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Abstract 
 

This paper reports on the development of a method for automatic monitoring of safety 

at Pelican crossings. Historically, safety monitoring has typically been carried out 

using accident data, though given the rarity of such events it is difficult to quickly 

detect change in accident risk at a particular site. An alternative indicator sometimes 

used is traffic conflicts, though this data can be time consuming and expensive to 

collect. The method developed in this paper uses vehicle speeds and decelerations 

collected using standard in-situ loops and tubes, to determine conflicts using vehicle 

decelerations and to assess the possibility of automatic safety monitoring at Pelican 

crossings. Information on signal settings, driver crossing behaviour, pedestrian 

crossing behaviour and delays, and pedestrian-vehicle conflicts was collected 

synchronously through a combination of direct observation, video analysis, and 

analysis of output from tube and loop detectors. Models were developed to predict 

safety, i.e. pedestrian-vehicle conflicts using vehicle speeds and decelerations. 

 
Keywords: Automatic safety monitoring, pedestrian crossings, conflicts 
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1. INTRODUCTION 

 
Pelican crossings are now commonplace on roads in the UK. They are essentially 

signal controlled crossing points where a pedestrian is able, through use of a button, to 

call a red signal to halt the traffic. Such crossings are generally perceived positively 

by the public (more so than the main alternative – unsignalised zebra crossings), they 

have a good overall safety record and are typically installed for safety reasons (see 

DoT, 1995 for further detail). Despite this, accidents still occur at such crossings and 

continued monitoring of their safety is important. In Britain in 2002 there were 1584 

reported pedestrian injuries in accidents on Pelican crossings (4.1% of total pedestrian 

casualties (DfT, 2003a)). Much safety monitoring in the UK and many other countries 

has been carried out using accident frequencies (IHT, 1990a, 1990b, and Zeeger et al, 

2002). Because accidents are rare, monitoring requires a long time frame and 

sometimes, at particular sites, it is impossible to obtain sufficient data for analysis. In 

addition, the accidents must have already happened before the data can be collected. 

As one of the aims of monitoring is to give early warning if something is going wrong 

(IHT, 1997) then time may be lost before a dangerous situation can be rectified. 

Consequently, there is a need to develop a monitoring method using another safety 

indicator, which occurs more frequently, and can be used as a proxy for accidents. As 

safety assessment and evaluation should ideally be made quickly, it is important that 

the monitoring is undertaken automatically and hence, the safety indicator used needs 

to be measurable automatically and ideally readily available on site. The aim of this 

paper is to evaluate the feasibility of developing a simple transferable method for 

automatic monitoring of traffic safety at Pelican crossings. 

 

This paper reviews and evaluates research which has examined the potential for 

automatic monitoring of different kinds of safety indicator. It then goes on to describe 

a method used here to measure safety using vehicle speed and deceleration behaviour 

from which the occurrence of pedestrian-vehicle conflicts can be determined. The 

final part of the paper looks at the feasibility of using the methods developed to 

monitor safety automatically using the standard in-situ loops in place on the 

approaches to Pelican crossings. 
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2. BACKGROUND 

 

Probably the most widely used non-accident based safety indicator is traffic conflicts 

(Perkins and Harris, 1968; Hayward, 1968; Allen et al, 1977 and Hyden, 1987). 

Traditionally, most traffic conflict techniques either involve direct observations 

Hyden, 1987; and TRRL, 1987) or are based on video observations (Horst, 1984; 

Horst and Wilmink, 1986; Jansen et al, 1988; and Tenkink and Horst, 1990). Such 

techniques are not easily adapted to automatic data collection. Another safety 

indicator that has been proposed is vehicle deceleration (Balasha et al, 1980; Bonsall 

et al, 1992; and Hupfer, 1997), which can be collected automatically (Darzentas et al, 

1980; Horst and Brown, 1989; and Bonsall et al, 1992). However, none of the data 

collection methods applied used the standard equipment already available at Pelican 

crossings. Darzentas et al (1980) used a pair of coaxial cables installed at points 50 

metres and 3 metres before the stop line. Horst and Brown (1989) and Bonsall et al 

(1992) collected deceleration data using instrumented cars, though a large number of 

such cars is needed to obtain sufficient data for safety monitoring (Bonsall et al, 1992) 

and this makes the method impractical. 

 

Another problem is that there are no satisfactory models relating vehicle decelerations 

with other safety indicators such as accident frequencies or conflicts. When proposing 

vehicle deceleration as a safety indicator, Balasha et al (1980) did not relate it to any 

safety indicators but defined near accidents where there was rapid vehicle 

deceleration, that differed from the normal experience. Bonsall et al (1992) developed 

models to predict accident frequencies using vehicle decelerations. However, as 

accident data needs to be collected for a long period, the deceleration data and 

accident data cannot be collected simultaneously. As the vehicle speed and 

deceleration profiles changed during the study period, Bonsall et al (1992) found that 

the relationships were not useful. They suggested that changes to the road 

environment, such as traffic management schemes and traffic calming were the cause 

of the changes. Consequently, decelerations need to be related to a safety indicator 

that can be collected simultaneously, such as conflicts. 

 

Hupfer (1997) suggested that Deceleration to Safety Time (DST), the constant 

deceleration needed to avoid a collision, is a reliable safety indicator in pedestrian-
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vehicle conflicts. He also proposed four conflict levels using deceleration. However, it 

is not obvious how he came to these conclusions, and the model relating decelerations 

to pedestrian-vehicle conflicts was not mentioned.  

 

Given the limitations of the existing work it was felt that a logical progression would 

be to develop models that examined the relationship between vehicle decelerations 

(collected from standard loops installed at Pelican crossings) and pedestrian-vehicle 

conflicts. In order to develop the models, driver reaction (change of speed) during 

conflicts at Pelican crossings needed to be examined. Similarly, it is necessary to 

understand something about how pedestrians react when they are involved in 

conflicts. Previous researchers have studied road user behaviour in conflicts in many 

situations (Hyden, 1987; Jansen et al, 1988; Horst and Brown, 1989; and Varhellyi, 

1998) but not at Pelican crossings, perhaps the nearest being the studies by Tourinho 

and Pietrantonio (2003) who examined pedestrian conflicts at signalised intersections 

or Lord (1994) who looked at conflicts between pedestrians and left turning vehicles 

at signalised intersections. 

 

3. METHOD 
 

3.1 Data collection and transcription 

 

The research was undertaken at a busy main road Pelican crossing in Leeds in the UK. 

During the five year period prior to the research records showed that there were 6 

injury accidents at the site, two of which involved pedestrians. Information on signal 

settings, road user behaviour and pedestrian-vehicle conflicts were obtained by 

analysing data collected by direct measurement, video recording and automatic 

recording using standard ‘system D’ loops. These are 3 in-situ loops (x, y and z) 

designed to detect vehicle presence and installed respectively at points 39m, 25m and 

12m upstream from the stop line of the crossing. 

 

Three additional pairs of pneumatic tubes were installed on the approach to the 

crossing. The tubes were needed for 3 reasons: 

• The data loggers linked to the xyz loops could not calculate vehicle speed over 

each loop. This problem was overcome by putting down a pair of pneumatic tubes 

1 metre apart (called T12 here) on top of the z loop, as shown in Figure 1. 
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Figure 1 about here 

 

• Vehicle speed and deceleration data were needed in advance of the x loop to 

examine aspects of driver behaviour approaching the loops. Tubes were put down 

at 57m and 56m before the stop line. These points were chosen because they were 

far enough from the Pelican that the speeds were not influenced by activities on the 

crossing. According to Darzentas (1980) and Varhellyi (1998) usually drivers do 

not decelerate before these points. Furthermore, at these points there were lighting 

columns at which the data logger and its box could be chained and locked. 

• An additional pair of tubes was needed to record vehicle speeds close enough to 

the stop line so that driver behaviour between the z loop and the stop line could be 

recorded. Tubes were put down at points of 4m and 3m before the stop line. These 

points were chosen so that almost all stopping vehicles crossed these tubes and 

their speeds could be recorded. 

 

Two video recorders were placed on the roof of an adjacent tall building. The first 

was to collect pedestrian and vehicle data in the vicinity of the crossing. This included 

the time each vehicle arrived at each loop or tube when approaching the crossing, the 

lane(s) used by the vehicle, and pedestrian crossing behaviour away from the 

crossing. The second camera was to collect signal settings, pedestrian behaviour and 

driver behaviour at the crossing. The locations were sufficiently high to prevent 

obstruction of view by large vehicles such as buses. 

 

The data from video were transcribed using the VIDS and PROGRESS programs 

(Marsden, 1995). The VIDS program was used to transcribe signal setting data 

(especially the beginning of the green for pedestrians period), pedestrian data 

(pedestrian step-off times and arrivals from which average walking speed was 

calculated), and vehicle flow; while the PROGRESS program was used to track the 

passage of each vehicle crossing the loops and tubes. The programs are able to record 

events with an accuracy of a hundredth of a second. The VIDS program can record up 

to two events (such as the time a vehicle arrives at point 1 and the time a vehicle 

arrives at point 2) simultaneously as many times as required. For each event up to six 

categories can be applied, such as motorbike, car, light goods vehicle, heavy goods 
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vehicle, bus and other. The PROGRESS program can record more than two events but 

only once for every record. Each event can also be divided into up to six categories. In 

this research the VIDS program was used to record either one or two events with up to 

two categories, while the PROGRESS program was used to record six events with six 

categories. 

 

3.2 Detection of the presence of pedestrian-vehicle conflicts 

 

Hyden (1987) developed the following definition of a traffic conflict: 

“A conflict is either an event that would have led to a collision if both 

road-users had continued with unchanged speeds and directions or a 

near-miss situation where at least one of the road-users acts as if they 

were on a collision course”. 

This importantly expanded upon earlier definitions to allow for the inclusion of near 

misses. Hyden’s method bases a conflict on the time to accident if the speed and 

direction of the participants remained unchanged. An alternative approach is using 

Post Encroachment Time (PET) which in this context is the difference between the 

moment a pedestrian leaves the area of potential collision and the moment of arrival at 

the potential collision by the conflicting vehicle possessing the right of way (Cooper, 

1984). 

 

For this research the occurrences of pedestrian-vehicle conflicts were initially 

detected using PET. Usually, in a pedestrian-vehicle conflict at this site, one vehicle 

was involved with more than one pedestrian as the presence of the signals tended to 

group pedestrian crossing actions. Furthermore, when a vehicle decelerated, the 

vehicles behind were forced to decelerate. The data were grouped into time intervals 

of one minute that was similar to the cycle time of the Pelican crossing. Models were 

then developed to relate the severity of conflicts with vehicle speeds and 

decelerations. During piloting it was found that it was also possible to relate vehicle 

speeds and decelerations with TA (Time to Accident). Eventually the occurrence and 

the severity of conflicts could be detected by using vehicle speeds and deceleration.  
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4. BEHAVIOUR OF ROAD USERS INVOLVED IN PEDESTRIAN-

VEHICLE CONFLICTS 

 

In an ideal situation there would be no conflicts at a signal controlled crossing such as 

a Pelican. However, at this site conflicts occurred both as a result of driver and 

pedestrian non-compliance with the light settings. Most driver non-compliance 

occurred during the flashing amber to drivers period (i.e. drivers should not proceed 

unless the crossing is clear of pedestrians) – this accounted for 23.3 per cent of the 

conflicts in the morning and 21.4 per cent in the afternoon. The other key period for 

conflicts was during the green for drivers phase when 51.4 per cent of the conflicts in 

the morning occurred and 61.0 per cent in the afternoon. This latter group of conflicts 

is likely related to the delays experienced by pedestrians (50 per cent of pedestrians 

experience signal-imposed delays of more than 27 seconds). 

 

The current research found that when there were pedestrian-vehicle conflicts almost 

all drivers decelerated and pedestrians walked faster or ran. When vehicles and 

pedestrians involved in conflicts were matched individually, it was found that almost 

all (i.e. 98 per cent) of the drivers took action by decelerating between the y and z 

loops. There was agreement between this finding and Hyden (1987) who found that in 

pedestrian-vehicle conflicts 93.1 per cent of actions taken by drivers included braking 

(79.1 per cent of them were braking only and 14.0 per cent were a combination of 

swerving and braking). Hyden (1987) also found that there was similarity between the 

actions taken by drivers involved in conflicts and by those involved in accidents. In 

pedestrian-vehicle accidents, 86.6 per cent of drivers decelerated (this consisted of 

67.1 per cent who decelerated only and 19.5 per cent who both swerved and 

decelerated). 

 

Varhellyi (1998) discovered that when there were pedestrian-vehicle conflicts at a 

Zebra (non-signalised) crossing, drivers started to decelerate at points between 60 and 

15m from the crossing. This differed from the current research on Pelicans which 

showed that drivers started to decelerate at points between 25 and 12m. This might be 

because at Zebra crossings pedestrians stepping off the kerb have the right of way and 

drivers would prepare to decelerate or stop, while at Pelicans the need to stop is 

governed by a signal which can be seen well in advance. Varhellyi (1998) did not 
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draw a relationship between the decelerations and the severity of conflicts so it could 

not be concluded which decelerations related to which conflicts. 

 

Jansen et al (1988) found that in traffic conflicts at priority junctions, drivers started 

decelerating between 25m and 28m upstream of the stop line, whereas Horst and 

Brown (1989) found the distances were between 15m and 38m. The result of the 

current research is similar to that of the first study but not to the second one. The first 

study was undertaken in the real world, i.e. at priority junctions; while the second one 

was a simulation of rear-end vehicle-vehicle conflicts and the drivers were aware that 

at a certain point there was a static vehicle that needed to be avoided. 

 

Howarth’s (1985) finding was also similar to that found in this research. He found that 

most drivers took avoiding actions only within 20 metres of a child pedestrian who 

was intent on crossing the road, too late to comfortably avoid a collision if the child 

continues on their course. 

 

5. MODELING SAFETY 
 

5.1 Relationship between vehicle approach speed and vehicle deceleration 

 
This research found that when drivers involved in conflicts approached the Pelican at 

higher speeds, they decelerated harder. This finding was similar to those of Horst and 

Wilmink (1986), Jansen et al (1988) and Horst and Brown (1989). For a given point, 

in this case 25m before the stop line, higher approach speeds will lead to more serious 

conflicts because the TA values (i.e. distance divided by speed) will be lower. 

Furthermore, according to Hyden (1987), similar TA values with higher speeds lead 

to more severe conflicts because higher approach speeds increase the likelihood of 

vehicle control problems. 

 
5.2 Deceleration rates as a safety indicator 
 
It was found that there was a strong relationship between vehicle deceleration and the 

severity of conflict for those vehicles with a high approach speed, i.e. not less than 37 

km/h. The data are shown in Figure 2 and the relationships developed are presented in 

Equations 1 and 2 for linear and compound models respectively. 

mTAh = 2.437 – 0.147 mdh25-12 ………………………(1) 
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Ln (mTAh) = 0.904 – 0.073 mdh25-12 …………………(2) 

Where: 

mTAh: mean Time to Accident in seconds with high vehicle approach speed, 

mdh25-12: mean vehicle deceleration in m/s2 (between the y loop and the z 

loop) with high approach speed (> 37 km/h). 

 

Figure 2 about here 

 

On the basis of this data, it is concluded that deceleration rates in this context are a 

valid safety indicator. The severity of conflicts was determined by relating the 

deceleration rates (mdh25-12) and Time to Accident (mTAh) values based on the 

models as presented in Table 1. When establishing the severity, comparisons with 

previous studies were also made. 

 

Table 1 about here 

 

It can be seen from Figure 2 and Equation (1) that a deceleration of 6m/s2 is similar to 

an mTAh value of 1.6 seconds. Hyden (1987) defined a serious conflict as one with a 

TA value of 1.6 seconds with an approach speed of not less than 40 km/h. Hyden 

(1987) did not determine the thresholds between slight and potential conflicts or 

between potential conflicts and normal encounters so these thresholds could not be 

compared with the results of this research.  

 

Bonsall (1992) showed that the number of decelerations of over 5m/s2 was related to 

the number of accidents (although the relationship was less indicative for more recent 

accidents). Williams (1977) determined 3m/s2 as a threshold of comfortable 

decelerations, Horst (1990) and Bonsall (1992) suggested 3m/s2 as a threshold 

between normal and abnormal decelerations and AASHTO (2004) use a deceleration 

rate of 3.4m/s2 as a standard design deceleration. When drivers decelerate at a rate 

that is not comfortable for them, it indicates that they did it to avoid collision. 

However the 3m/s2 deceleration rate was much lower than 6m/s2 so it was reasonable 

to suppose that the severity of the conflicts were much less serious. Deceleration of 

4.5m/s2 is between 3 and 6m/s2 and for this work it was thought reasonable to 

determine 4.5m/s2 as a nominal threshold between potential and serious conflicts. 
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Hupfer (1997) suggested 4 deceleration thresholds for various severities of pedestrian-

vehicle conflicts. This work had similarity to the current research as he used 

deceleration as an indicator to determine the severity of conflicts by assuming that the 

decelerations were constant. However, there are large differences between his 

findings and those of this research as explained below. 

 

Firstly, Hupfer (1997) used Deceleration to Safety Time (DST) while this research 

used mdh25-12. DST was calculated for individual vehicles while mdh25-12 was the 

mean deceleration for all vehicles decelerating during the flashing amber and green to 

drivers periods in a one-minute interval. 

 

Hupfer’s DST was calculated using Equation 3. 

 

Decelerationijk = 
2

2

( )S V t

t
jk ij ijk

ijk

−
……………. (3) 

Where:  

 Decelerationijk =deceleration of vehicle i between points j and k (m/s2) 

Sjk = distance between point j and k (metres) 

 Vij = speed of vehicle i at point j (m/s) 

 tijk = how long to travel from point j to point k for vehicle i (seconds) 

 

In this current research mdh25-12 was calculated based on Equation 4 and for 

approach speeds of not less than 37 km/h. 

Decelerationijk = 
V V

t
ik ij

ij k

−
……………. (4) 

 
Where: 

V ik = speed of vehicle i at point k, m/s 

 
When deceleration is constant the values calculated from the two equations are equal, 

however in real life Wortman (1994) found that constant decelerations were unlikely, 

especially for approach speeds below 45 km/h and above 100 km/h (the ratio would 

be around 0.5 and 1.5 respectively). Equation 4 would always result in decelerations 

greater than those obtained from Equation 3. 
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Secondly, Hupfer (1997) divided the severity of conflicts into 4 deceleration 

thresholds of 1, 2, 4 and 6m/s2 with 1m/s2 as a threshold of normal encounters and 

6m/s2 as a threshold of the most severe conflict. However, it was not clear how these 

conclusions were arrived at. Furthermore, the study did not mention the relationship 

between deceleration and any other safety indicator such as accidents, PET or TA. 

This is an important drawback of the method. Similarly, Balasha (1980) was criticised 

for defining thresholds of normal and abnormal encounters without relating them to 

any safety indicators. The research reported here determined the severity of conflicts 

by relating deceleration with TA. 

 

Finally, Hupfer (1997) did not mention how decelerations were measured so that it 

was not possible to compare with the method used in this research. 

 

6. AUTOMATIC MONITORING OF SAFETY AT PELICAN 
CROSSINGS 
 
6.1 Automatic monitoring: is it possible? 
 
It was not possible to develop and test a fully automatic method of safety monitoring 

at Pelican crossings because data loggers capable of recording deceleration 

automatically were not available at the time of the research. However data which can 

be used to calculate decelerations are already recorded by existing data loggers and 

hence it is felt that the methods described here are technically feasible in the near 

future. Automatic monitoring could be undertaken in the following stages using 

standard loops (i.e. a pair of speed measurement loops), yz loops and data loggers that 

have a program to calculate vehicle deceleration: 

 

Stage 1: The speed measurement loops measure the combined length of each vehicle, 

Lci, (i.e. length of vehicle + loop field length). The yz loops measure time occupancy 

of each vehicle (Δtij). 

 

Stage 2: The speed of each vehicle passing loops y and z is calculated using Equation 

6. 

 

Speed
Lc

tij
i

ij

=
Δ

  ……………………………... (6) 
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Where: 

Speedij = speed of vehicle i across Loop j 

Lci = combined length (length of vehicle + loop field length) of vehicle i in 

metres  

Δt ij = time occupancy of vehicle i crossing Loop j in seconds (obtained from 

Loop j) 

 
Stage 3: Vehicle deceleration between the loops can be calculated using Equation 4. 
 

In future, it should also be possible to undertake automatic monitoring using two 

single loops, i.e. the yz loops. This will happen if programs to predict vehicle speeds 

(by predicting Lci and measuring Δt ij) together with that to calculate vehicle 

decelerations between two points are available for data loggers. Existing data loggers 

for loops can produce loop time occupancy for each vehicle crossing a single loop 

(Δtij) and vehicle type.  

 

6.2 When and where are the techniques applicable? 

 

Because such methods use vehicle decelerations as an indicator of the severity of 

pedestrian-vehicle conflicts, care should be taken that any decelerations that do not 

relate to the activity at the Pelican crossing are not included. For instance: any 

congested lanes, any lanes having side roads within 25m of the stop line or bus lanes 

with bus stops along them. As the models were developed using data collected from a 

Pelican crossing within an Urban Traffic Control (UTC) system with a cycle time of 

60 seconds, further study would be needed to validate the models for Pelican 

crossings with different cycle time or operation. 

 

Table 2 shows the range of data used to develop the models. Vehicle flow was 

between 360 and 1140 vehicles/hour and the range of pedestrian flows was even 

wider, i.e. between 60 and 2220 pedestrians/hour. Vehicle speeds ranged from 37 to 

70 km/h. Pedestrian speeds were between 1.03 and 4.26m/s. It should be noted that 

pedestrian speeds included all pedestrians, not just those involved in pedestrian-

vehicle conflicts. 

 

Table 2 about here 
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The methods used here should be applicable to streets with any number of lanes as 

long as there are no vehicles changing lane between 25m and 12m before the stop 

line. However, further study should be undertaken to check whether the method is 

applicable in streets with different lane configurations. Special care should be taken 

where vehicles straddle more than one lane as this could invalidate any results. 

 

6.3 Collection of data 

 

Data can be collected in 3 ways, according to equipment availability. These are shown 

in Figures 3-5. 

 

The first method (Figure 3) uses 2 loops, i.e. the yz loops put down at points of 25 and 

12 metres respectively before the stop line and a set of speed measurement loops 79 

metres from the stop line. 

 

Figure 3 about here 

 

The second method (Figure 4) uses 2 loops, i.e. the yz loops and a pair of tubes (T12) 

put down on top of the z loop. 

 

Figure 4 about here 

 

The third method (Figure 5) uses 2 pairs of temporary tubes, i.e. T25 and T12 which 

are put down at points 25 and 24 metres; and 12 and 11 metres respectively from the 

stop line. 

 

Figure 5 about here 

 

The loops mentioned above are parts of standard xyz loops, while the speed 

measurement loops are usually installed on roads where 85th percentile vehicle speeds 

are higher than 56km/h (DfT, 2003b). 
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According to TRRL/IHT (1987), conflict data needs to be collected over three 

weekdays in order to get sufficient data for safety monitoring. Data are typically 

collected between 08.00 and 18.00 to provide information on peaks and off peaks, 

however it is usually not as easy to collect information during the hours of darkness. 

The methods used here, based on deceleration data, mean it is possible that 

monitoring can be undertaken in darkness. 

 

It is very important that data for the same set of vehicles are collected at points 25 and 

12m before the stop line. In order to achieve this, the first vehicle and the last vehicle 

recorded at both points must be the same. 

 

6.4 Data analysis 

 

The data loggers used with Layout 1 (Figure 3) record the time a vehicle activates 

each loop, the combined length of each vehicle (Lci), vehicle speeds at a point 79 

metres before the stop line and the time each vehicle occupies the loop. Vehicle 

speeds at the yz loops are calculated using Equation 6. 

 

The data logger for the loops in Layout 2 (Figure 4) records the time and loop time 

occupancy for each vehicle. The data logger for the tubes records the time each 

vehicle hit the first tube and the vehicle speed over the tubes. The combined length of 

each vehicle (Lci) is calculated using Equation 7 and vehicle speeds at the y loop are 

calculated using Equation 6.  

yi

yi

i t

Speed
Lc

,

,

Δ
= ……………………(7) 

Where: 
Speedi,y = speed of vehicle i across the y loop in m/s (obtained from T12) 

 Δti,y =  how long vehicle i occupied the y loop in seconds (obtained from the y 
loop) 

 

The data loggers used with Layout 3 (Figure 5) automatically record speed data. 

 

Decelerations of each vehicle between points 25 and 12 metres before the stop line are 

calculated using Equation 4. A set of vehicles is then chosen, i.e. those which 

decelerate between points 25 and 12 metres before the stop line with approach speed 

at the 25 metres point of not less than 37 km/h, during the green and flashing amber to 
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driver periods. Mean deceleration for each 1-minute interval (mdh25-12) can then be 

calculated. 

 

The severity of conflicts can be determined using the thresholds presented in Table 1. 

The results of the monitoring includes figures for the number of minutes (in both the 

morning and afternoon periods) within a one hour period which have mean 

decelerations (and hence conflicts) of particular severities as shown in Table 3.  

 

Table 3 about here 

 

6.5 How to interpret the results  

 

Two techniques can be used to interpret the safety level of a Pelican crossing. The 

first is by comparing the number of minutes having serious, slight and potential 

conflicts at a Pelican crossing with other similar Pelican crossings. The second one is 

by comparing the number of conflicts before and after the implementation of a 

measure to improve safety. According to IHT (1990b) safety monitoring can be 

carried out by comparing the number of accidents occurring for a number of years 

(usually 5) before the implementation, during the implementation and a number of 

years (usually 2) after the implementation; or 5 years before and 5 years after the 

implementation. The long period required is due to the low freqency of accidents. 

Monitoring using vehicle deceleration can be undertaken in a much shorter period 

over a few days. In this research it was found that the safety problem at the Pelican 

was more severe in the afternoon than that in the morning. As seen from Table 3 

serious, slight and potential conflicts (based on mean deceleration in each one minute 

period) occurred during 2, 3 and 9 minutes respectively in a one hour period in the 

afternoon; while in the morning there were no serious conflicts and slight and 

potential conflicts occurred during 4 and 11 minutes respectively in one hour of 

monitoring. Given lack of comparable data for other crossings it is not possible to 

conclude whether these figures represent a good or a poor safety record. Several 

researchers have indicated that accident risk is only reliably correlated with serious 

conflicts (Svensson, 1998 and Tourinho and Pietrantonio, 2003) and that therefore 

slight and potential conflicts should be omitted from the analysis. 
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7. CONCLUSIONS 
 

When involved in conflicts at a Pelican crossing, both pedestrians and drivers took 

evasive actions. Pedestrians took action by walking faster or running. Ninety eight per 

cent of vehicles involved in conflicts decelerated between points 25m and 12m before 

the stop line. It was found that the higher the vehicle approach speeds, the higher the 

vehicle decelerations and that there was a good relationship between vehicle 

decelerations and time to accident, in particular it was concluded that severity of 

conflicts could be determined using deceleration rates. It was also shown that it is 

possible to develop a fully automatic method of safety monitoring at Pelican crossings 

using standard loop configurations. Further development of the methods and the 

models needs to be undertaken, so that they can be used in a more general situation, 

and as a complement to existing monitoring techniques using accident frequencies. 

Furthermore, when the use of accident frequencies is impossible such as in a short-

term evaluation, the methods developed here can be used as an alternative.  
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met. The adjusted R2 values for both models were 0.722 and 0.739 respectively. 
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Table 1. Thresholds of Various Severity of Pedestrian-Vehicle Conflicts 
by Deceleration and Time to Accident 
Deceleration Time to accident (second) Severity 
(m/s2) Linear Model Compound Model of Conflict 

6.0 1.6 1.6 serious 
4.5 1.8 1.8 slight 
3.0 2.0 2.0 potential 
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Table 2. Range of Data Used in Modelinga 

Variable Minimum Maximum Mean Standard 

Deviation 

Vehicle Flow (veh/hour) 360 1140 706 184 

Pedestrian Flow (ped/hour) 60 2220 933 438 

Vehicle Speed (km/h) 37 70 51 10 

Pedestrian Speed (m/s)b 1.03 4.26 1.77 0.47 
a the data were calculated using a 1-minute interval  
b for all pedestrians, not only those involved in conflicts 
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Table 3. Examples of Results of Safety Monitoring at the Pelican Crossing 

Mean Deceleration 

(mdh25-12 (m/s2)) 

in each minute 

period 

Severity 

category of 

Ped-Veh 

Conflicts 

Number of 

Minutes in 

One Hour 

with conflicts: 

Morning 

Number of 

Minutes in 

One Hour 

with conflicts: 

Afternoon 

≥ 6 Serious 0 2 

≥4.5 - 6 Slight 4 3 

≥3 - 4.5 Potential 11 9 
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