of PCC, the dotted lines are the limits of PCC under
prior ignorance, i.e. using the initial reference prior and the dash lines correspond to the
FIR adjustment, setting f = 0.99 and a = (−3/log10(1− f)− 1) /4 = 0.125.
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Specifically, for each parameter we plot the marginal weakly informative initial, π0 (·|τ ),

power, π (·|Y , α0, τ ), priors and the posterior distribution, p (·|X,Y , α0, τ ). We should

emphasize that despite the fact that we provide the plots at the end of the data sequence, in

practice the PCC chart and each of the two posterior distributions will start being plotted

at observation 2 and 1 respectively and will be sequentially updated every time a new

observable becomes available. PCC provides an alarm at location 16, indicating that there

was a transient large shift during that day. This would call for checking the process at that

date and if an issue was found then we would take some corrective action, initiate the PCC

and reanalyze all the patient samples that were received between days 15 (no alarm) and 16

(alarm). In the present study, no action was taken and the process continued to operate.

As a result, the PCC limits were inflated right after the alarm, but this effect was gradually

absorbed as more IC data become available. We also note (as expected) that the use of the

reference prior provides wider limits, especially at the early stage of the process, making

the chart less responsive. Finally, the marginal posterior distributions can be used to draw

inference regarding the unknown parameters, at each time point.

Next, we provide an illustration of PCC for discrete (Poisson) data. The data come

from Hansen and Ghare (1987) and were also analyzed by Bayarri and Garćıa-Donato (2005).

They refer to the number of defects (xi), per inspected number of units (si), encountered

in a complex electrical equipment of an assembly line. We have 25 counts (see Table 7)

arriving sequentially that we will model using the Poisson distribution with unknown rate

parameter, i.e. Xi|θ ∼ P (θ · si). In contrast to the previous application, neither prior

information regarding the unknown parameter nor historical data exist. Therefore, we use

the reference prior as initial prior for θ, i.e. π0(θ|τ ) ∝ 1/
√
θ ≡ G(1/2, 0) and we also set

α0 = 0 for the power prior term.

Inspected units (s1 − s13) 4 7 5 7 7 7 6 7 7 6 8 6 3

Defect counts (x1 − x13) 17 23 24 27 32 33 18 28 29 31 39 29 30

Inspected units (s14 − s25) 8 9 6 7 5 7 3 6 8 8 7 8

Defect counts (x14 − x25) 31 21 26 20 24 29 15 32 20 24 24 14

Table 7: Number of defects (xi) and inspected units (si) per time point (i = 1, 2, . . . , 25), in
an assembly line of an electrical equipment.
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In Figure 9, we provide the initial prior and posterior distributions, the plot of the

data, (daily rate of defects i.e. total number of defects per number of inspected units and

number of inspected units) and the Poisson based PCC (the wavy form of the limits is caused

by the variation in the number of inspected units we have per day).
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Figure 9: The PCC application on Poisson data. At the upper left panel we have the
distributions for the rate parameter. With the dashed and solid lines we denote the prior
and posterior distributions respectively, after gathering all the available data. At the upper
right panel, we provide the number of inspected units si (dashed line) and the number of
defects per size xi/si, i.e the rate of defects (solid line), whereas at the lower panel we
present the PCC implementation. Specifically, solid lines correspond to the standard PCC
process, while the dashed represent the PCC based on FIR adjustment, setting f = 0.95 and
a = (−3/log10(1− f)− 1) /4 ≈ 0.326.
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Similarly to what we mentioned earlier, the posterior and the PCC will start from times 1

and 2 respectively and will be updated sequentially, every time a new data point becomes

available, offering online inference in controlling the process. PCC raises two alarms, at

locations 13 and 25. In the former, the observed rate (30/3=10) seems to be higher (process

degradation) from what it was expected from the process as it was evolving till that time,

while the latter indicates that the observed rate (14/8=1.75) was smaller from what PCC

was anticipating (process improvement). Similar to the previous application, the fact that

the alarms were kept in the process inflated the subsequent limits. At last, online inference

regarding the unknown Poisson rate parameter is available via its (sequentially updated)

posterior distribution.

7 Conclusions

In this work we proposed a new general Bayesian method that permits online process moni-

toring for various types of data, as long as their distribution belongs to the regular exponen-

tial family. The use of initial and/or power prior distribution, offers an axiomatic framework

where subjective knowledge and/or historical data can be incorporated in the decision mak-

ing scheme allowing valid online inference, from the very early start of the process, aborting

the need of phase I. It is the use of prior distribution that provides a structural advantage

over the non-parametric and self-starting frequentist based methods, especially in shorts

runs and phase I data, where only brief IC information is available from the current data.

The effect of the prior settings (as long as we avoid extremely informative priors), will decay

soon, as more data become available. Furthermore, for users that might not be accustomed

to the Bayesian approach, the choice of non-informative (reference or Jeffeys) prior, allows

direct PCC implementation, using only the incoming data (and historical data if available).

PCC emphasizes in online outlier detection of short production runs and it does not

require a phase I/II split. Traditional phase I studies, where online inference regarding the

presence of large transient shifts is of interest, are ideal settings for PCC. Furthermore, it is

feasible for a user to switch from standard phase I/II monitoring methods to PCC, as it will
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not only provide online outlier detection monitoring during the “phase I” segment, but thanks

to its sequentially updated nature, it will allow incorporation of the “phase II” data into

the monitoring mechanism (something that is not done with typical frequentist methods).

Thanks to the Bayesian posterior distribution, we are also able to perform inference regarding

each of the unknown parameters.

PCC seems to be ideal for everyone that deals with either short runs or applica-

tions that require online monitoring during phase I. However, practitioners that employ a

traditional phase I/II protocol in their routine, can benefit from the use of PCC during their

phase I. Precisely, they will not only be able to monitor the process online while in phase

I, but also obtain the posterior point estimates of the unknown parameters at the end of

phase I, that will be necessary to build traditional phase II control charts. The benefits

are significant in short runs, where most of the existing methods are unable to have robust

performance and reliable estimates of the unknown parameter(s).
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9 Appendices and supplementary material

The Appendices A − E, provide the technical details of this article along with the algorithms

and some guidelines regarding prior elicitation. The R-code used for the two real data
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applications in Section 6 is also available as supplementary material and via GitHub at

https://github.com/BayesianSPCM/BSPCM.
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Appendix A: Proof of Theorem 1

For a likelihood f(·|θ), being a member of the k-PREF, the conjugate prior is (Bernardo

and Smith, 2000):

π0 (θ|τ ) = [K(τ )]−1 [c(θ)]τ0 exp

{
k∑
i=1

ηi(θ)τi

}
,

where τ = (τ0, τ1, ..., τk) is the (k+1)-dimensional vector of the initial prior hyperparameters,

such that for the normalizing constant, K(τ ), it holds:

K(τ ) =

∫
Θ

[c(θ)]τ0 exp

{
k∑
i=1

ηi(θ)τi

}
dθ <∞,

(for discrete θ, we replace the integral sign by summation). Then for the historical data

Y = (y1, ..., yn0), sampled from the same member of the k-PREF as the likelihood, f(·|θ),

the power prior will become:

π (θ|Y , α0, τ ) ∝ f (Y |θ)α0 π0 (θ|τ )

=

[
n0∏
l=1

g(yl)

]α0

[c(θ)]α0n0 exp

{
α0

k∑
i=1

ηi(θ)

n0∑
l=1

hi(yl)

}
×

×[K(τ )]−1[c(θ)]τ0exp

{
k∑
i=1

ηi(θ)τi

}

= [K(τ )]−1

[
n0∏
l=1

g(yl)

]α0

[c(θ)]τ0+α0n0 exp

{
k∑
i=1

ηi(θ)

(
τi + α0

n0∑
l=1

hi(yl)

)}

∝ [c(θ)]τ0+α0n0 exp

{
k∑
i=1

ηi(θ)

(
τi + α0

n0∑
l=1

hi(yl)

)}
∝ π0 (θ|τ + α0tn0(Y )) ,

where tn0(Y ) =

(
n0,

n0∑
l=1

h1(yl), . . . ,

n0∑
l=1

hk(yl)

)
is a (k + 1)-dimensional vector, with Y =

(y1, ..., yn0) referring to the vector of historical data. Then once the current data X =

(x1, ..., xn) become available, we will be able to derive the posterior distribution of the un-

known parameter(s) θ, using Bayes theorem:
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p (θ|X,Y , α0, τ ) ∝ f (X|θ)π (θ|Y , α0, τ )

∝ f (X|θ)π0 (θ|τ + α0tn0(Y ))

=

[
n∏
j=1

g(xj)

]
[c(θ)]n exp

{
k∑
i=1

ηi(θ)
n∑
j=1

hi(xj)

}
×

× [K(τ )]−1

[
n0∏
l=1

g(yl)

]α0

[c(θ)]τ0+α0n0 exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl)

)}

∝ [c(θ)]τ0+α0n0+n exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl) +
n∑
j=1

hi(xj)

)}
∝ π0 (θ|τ + α0tn0(Y ) + tn(X)) ,

where tn(X) =

(
n,

n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj)

)
is a (k + 1)-dimensional vector, with X =

(x1, ..., xn) being the observed data. This is a member of exponential family, and specifically

of the same distribution form as the initial prior (as expected since we use a conjugate prior).

For (ii) we have that the predictive distribution of a future observable will be given by:

f (Xn+1|X,Y , α0, τ ) =

=

∫
Θ

f (Xn+1|θ) p (θ|X,Y , α0, τ ) dθ

=

∫
Θ

[
g(Xn+1)c(θ) exp

{
k∑
i=1

ηi(θ)hi(Xn+1)

}]
×

[
[K (τ + α0tn0(Y ) + tn(X))]−1

[c(θ)]τ0+α0n0+n exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl) +
n∑
j=1

hi(xj)

)}]
dθ

= [K (τ + α0tn0(Y ) + tn(X))]−1 g(Xn+1)×

×
∫
Θ

[c(θ)]τ0+α0n0+n+1 exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl) +
n∑
j=1

hi(xj) + hi(Xn+1)

)}
dθ ⇒

f (Xn+1|X,Y , α0, τ ) =
K (τ + α0tn0(Y ) + tn(X) + t1(Xn+1))

K (τ + α0tn0(Y ) + tn(X))
g(Xn+1),

where t1(Xn+1) = (1, h1(Xn+1), . . . , hk(Xn+1)) a (k + 1)-dimensional vector, function of the

future observable Xn+1. Note that the vectors tn0(Y ), tn(X) and t1(Xn+1) refer to the

respective sufficient statistics for the power prior and the likelihood. Q.E.D.
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Appendix B: On HPrD regions

We provide the definition of Highest Predictive Density (HPrD), which is used for

the sequential tests of PCC. Assume the set Rc which contains the values of the predictive

density (or mass) function, which are greater than a threshold c, i.e.:

Rc = {xn+1 : f(xn+1|D,w, τ ) ≥ c}. (12)

The HPrD region will be given by minimizing the absolute difference of a highest predictive

probability from a significance level 1− a, for all the possible values of c. Specifically:

Rn+1 = min
Rc

∣∣∣∣∣∣
∫
Rc

f(xn+1|D,w, τ )− (1− a)

∣∣∣∣∣∣, (13)

for the discrete case, we replace the integral sign by summation. Rn+1 will be the shortest

region with the smallest absolute difference from the probability 1 − a. In other words, it

minimizes the Lebesque measure m(Rc) for continuous cases or the corresponding measure

l(Rc) =
∑
i

δxi (f(xi|D,w, τ ) ≥ c) for discrete cases, where δxi(·) represents the Dirac delta

function.

For continuous distributions the HPrD region is calculated just like the Highest

Posterior Density (HPD) region in Bayesian analysis (see for example Carlin and Louis,

2009), where instead of the posterior, we use the predictive distribution and the minimum

value of the absolute difference will be 0. For discrete predictive distributions, typically we

will not be able to obtain a region that has the exact coverage probability 1 − α. In this

case the HPrD can be obtained by starting from the mode of the predictive distribution and

continue adding sequentially the next most probable values of the predictive distribution,

until we get sufficiently close (minimizing the absolute difference) to the predetermined

coverage level 1− α. Algorithm 1 provides the details in how to derive the HPrD region for

a discrete predictive distribution and Figure 10 provides an illustration.
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Figure 10: The HPrD region (Rn+1) for continuous (left panel) and discrete (right panel)
data.

Algorithm 1 HPrD algorithm for a discrete distribution

1: Set pi the ith decreasing ordered probability of f (Xn+1|X,Y , α0, τ ), e.g. p1 is the max
2: Set zi = arg{pi}, i.e. the argument(s) where pi get their values
3: n← 1 . initial values
4: sum probs← 0
5: diff ← 1
6: HPrD ← ∅
7: stop← 0
8: while stop = 0
9: sum probs← sum probs+ pn

10: if |sum probs− (1− a)| < diff
11: HPrD ← {HPrD, zn}
12: diff ← |sum probs− (1− a)|
13: n← n+ 1
14: else
15: stop← 1
16: HPrD ← sort{HPrD}

We should also note here that in symmetric discrete predictive distributions (like a

Beta Binomial with α = β), the HPrD region might not be unique, as there might exist two

regions that achieve the minimum of absolute difference (we can choose at random).
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Appendix C: PCC Algorithm

Algorithm 2 PCC algorithm

1: Select the significance level α, based on FWER or ARL0 . FAR
2: Choose the data distribution and the conjugate prior density for θ . distributions
3: Is FIR-PCC of interest? . FIR
4: YES
5: Determine the parameters f and a
6: NO
7: Set f = 1
8: Is prior information available? . initial prior π0(·)
9: YES

10: Determine the hyperparameters of the initial prior τ
11: NO
12: Set the initial reference/Jeffeys prior (see Table 8, Appendix E)
13: Are prior data available? . power prior
14: YES
15: Provide the historical data Y and determine α0

16: NO
17: Set α0 = 0
18: Once the data point xn (n ≥ 1F) arrives, derive the predictive distribution of next

observable Xn+1| (X,Y , α0, τ )
19: Derive the FIRadj · 100(1− α)% HPrD region, obtain xn+1 and draw it . Rn+1

20: if xn+1 ∈ Rn+1 . test
21: n← n+ 1
22: goto 18
23: else . alarm!
24: if you do not make a corrective action
25: then goto 21
26: else
27: end

FFor the Normal - NIG model using the initial reference prior and α0 = 0 we need n = 2 to

initiate PCC, while for all other cases PCC starts at after x1 becomes available.
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Appendix D: Proof of Lemma 2

Following Quesenberry (1991a) the Q-chart in all three cases of the Normal distri-

bution, makes use at each data point xn+1, of the statistic Qn+1. For PCC we set α0 = 0,

eliminating the power prior part regarding the past data (Y ) and in each case we set the

hyperparameters τ , so that we have the respective reference prior for the unknown pa-

rameter(s). We will show that controlling Qn+1 statistic is identical to controlling PCC’s

standardized predictive residual:

PRn+1 =
Xn+1 − µ̂n

σ̂n

where, µ̂n and σ̂n are the mean and standard deviation respectively of the predictive dis-

tribution of Xn+1| (X,Y , α0 = 0, τ ) ≡ Xn+1| (X, τ ). Denoting by Φ−1(·) the inverse of the

standard normal CDF and Gν(·) the Student-t CDF with ν degrees of freedom we get:

Case I: µ unknown, σ2 known.

We have: Xi|θ ∼ N (θ, σ2) and the reference prior is π(θ) ∝ c ≡ N (0,+∞). Then the

predictive distribution will be:

Xn+1| (X, τ ) ∼ N

(
x̄n ,

n+ 1

n
σ2

)
⇒ PRn+1 =

Xn+1 − x̄n√
n+1
n
σ

= Qn+1 ∼ N(0, 1).

Case II: µ known, σ2 unknown.

We have: Xi|θ ∼ N (µ, θ2) and the reference prior is π(θ2) ∝ 1/θ2 ≡ IG (0, 0). Then the

predictive distribution will be:

Xn+1| (X, τ ) ∼ tn−1

µ ,
n∑
j=1

(xj − µ)2

n

⇒ PRn+1 =
Xn+1 − µ√

n∑
j=1

(xj−µ)2

n

∼ tn−1.

Transformating the PRn+1 we get: Φ−1 {Gn−1 (PRn+1)} = Qn+1 ∼ N(0, 1).

Case III: µ unknown and σ2 unknown.

We have: Xi|θ ∼ N (θ1, θ
2
2) and the reference prior is π(θ1, θ

2
2) ∝ 1/θ2

2 ≡ NIG (0, 0,−1/2, 0).
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Then the predictive distribution will be:

Xn+1| (X, τ ) ∼ tn−2

x̄n ,
n∑
j=1

(xj − x̄n)2

n− 1

⇒ PRn+1 =
Xn+1 − x̄n√

n∑
j=1

(xj−x̄n)2

n−1

∼ tn−2.

Transformating again the PRn+1 we get: Φ−1 {Gn−2 (PRn+1)} = Qn+1 ∼ N(0, 1).

For cases II and III, as the functions Φ−1(·) and Gν(·) are injective, it is identical to control

PRn+1 or Qn+1.

Q.E.D.

49



Appendix E: Guidelines regarding the initial prior π0(θ|τ ) elicitation

The big advantage of PCC is the use of typically available prior information, which

allows to decrease the uncertainty of the unknown parameter(s) θ, improving the perfor-

mance (with respect to false alarms and detection power), especially at the early stages.

The speed at which this uncertainty decreases is inversely related to the information that

the prior distribution carries. When strong opinion about the unknown parameter(s) is

available and located accurately (i.e. we have highly informative initial prior placed at the

parameter space where the unknown parameter is), then the PCC performance will be op-

timal (FWER at the nominal level and quite high detection power). Nevertheless, a highly

informative prior miss-placed on the parameter space (with respect to where the true un-

known θ is), will have as result to get an extremely high FAR (until sufficient information

from the data moves the posterior to the area where the true θ lies). Thus, a general recom-

mendation is to avoid having a highly informative initial prior distribution (to eliminate the

risk of inflated false alarms if miss-placed). Wang et al. (2018) developed effective numerical

methods for exploring reasonable choices of an informative prior distribution.

From the above it becomes evident that the elicitation of the hyper-parameters τ

play an important role to PCC. There are two different ways that one can proceed: being

subjective or objective. In the latter we use non-informative priors and in a sense we leave

the data to carry the information. In the former we use a low/medium (but not high)

informative prior distribution. Such a prior will carry more information compared to the

objective priors (reducing the posterior variability of θ) enhancing the PCC performance,

especially at the start of the process. Furthermore, as the size of the data increases, the

influence of the low/medium information prior is washing-out.

In the case where no prior information for θ exists, or a user prefers to follow an

objective prior approach, then the hyper-parameters determination should be chosen with

caution, especially when we do not have historical data to use in a power prior (i.e. α0 = 0).

Various classes of non-informative priors exist like:

• Flat prior: a uniform prior equally weighting all possible values of the unknown

parameter.
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• Jeffreys prior: a prior that is closed under parameter transformations.

• Reference prior: a function that maximizes some measure of distance (e.g. Hellinger)

or divergence (e.g. Kullback-Leibler) between the posterior and prior, as data become

available.

A list of Jeffreys and reference initial priors that can be used for likelihoods that are members

of the k-PREF are given in Table 8.

Likelihood Initial Reference/Jeffreys Prior

f (·|θ) π0 (θ|τ )

P (θ · si) π0(θ) ∝ 1√
θ
≡ G(1/2, 0)

Bin(Ni, θ) π0(θ) ∝ 1√
θ(1− θ)

≡ Beta(1/2, 1/2)

NBin(r, θ) π0(θ) ∝ 1

θ
√

(1− θ)
≡ Beta(0, 1/2)

W (θ, κ) π0(θκ) ∝ 1

θκ
≡ IG(0, 0)

G(a, θ), IG(a, θ), Pa(m, θ) π0(θ) ∝ 1

θ
≡ G(0, 0)

N (θ, σ2), LogN (θ, σ2) π0(θ) ∝ c ≡ N(0,+∞)

N (µ, θ2), LogN (µ, θ2) π0(θ2) ∝ 1

θ2
≡ IG(0, 0)

N (θ1, θ
2
2), LogN (θ1, θ

2
2) πR

0 (θ1, θ
2
2) ∝ 1

θ22
≡ NIG(0, 0,−1/2, 0), πJ

0 (θ1, θ
2
2) ∝ 1

θ32
≡ NIG(0, 0, 0, 0)

Table 8: Initial Reference (R) and Jeffreys (J) prior distributions. For univariate θ the two
classes of non-informative priors coincide.

When we need to choose an “objective” prior we should aim to satisfy the following

properties: have the minimal possible influence in the process, do not decrease the reflexes

of PCC and attempt to have stable false alarm performance. Based on this proposal we will

next provide more specific details along with some guidelines for the likelihoods that studied

in the simulation study (i.e. Normal, Poisson and Binomial).
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For the N (θ1, θ
2
2) − NIG(µ0, λ, a, b) model, we have to carefully determine the

parameters of the Inverse Gamma (i.e. a and b). For example, the prior NIG(0, ε, ε, ε) (which

converges to Jeffreys prior as ε→ 0) gives higher density at values of θ2
2 which are close to 0.

Thus, it becomes very informative, increasing drastically the false alarms especially for large

values of θ2
2. Similar results hold for NIG(0, ε, 1/2, ε) and NIG(0, ε, 1, ε), where the mean

of the marginal posterior of θ2
2 is the MLE and the unbiased estimator respectively. On the

other hand, a flatter prior like NIG(0, ε, ε, 1) may overestimate θ2
2 reducing the reflexes of

PCC. Generally, we recommend to choose a value for the hyper-parameter a > 2, so that the

mean and the variance of the prior Inverse Gamma is defined. In different cases, the prior

parameters have to be determined carefully.

For the P (θ3) − Gamma(c, d) model, the initial prior Gamma(ε, ε) seems not to

be a good choice. Despite that the posterior mean is the MLE, this prior may increase the

number of false alarms, especially when θ3 is close to 0. In that case, if xn = 0, then the

HPrD region Rn+1 will shrink to a short region. In general we found that small values for

both of the hyper-parameters c and d (e.g. less than 1/3) tend to affect Rn+1 in the same

manner, even when the prior mean is correctly located.

For Bin(N, θ4)−Beta(a, b) model we propose to avoid Beta(ε, ε), which converges

to Haldane’s prior (Haldane, 1932) as ε→ 0, where the posterior mean is equal to the MLE,

as we will have inflated false alarms. Also, choosing small values for both of the hyper-

parameters a and b (e.g. less than 1/3), especially if θ4 is close to 0 as we will have inflated

false alarms (just as we had in the Poisson-Gamma respective case). In contrary, the flat

Beta(1, 1), equally weighting all values of θ4, will have the posterior mode to be the MLE

and provide weak information, inflating the predictive. Thus, the detection performance of

PCC will be affected.

Generally, reference priors (Bernardo, 1979) and Neutral priors (Kerman, 2011) pro-

vide a stable start to PCC under a total prior ignorance. Our proposal though, when some

information about the unknown parameters exists, is to adopt a medium/low volume infor-

mation prior π0(θ|τ ) which will enhance the PCC performance (compared to non-informative

choices) and its effect will be removed once a short sequence of data becomes available.
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