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Abstract: Emerging studies address how COVID-19 infection can impact the human cardiovascular 

system. This relates particularly to the development of myocardial injury, acute coronary syndrome, 

myocarditis, arrhythmia, and heart failure. Prospective treatment approach is advised for these 

patients. To study the interplay between local changes (reduced contractility), global variables 

(peripheral resistances, heart rate) and the cardiac function, we considered a lumped parameters 

computational model of the cardiovascular system and a three-dimensional multiphysics model of 

cardiac electromechanics. Our mathematical model allows to simulate the systemic and pulmonary 

circulations, the four cardiac valves and the four heart chambers, through equations describing the 

underlying physical processes. By the assessment of conventionally relevant parameters of cardiac 

function obtained through our numerical simulations, we propose a computational model to 

effectively reveal the interactions between the cardiac and pulmonary functions in virtual subjects 

with normal and impaired cardiac function at baseline affected by mild or severe COVID-19. 

Keywords: COVID-19; computational models; cardiovascular system; cardiac function;  

numerical simulations 
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Abbreviation: HR: Heart Rate; EDV: End Diastolic Volume; ESV: End Systolic Volume; CO: 

Cardiac Output; SV: Stroke Volume; EF: Ejection Fraction; DBP: (Systemic) Diastolic Blood Pressure; 

SBP: (Systemic) Systolic Blood Pressure; PAP: Pulmonary artery pressure 

1. Introduction  

The Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) primarily affects the respiratory system, although other organ systems 

are also involved and in particular cardiovascular complications may occur. 

Among hospitalized patients with COVID-19, there is a high prevalence of previous history of 

cardiovascular diseases (CVD) and/or CVD risk factors; increased morbidity and mortality in those 

patients have been recently reported in several studies [1–6].  

In particular, the COVID-19 infection can lead to myocarditis, vascular inflammation, 

arrhythmias, acute heart failure, and in the most severe cases, cardiogenic shock and death [1,2]. 

Studies of patients with COVID-19 in China indicated significantly higher in-hospital mortality rate 

in patients who also have myocardial injury. Acute infections increase the risk of acute coronary 

syndrome. COVID-19 may increase circulating cytokines, which have the potential to cause 

instability and rupture of atherosclerotic plaques. Moreover, some studies highlighted that, for 

patients hospitalized with COVID-19, a higher rate of comorbidities including hypertension and 

coronary artery disease characterized fatal events when compared to survivors [4] and myocardial 

injury was prevalent [5]. In any case, the interplay of COVID-19 with cardiovascular complications 

both in healthy individuals and in patients with pre-existing CVD is still far from being fully 

understood. The mechanisms of cardiac injury in patients with COVID-19 are not well established 

but it is reasonable to identify both direct and indirect mechanisms responsible for cardiac failure. 

Possible causes of the effect of COVID-19 on cardiac impairment are due to an increased 

pulmonary vascular resistance consistent with severe inflammation and micro-thrombosis in the 

pulmonary microcirculation [7]. On the other side, the decreased blood saturation secondary to 

respiratory failure may hamper the cardiomyocytes contractility, possibly leading to a decreased 

cardiac output. Both as a compensatory mechanism for the reduced oxygen concentration in blood 

and consequence of fever rise due to the COVID-19 inflammation, the heart rate may significantly 

increase. 

In this study, we provided examples of possible scenarios that reflect the effect of COVID-19 on 

some cardiac features of interest and other vital parameters. With this aim, we exploited the 

predictive nature of computational methods [8] that are based on the numerical solution (i.e., aided 

by a computer) of the mathematical equations underlying the physical processes under investigation. 

In this context, a zero-dimensional (0D, also known as lumped parameters) model that simulates 

systemic and pulmonary blood dynamics together with the cardiac function has been considered [9]. 

This tool can account for a broad range of the model parameters, to simulate variations in pulmonary 

resistances, heart rate, and cardiomyocyte contractility in accordance with COVID-19 infection, and 

to compute the corresponding changes of some meaningful outputs such as stroke volume, ejection 

fraction, cardiac output, arterial and pulmonary pressures. We studied the changes of heamodynamics 

indicators in the cardiac function associated with changes in heart rate, pulmonary resistance and 

ventricular contractility, which may be directly and indirectly associated to a COVID-19 infection. 

The use of a 0D mathematical model allowed us to better understand the strong interplay between 

local changes (such as the reduced contractility), global variables (such as peripheral resistances, 
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heart rate) and cardiac function. This is of utmost importance in view of determining the possible 

effects of COVID-19 infection on patients already affected by CVD. A possible scenario of 

COVID-19 infection in a hypothetical individual exhibiting impaired ejection fraction and cardiac 

output is investigated to support the predictive power of our computational study and its possible 

exploitation for patient-specific studies.  

This 0D analysis has also been complemented by a computational study carried out with a 

3D-0D model. In this model, three-dimensional electro-mechanical activity of the LV is represented 

with a higher level of detail through a multiscale and multiphysics model, accounting for cardiac 

electrophysiology, the microscopic generation of active force, and tissue mechanics. This represents 

a starting point for possible developments of the study here conducted, which may include the 

customization of the analysis through the use of cardiac models tailored on the specific patient. 

 

Figure 1. 0D model, schematic inputs, and representative outcomes. 0D model (on the 

left), effect of COVID-19 on the input parameters (up, right), and representative outcomes 

in terms of PV loops and pressure behaviors (bottom, right). pLV = left ventricle pressure, 

pLA = left atrium pressure, pRV = right ventricle pressure, pRA = right atrium pressure, pAR
SYS

 

= systemic arterial pressure, pVEN
SYS

 = systemic venous pressure, pAR
PUL

 = pulmonary 

arterial pressure, pVEN
PUL

 = pulmonary venous pressure. 
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2. Models and methods 

2.1. The zero-dimensional (0D) computational model 

A 0D model provides a mathematical description of the function of several compartments in the 

cardiovascular system; their number and locations depend on the complexity of the model at hand 

and its level of detail. The model consists in a system of differential equations that translates physical 

principles such as conservation of mass and momentum. Its solution provides the values of flow rates 

and pressures for each compartment [10]. This system can be obtained by exploiting the electric 

analogy, where the current represents the blood flow, the electric potential plays the role of the 

pressure (and hence a voltage represents a pressure difference), the electric resistance represents the 

resistance to blood flow, the capacitance the vessel compliance, and the inductance the blood inertia. 

For a recent study on a 0D model accounting for the pulmonary circulation, see also [11]. By 

referring to Figure 1, our 0D model considered: 

- The four heart chambers, whose mechanical behaviour was characterized by suitable model 

parameters. For example, for the left ventricle (LV) the unloaded volumes (i.e., volume at 

zero-pressure) V0LV and the time-varying elastances ELV(t) = EBLV + EALV fLV (t) were 

considered, where EBLV is the passive elastance (i.e., the inverse of the compliance), EALV the 

maximum active elastance, and fLV a function of time ranging values between 0 and 1 that 

accounts for the activation phases (see [12,13] for more details). Similar parameters 

definitions were introduced for the right ventricle (RV), left atrium (LA), and right atrium 

(RA). The volume of blood contained in each of the four chambers can be obtained from the 

solution of the following equations, that account for the inward and outward blood fluxes 

associated with each chamber: 

𝑑 𝑉𝐿𝐴(𝑡)

𝑑𝑡
=  𝑄𝑉𝐸𝑁

𝑃𝑈𝐿(𝑡)  −  𝑄𝑀𝑉(𝑡),
𝑑 𝑉𝐿𝑉(𝑡)

𝑑𝑡
=  𝑄𝑀𝑉(𝑡)  −  𝑄𝐴𝑉(𝑡),

𝑑 𝑉𝑅𝐴(𝑡)

𝑑𝑡
=  𝑄𝑉𝐸𝑁

𝑆𝑌𝑆 (𝑡)  −  𝑄𝑇𝑉(𝑡),
𝑑 𝑉𝑅𝑉(𝑡)

𝑑𝑡
=  𝑄𝑇𝑉(𝑡)  − 𝑄𝑃𝑉(𝑡).

 

 In the above equations, the right-hand side terms represent the blood fluxes (mL/s) across 

the different cardiac valves (QMV, QAV, QTV, QPV) and through the systemic and pulmonary 

venous systems (𝑄𝑉𝐸𝑁
𝑆𝑌𝑆 , 𝑄𝑉𝐸𝑁

𝑃𝑈𝐿). These terms will be specified later. 

- The four cardiac valves modelled as diodes. More precisely, the blood flux across a valve 

depends on the pressure jump from the upstream to the downstream compartment: 

𝑄𝑀𝑉(𝑡) = 𝑄𝑣𝑎𝑙𝑣𝑒(𝑝𝐿𝐴(𝑡)  − 𝑝𝐿𝑉(𝑡)), 𝑄𝐴𝑉(𝑡) = 𝑄𝑣𝑎𝑙𝑣𝑒(𝑝𝐿𝑉(𝑡)  −  𝑝𝐴𝑅
𝑆𝑌𝑆(𝑡)),

𝑄𝑇𝑉(𝑡) = 𝑄𝑣𝑎𝑙𝑣𝑒(𝑝𝑅𝐴(𝑡)  −  𝑝𝑅𝑉(𝑡)), 𝑄𝑃𝑉(𝑡) = 𝑄𝑣𝑎𝑙𝑣𝑒(𝑝𝑅𝑉(𝑡)  −  𝑝𝐴𝑅
𝑃𝑈𝐿(𝑡)),

 

having defined the function 

𝑄𝑣𝑎𝑙𝑣𝑒(∆𝑝) =  

{
 
 

 
 
∆𝑝

𝑅𝑚𝑖𝑛
, 𝑖𝑓 ∆𝑝 < 0

∆𝑝

𝑅𝑚𝑎𝑥
, 𝑖𝑓 ∆𝑝 ≥ 0
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where 𝑅𝑚𝑖𝑛 and 𝑅𝑚𝑎𝑥  are the leaflet resistances when the valve is open and closed, 

respectively. 

- The systemic arterial circulation, characterized by the arterial resistance, capacitance and 

inductance RAR
SYS, CAR

SYS, LAR
SYS. More precisely, the blood pressure and flux associated with 

the systemic arterial compartment evolve according to the following laws:  

𝐶𝐴𝑅
𝑆𝑌𝑆

𝑑 𝑝𝐴𝑅
𝑆𝑌𝑆(𝑡)

𝑑𝑡
= 𝑄𝐴𝑉(𝑡)  − 𝑄𝐴𝑅

𝑆𝑌𝑆(𝑡),

 𝐿𝐴𝑅
𝑆𝑌𝑆

𝑑 𝑄𝐴𝑅
𝑆𝑌𝑆(𝑡)

𝑑𝑡
= − 𝑅𝐴𝑅

𝑆𝑌𝑆𝑄𝐴𝑅
𝑆𝑌𝑆(𝑡)  +  𝑝𝐴𝑅

𝑆𝑌𝑆(𝑡) − 𝑝𝑉𝐸𝑁
𝑆𝑌𝑆 (𝑡).

 

Similarly, the systemic venous system is characterized by analogous parameters (i.e., RVEN
SYS, 

CVEN
 SYS, LVEN

 SYS), while the pulmonary circulation is characterized as above by the systemic 

parameters RAR
PUL, CAR

PUL, LAR
PUL, and by the venous ones RVEN

PUL, CVEN
PUL, LVEN

PUL. 

The 0D model has been discretized in time by means of a variable-step, variable-order (VSVO) 

solver. The implementation was performed in the Matlab environment (ode15s solver). For each 

setting of parameters here considered, the model was run for several cycles, until a regime (periodic) 

solution was obtained, and only the last heartbeat was considered for the analysis. 

2.2. The 3D-0D computational model 

To enhance the detail of description of the 0D model presented in the previous section, one or 

more of its compartments can be replaced by a 3D geometrically accurate model (see e.g., [14,15] for 

a comprehensive review on this topic). Besides the fully 0D model for blood dynamics introduced in 

the previous section, in this work we considered also a 3D-0D model in which we replaced the 

time-varying elastance element describing the LV with a 3D multiscale electromechanical model (see 

Figure 4). In the 3D electromechanical model, fibers and sheets distribution were generated 

according to a rule-based algorithm [16]. The LV was stimulated by means of electric impulses 

applied at three points of the endocardial surface and the resulting action potential propagation was 

modelled through the monodomain equation [18] coupled with the ten Tusscher-Panfilov ionic 

model [17]. To describe the subcellular mechanisms of active force generation, we employed the 

biophysically detailed model RDQ20-MF, proposed in [19], while we employed the exponential 

constitutive law proposed in [20] to describe the passive behaviour of the myocardium. 

We discretized the 3D ventricular electromechanical model by means of first order Finite 

Elements method (FEM) in space and finite differences in time [21]. To efficiently solve the coupled 

multiphysics 3D-0D model, we employed a segregated strategy, where electro-physiology, active 

forces computation, active and passive mechanics, and 0D blood dynamic model are solved in 

sequence, possibly with a different time step to account for the diverse temporal dynamics of each 

submodel. For more details on the 3D-0D electromechanical model and on the numerical methods 

used for its numerical approximation, we refer the interest reader to [12,13]. Such methods have been 

implemented in the Finite Element research library lifex (https://lifex.gitlab.io/lifex). 
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2.3. Variation of the model parameters 

The quantities mentioned in Section 2.2 are the parameters of the model and, together with the 

heart rate (HR), they characterize the cardiovascular system of the individual, both in healthy and 

non-healthy conditions. Thus, the 0D and the 3D-0D models provide tools that are able to compute 

flow rate and pressure in each compartment once a suitable set of parameters is prescribed. With this 

aim, we identified three sources of changes in the above-mentioned parameters and corresponding 

reasonable value ranges: 

- HR: Clinical evidence showed that an increase of HR was very common in COVID-19 

patients [22]. Accordingly, we considered values of HR in the range [60,80] bpm for 

baseline individuals, increasing this figure up to 100 bpm for COVID patients. 

- Wood number (W): It is defined as  

𝑊 =  
1000 mL

60 s mmHg 
 (RAR

PUL  +  RVEN
PUL ) 

and provides information about the pulmonary resistances. As, according to clinical 

evidence [23], pulmonary resistances (and thus W) increase in presence of COVID-19, we 

placed the value of W in the range between 1.13 (healthy) and 3.39 units. More precisely, we 

multiplied the baseline value RVEN
PUL

-BLSN (see Table 1) by a factor kR in the range [1,3]: 

RVEN
PUL  =  𝑘𝑅  RVEN−BLSN

PUL  

We also assumed that RAR
PUL/RVEN

PUL = 9/10 [24]. Analogous definitions hold true for the 

systemic resistances; 

- EAXX (where XX = LA, LV, RA, RV): Clinical evidence showed that COVID-19 may reduce 

blood saturation and consequently also decrease cardiomyocyte contractility. To account for 

this, we decreased the value of the four active elastances EAXX. Since a reliable quantitative 

law linking blood saturation with contractility - at the best of our knowledge - is not available 

in the literature, we considered the ranges of contractility variation observed in non-COVID 

hypoxia [25,26], by multiplying the baseline values EAXX-BLSN (see Table 1) by a percentage 

factor kEA in the range [50,100]%: 

EAXX  =  
kEA
100

 EAXX−BLSN 

When the 3D-0D model is considered, the parameter EALV is not meaningful for the model, 

since the time-varying elastance element of the LV is replaced by the multiphysics 3D LV 

model. Therefore, in this case we rescaled the LV contractility, a parameter that rescales the 

active force generated at the microscale and that plays the role of EALV in the 3D model, by 

the same factor kEA. Since reduced blood saturation is not expected to affect the passive 

propertied of the tissue, we kept the parameters EBXX unchanged. 
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2.4. Setting of the clinical scenarios and description of the in silico tests 

We first considered the fully 0D model in the setting reported in Table 1, corresponding to an 

individual in healthy conditions, henceforth denoted as baseline (bsln). With such baseline setting as 

a starting point, we investigated the effect of the variations mentioned above, to study a possible 

impact of hemodynamic changes associated with COVID-19 on the cardiac function. In particular, 

we considered two settings that we denoted as Test (1a) and Test (1b), respectively. In Test (1a) we 

decreased the contractility of the whole heart muscle to 85% of the baseline value to reflect the 

effects of a reduced blood saturation due to the impaired pulmonary function. Moreover, we 

increased HR from 72 bpm to 86 bpm and we increased the pulmonary resistance by a factor 2 (this 

corresponds to a Wood number W = 2.26). In Test (1b), instead, we exacerbate the three 

aforementioned effects, with a contractility of 70% of the baseline, a HR of 100 bpm and an increase 

of the pulmonary resistances by a factor 3 (Wood number 3.39). These changes from the baseline 

setting were suggested by clinical observations on COVID-19 patients made by the clinicians 

involved in this study. 

Table 1. Baseline values of the parameters used in the 0D model. 

Parameter Values Unit 

HR 72 bpm 

EBLV 0.08 mmHg/mL 

EBRV 0.05 mmHg/mL 

EBLA 0.09 mmHg/mL 

EBRA 0.07 mmHg/mL 

EALV-bsln 2.75 mmHg/mL 

EARV-bsln 0.55 mmHg/mL 

EALA-bsln 0.07 mmHg/mL 

EARA-bsln 0.06 mmHg/mL 

RAR
SYS 0.64 mmHg s/mL 

CAR
SYS 1.2 mL/mmHg 

LAR
SYS 0.005 mmHg s2/mL 

RVEN
SYS 0.26 mmHg s/mL 

CVEN
 SYS 60 mL/mmHg 

LVEN
 SYS 0.0005 mmHg s2/mL 

RAR
PUL

-bsln 0.0321 mmHg s/mL 

CAR
PUL 10 mL/mmHg 

LAR
PUL 0.0005 mmHg s2/mL 

RVEN
PUL

-bsln 0.0357 mmHg s/mL 

CVEN
PUL 16 mL/mmHg 

LVEN
PUL 0.0005 mmHg s2/mL 

Rmin
 0.0075 mmHg s/mL 

Rmax
 75000 mmHg s/mL 

 

We further exploited our 0D computational model by simulating the effects of COVID-19 

infection for a virtual patient with mildly impaired LV cardiac function. In particular, in Test (2) we 



3371 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3364–3383. 

assumed that, without COVID-19, for this individual contractility was decreased to 70% of baseline, 

HR equal to 60 bpm, pulmonary resistance equal to 1.70 Wood (x1.5 of baseline), and systemic 

resistance equal to 26.25 (x1.75 of baseline) (Table 3). As in Test (1), we considered two scenarios of 

COVID-19 infections, with virtual impact on the cardiovascular system only, by further decreasing 

the heart contractility (to 60% and 50% of baseline), increasing the HR (to 72 and 85 bpm) and 

increasing the pulmonary resistance (to 2.54 and 3.39 Wood) for Tests (2a) and (2b), respectively. 

These changes from the baseline setting were suggested by observations of COVID-19 patients. 

Table 2. Model parameters (inputs) for simulating the effects of mild (Test (1a)) and 

severe (Test (1b)) COVID-19 infections in an individual with normal cardiac function at 

baseline (bsln), and computed outputs. The setting of the tests is introduced in Sec. 2.4. 

LV = left ventricular, RV = right ventricular. 

Parameter Unit bsln Test (1a) Test (1b) 

MODEL INPUTS     

Contractility with respect to  

bsln (kEA) 

% 100 85 70 

Heart rate bpm 72 86 100 

Systemic resistance Wood 15 15 15 

Pulmonary resistance  Wood 1.13 (kR = 1) 2.26 (kR = 2) 3.39 (kR = 3) 

MODEL OUTPUTS     

General     

Cardiac output L/min 6.8 6.4 5.9 

Stroke volume mL 95 75 59 

Left Ventricle     

LV EDV mL 144 127 117 

LV ESV mL 49 52 58 

LV EF % 66 59 51 

LV Pmax mmHg 139 127 116 

LV dP/dt max mmHg/s 1649 1658 1579 

Right Ventricle     

RV EDV mL 145 142 148 

RV ESV mL 50 67 89 

RV EF % 66 53 40 

RV Pmax mmHg 25 30 35 

RV dP/dt max mmHg/s 256 338 383 

Systemic circulation     

PA min mmHg 79 79 76 

PA max mmHg 137 126 115 

Pulmonary circulation     

PAP mean mmHg 17 23 29 
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Table 3. Model parameters for simulating the effects of mild (Test (2a)) and severe (Test 

(2b)) COVID-19 infections in an individual with impaired cardiac function (Test (2a)), and 

computed outputs. For the pulmonary resistances and maximum active elastances current 

values are derived by the baseline ones owing to equations described in Methods section. 

Baseline: kR = 1, kEA = 100. The setting of the tests is introduced in Sec. 2.4. 

Parameter Unit Test (2) Test (2a) Test (2b) 

MODEL INPUTS     

Contractility with respect 

to bsln (kEA) 

% 70 60 50 

HR bpm 60 72 85 

Systemic resistance Wood 26.25 26.25 26.25 

Pulmonary resistance  Wood 1.70 (kR = 1.5) 2.54 (kR = 2.25) 3.39 (kR = 3) 

MODEL OUTPUTS     

General     

CO L/min 4.1 3.9 3.7 

SV mL 68 55 44 

EF % 50 43 35 

Left Ventricle     

LV EDV mL 135 128 125 

LV ESV mL 67 73 82 

LV EF % 50 43 35 

LV Pmax mmHg 134 127 117 

LV dP/dt max mmHg/s 1100 1131 1115 

Right Ventricle     

RV EDV mL 127 127 134 

RV ESV mL 59 72 90 

RV EF % 53 43 33 

RV Pmax mmHg 21 23 26 

RV dP/dt max mmHg/s 159 189 210 

Systemic circulation     

DBP  mmHg 90 90 88 

SBP  mmHg 133 126 118 

Pulmonary circulation     

PAP mean mmHg 16 19 22 

 

Finally, we performed a comparative analysis by means of the 0D and the 3D-0D models. We 

carried out a simulation with both models in a setting corresponding to an individual in healthy 

conditions (denoted by Test (3)), by adjusting the 0D model parameters in order to produce a LV PV 

loop resembling that of the 3D-0D model. Then, we perturbed both the 0D and the 3D-0D models in 

the same way, and we simulated the perturbed scenario – denoted as Test (3a) – with both models. 

Specifically, we decreased the contractility of the myocardium to 85% of the baseline value and we 

doubled the pulmonary resistances. Unlike the scenarios considered above, we did not alter the heart 

rate, because the ionic model considered in the 3D model is not designed to have a physiological 

response to changes of this variable [17]. 



3373 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3364–3383. 

3. Results 

3.1. Results of 0D numerical simulations 

In Figure 2 we reported the outcomes predicted by the 0D model for the baseline setting. Our 

computational model allowed to reproduce the ventricle pressure-volume (PV) loops as well as the 

evolution in time of volumes and pressures with a very low computational effort nearly 2 seconds of 

simulation for 10 heartbeats). Table 2 reports a list of parameters of cardiac function computed by the 

baseline simulation. In particular, we found Cardiac Output (CO) = 6.8 L/min, Stroke Volume (SV) = 

95 mL, Ejection Fraction (EF) = 66% for both LV and RV, thus the simulation reflected an overall 

normal cardiac function [27]. Also, LV and RV were characterized by end-diastolic volume (EDV) 

and end-systolic volume (ESV) within the normal ranges (LV EDV two settings, corresponding to a 

mild and to a more severe COVID-19 infection = 144 mL, LV ESV = 49 mL, RV EDV = 145 mL, 

RV ESV = 50 mL) [28–30]. 

 

Figure 2. Pressure volume (PV) loops and pressure for the baseline case. Output of the 

0D model resulting from the baseline parameters. A: Left ventricle PV loop. B: Right 

ventricle PV loop. C: Wiggers diagram, showing the evolution, for two heartbeats, of the 

left ventricle pressure (pLV) and volume (VLV), the left atrium pressure (pLA) and the 

systemic arterial circulation pressure (pAR
SYS), which is representative of the aortic 

pressure. 

The PV loops corresponding to the settings (1a) and (1b) are shown in Figure 3A, while Table 2 

reports the corresponding cardiac measurements. These tests showed that the LV PV loops was 

impacted by hypoxemia, which reduced ventricular contractility. Overall, compared to baseline 

values, the reduced cardiac contractility provided a decrease in SV of 21% for Test (1a) and 38% for 
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Test (1b), together with a reduction in LV EF of 11% and 25% for Test (1a) and Test (1b), 

respectively. This effect was partially compensated by the increase of HR, which can be considered – 

in hypoxic patients – as a self-regulatory mechanism aimed to preserve the CO [26]. As a matter of 

fact, the CO decreased 6% from baseline for Test (1a) and of 13% for Test (1b). Besides the LV 

function, also the RV function is significantly affected by COVID-19 related variations of the 

circulation model. Specifically, RV EF decreased 20% (Test (1a)) and 39% (Test (1b)), thus in 

percentage more than for LV. Moreover, the increased pulmonary resistance induced a remarkable 

growth of the RV maximal pressure (20% and 40% for Test (1a) and (1b), respectively) and the RV 

ESV reports a significant increase (34% and 78%). 

 

Figure 3. Pressure volume (PV) loops for the COVID-19 scenarios. PV loops of LV 

and RV for different scenarios of COVID-19 infections. A: results obtained with model 

parameters simulating the effects of mild (1a) and severe (1b) COVID-19 infections in an 

individual with normal cardiac function at baseline (bsln). B: results obtained by model 

parameters simulating the effects of mild (2a) and severe (2b) COVID-19 infections in an 

individual with impaired cardiac function (2). 

Regarding Test (2), which represents a hypothetical individual with mildly impaired LV cardiac 

function, the outputs computed by the 0D model were: CO = 4.1 L/min, LV SV = 68 mL, 

LV EF = 50% and RV EF = 53%; moreover, we found LV EDV = 135 mL, LV ESV = 67 mL, 

RV EDV = 127 mL, RV ESV = 59 mL, that however were still in the normal ranges [28–30]. 

We then accounted for the change of parameters due to COVID-19 (Test (2a) and Test (2b)). The 

data and results are reported in Figure 3B and Table 3. The outputs of our numerical simulations 

highlighted that, in an individual with impaired LV cardiac function, the COVID-19 infection further 

worsens the cardiac functional parameters of both chambers. In particular, we found a reduction in 
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LV EF of 14% and 30% for Test (2a) and Test (2b), respectively, in RV EF of 19% and 38%, and in 

CO of 5% and 10%. 

Table 4. Changes in biomarkers from Test (3) to Test (3a) predicted by the fully 0D and the 

3D-0D models. The setting of the tests is introduced in Sec. 2.4. 

MODEL OUTPUTS Unit Absolute 

variation (0D 

model) 

Absolute 

variation 

(3D-0D model) 

Relative 

variation (0D 

model) 

Relative 

variation 

(3D-0D model) 

General      

Cardiac output L/min -0.40 -0.35 -7.95 % -7.11 % 

Stroke volume mL -5.30 -4.71 -7.95 % -7.11 % 

Left Ventricle      

LV EDV mL -2.74 -3.06 -1.97 % -2.21 % 

LV ESV mL 2.57 1.46 +3.57 % +1.96 % 

LV EF % -2.93 -2.22 -6.10 % -4.70 % 

LV Pmax mmHg -7.66 -6.24 -7.02 % -5.82 % 

LV dP/dt max mmHg/s -102.61 -628.35 -5.81 % -7.85 % 

Right Ventricle      

RV EDV mL 10.53 10.53 +8.33 % +8.35% 

RV ESV mL 15.84 15.24 +26.53 % +25.46 % 

RV EF % -7.93 -7.50 -15.03 % -14.26 % 

RV Pmax mmHg 3.88 3.62 +12.76 % +11.87 % 

RV dP/dt max mmHg/s 1.60 15.10 +0.36 % +0.72 % 

Systemic circulation      

PA min mmHg -4.15 -3.60 -6.48 % -5.52 % 

PA max mmHg -7.59 -6.18 -7.02 % -5.82 % 

Pulmonary 

circulation 

     

PAP mean mmHg 4.61 4.30 +19.82 % +18.39 % 

3.2. Analysis of clinical scenarios 

Our computational model is able to simulate possible effects of COVID-19 infection on the 

cardiocirculatory system, and particularly on the cardiac function. Our study sustains the clinical 

evidence that the infection is able to impact both the left and right hearts, by decreasing EF and CO, 

whose decrements are only partially compensated by the HR increase that typically is shown in 

COVID-19 patients. Maximum LV pressure was reduced, while maximum RV pressure was 

increased, albeit the latter remains within the normal range of values. Our computational model 

predicted that the right heart is strongly linked, from the physiopathological standpoint, to the 

pulmonary function. Indeed, the increased pulmonary resistance significantly affects both the RV 

pressure and the RV EF. 



3376 

Mathematical Biosciences and Engineering  Volume 18, Issue 4, 3364–3383. 

 

Figure 4. 3D-0D model, schematic inputs, and representative outcomes. In the 3D-0D 

model (on the left), the time-varying elastance model describing the LV is replaced by a 3D 

electromechanical model, schematically represented by the associated 3D geometry. On 

the right, some snapshots of two representative variables (intracellular calcium 

concentration and active force) are represented at selected time steps. 

Recent data published in [31] show that lower values of RV systolic function echocardiographic 

parameters, although still in the normal range, are more frequent in COVID-19 patients with poor 

prognosis, thus suggesting that the absence of an increase in contractility in response to an increase 

in pulmonary resistance/pressures plays a role in the evolution of the illness. The proposed model 

captures this behavior. In particular, as the respiratory failure worsens, RV function is supposed to be 

more susceptible to impairment due to increased RV afterload and in fact we have reported a 

progressive decrease in RV EF volume from Test (1a) to Test (1b) for a previously healthy subject.  

Since recent reports [1–5] suggest that CVD is a common finding in COVID-19 patients and is 

associated with a worse prognosis, we also simulated the cardiac function and its response to 

COVID-19 in a hypothetical patient with history of cardiac dysfunction. Although we predicted a 

reduction in LV EF when we simulate a worse COVID-19 infection, we predicted a more severe 
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reduction in RV EF compared to the reduction in LV EF. This finding could explain the worse 

outcome in case of pre-existing CVD. In fact, RV dysfunction is known to be an important 

determinant of symptoms and a powerful marker of poor prognosis in patients with chronic heart 

failure [32,33]. 

To predict the effect of the reduced contractility, the End Systolic Pressure Volume Relationship 

(ESPVR) is estimated as the slope of the PV loop curve in the upper left corner [26]. The depressed 

inotropy corresponded to a decreased ESPVR, as reported in several experiments as a direct 

consequence of the reduced oxygen blood content [25,26]. As it appears in Figures 3A and 3B the 

proposed model highlights their effects. Moreover, the LV function experienced a reduced systolic 

pressure and a reduced preload, thus resulting in a significant decrease of the PVA (pressure-volume 

area), a further biomarker that is known to correlate with hypoxia [26,34]. 

From our study, we highlighted that COVID-19 infection in a patient with normal cardiac 

function may produce alterations that maintain biomarkers within the normal range of values. 

Conversely, starting from a scenario of an individual with impaired cardiac function, where however 

the values of biomarkers were within normal ranges [28–30], our simulations revealed that the 

COVID-19 infection could worsen the cardiac function, specifically by further reducing CO and SV 

below the normal values, other than severely impacting the LV and RV EFs. This computational 

model has been proposed to carry out results about the sensitivity of some cardiac outcomes on 

different parameters influenced by COVID-19 in a very rapid and reproducible way. 

3.3. Comparative analysis of fully 0D and 3D-0D simulations 

For the comparative analysis of fully 0D and 3D-0D simulation, we based the latter on the 

Zygote cardiac geometry [35], representing the average heart of a healthy Caucasian man. The 

computational time to perform a heartbeat was about 5 hours on 32 cores. In Figure 5 we reported 

the PV loops obtained for Test (3) and Test (3a) with both the fully 0D and the 3D-0D cardiovascular 

models. The Figure shows that the two models present a qualitatively similar response to the applied 

hemodynamical changes. To provide a quantitative assessment of the response of the two models, we 

reported in Table 4 the absolute and relative changes of some biomarkers between Test (3) and 

Test (3a). The results show that the two models are in great agreement quantitatively as well. The 

biomarker whose response differs most is LV dP/dt max, for which the 0D model predicts a 5.81% 

decrease, whereas the 3D-0D model predicts an 7.85% decrease. We think that the reason lies in the 

fact that this parameter accounts not only for the pressure-volume relationship of the ventricular 

chamber, but also for the characteristic time scales associated with the different physics (ionic 

dynamics, mechanical activation, muscle mechanics and interaction with surrounding tissues), which 

are much more accurately predicted by the 3D model. Nevertheless, all the other biomarkers feature 

a response which is always within one percentage point difference between the two models. As 

expected, the biomarkers associated with the RV present an even closer match. 
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Figure 5. PV loops comparative analysis between the fully 0D and the 3D-0D models. 

PV loops of LV and RV for Test (3) and Test (3a) obtained with the fully 0D model (A) and 

the 3D-0D model (B). In the bottom-right corner, the two different models employed to 

describe the LV are visually represented. 

4. Discussion 

We showed that computational models can be an effective tool to study possible effects of 

hemodynamic changes associated with COVID-19 on the cardiac function. In particular, this study 

was based on a 0D computational model, which considers compartmental flow rates and pressures. 

We focused on three possible consequences of COVID-19 (increased HR, decreased myocyte 

contractility, and increased pulmonary resistances) and on their influence on virtual patients. Our 

preliminary 0D model computations revealed a possible worsening of SV, CO, LV EF, RV EF, and 

other biomarkers for virtual clinical scenarios with both otherwise normal cardiac function and 

impaired cardiac function. In the latter case, these values were below normal ones even if they were 

within normal ranges in the case without COVID-19 effects. This provided a quantitative, although 

speculative, confirmation that COVID-19 could have significant consequences on the cardiac 

function. The comparative tests between the fully 0D and the 3D-0D models supports the 

appropriateness of the former to perform this type of study, which is based on analysing global 

quantities and outputs. In fact, the 0D model was able to predict responses to hemodynamic changes 

—such as those considered in this paper—in agreement with those predicted by much more 

sophisticated models, which provide a multiphysics and multiscale description of cardiac function. 

On the other hand, the use of 3D models may offer the possibility of customizing the model to 

specific patients using geometries acquired from medical imaging (e.g., CT or MRI), to account for 

spatial heterogeneities (such as the presence of scar or hypertrophic tissue), which cannot instead be 

included in a 0D model, and to perform 3D analysis of computed maps, localising possible damaged 

behaviours. 
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Several limitations affected this preliminary work. First, we notice that our 0D model is rather 

simple in comparison to other models reported so far for the study of the cardiac function (see, e.g., 

[36–39]), although it is capable to recover significant and clinically meaningful results such as 

PV-loops. Moreover, our model did not account for the integration with the respiratory system, as 

done elsewhere [38,39]. A model that directly accounts for the variation of blood saturation due to 

COVID-19 is currently under development: we expect that it could lead our study to an improved 

degree of novelty. Also, we neglected the effect of pressure variations due to respiration on the rib 

cage, hence on the cardiocirculatory system. Albeit we deem this assumption to have a very limited 

impact on the outcomes of the current study, we plan to improve our 0D model for further 

investigations of this topic.  

Second, we accounted for possible changes induced by COVID-19 (pulmonary resistances, heart 

rate, contractility), which are however not specific of COVID-19 and could occur also in other 

diseases that lead to heart failure [36–39]. For example, other studies investigated by means of 0D 

models possible effects in patients affected by Chronic Obstructive Pulmonary Disease (COPD) [40], 

obtaining similar results to ours in terms of decreased cardiac function. How COVID-19 does 

influence the cardiovascular system and the heart function in a specific way that characterizes this 

virus is still far from being known at the patho-physiological level. For example, interactions with 

diseases that damage also, e.g., the respiratory system, the liver, the kidney, the brain should 

characterize this multiorgan disease. However, due to the lack of precise information on such 

mechanisms, we have limited ourselves to account here only for the indisputable sources of change.  

Also, we observe that the pathophysiology of COVID-19 involves several systems, such as the 

neurohormonal system (e.g., with production of cytokines), the systemic circulation, and the 

coronary perfusion. Moreover, it could involve remodelling and compensatory mechanisms, such as 

those related to myocardial oxygen consumption that can be well preserved even under severe 

hypoxia. Similarly, factors such as gender and age have not been included in the model yet. However, 

the interactions among all these processes have not yet been fully understood. Moreover, the 

mathematical description of their coupling is still far to be ready for applications. For these reasons, 

such interactions were not included in this work. However, we included some effects of the insult 

provided by the virus on the neuronal system, such as the increment of heart rate and of the 

pulmonary resistances. We remark that the aim of this work was not to develop an 

omni-comprehensive model, but rather to build a cardiovascular model focused on the 

cardiopulmonary interactions only, that is those occurring among the heart, vasculature, and lungs. 

We notice also that COVID-19 effects on the organism may differ along the progression of the 

disease [41], an assessment that we have not included in our model, which was rather focused on the 

final effect on the cardiac function.   

Another limitation is that only virtual (healthy or not) individuals were considered to study the 

possible effect of COVID-19 on the cardiac function. In particular, we selected representative 

parameter values to run our numerical simulations. This represents a current limitation as the 

parameters may considerably differ among patients, in particular as a response to COVID-19 

infection. The collection of data and measures regarding COVID-19 patients could allow us in the 

next future to build models that are patient-specific (by suitably calibrating the parameters) and to 

provide answers to specific clinical questions. In the meantime, we believe that the study on virtual 

patients is fundamental as a preliminary step in view of assessing the potential effectiveness of our 

approach for clinical scenarios.  
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In order to partially overcome to some of the previous limitations, a more detailed study for 

predicting pointwise quantities of interest in the heart could be carried out by means of a 3D-0D 

model, where the heart (or a part of it) is simulated by means of a 3D electromechanical model; in 

this model, the computational geometry of the heart can be personalized starting from clinical images 

(CT or MRI) acquired from a specific patient. The 3D-0D numerical tests shown in this paper 

support the feasibility of this approach. Another improvement could be obtained by coupling the 0D 

(or even 3D-0D) model with the cardiac perfusion in order to quantify the amount of blood flow 

reaching the myocardium [42] and with a model for oxygen–hemoglobin association-dissociation to 

quantify the oxygen supply to the heart.  

5. Conclusions 

Despite the aforementioned limitations of our study, we believe that this paper represents a first, 

necessary step towards a more comprehensive model. Indeed, the goal of this study was to propose a 

model to quantitatively analyze the interactions between the heart and the lungs in COVID-19 

patients. In particular, the model allowed us to include the effect of comorbidities related to the 

cardiovascular system, but not others of different nature. However, this study can provide the basis 

for further developments in which other organ systems and other interactions, once understood from 

the clinical experience, are included in the model. 

This study paves the way for a better understanding of the interplay between COVID-19 and 

cardiovascular dysfunction and diseases. As a matter of fact, even if cardiac involvement is a 

prominent feature in COVID-19 and is associated with a worse prognosis, the response of the 

cardiovascular system to COVID-19 infection has not been well studied yet [1–5]. This study lends 

support to the impact of COVID-19 on the cardiac function in patients with or without 

cardiovascular disease. Our computational approach could be an effective tool to study the patient 

specific effect of COVID-19 on the cardiac function.  
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