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Featured Application: The tool proposed in this work was conceived in order to serve as a 
preliminary instrument to size multi-energy rural energy systems, in the context of reaching 
universal access to energy as part of Sustainable Development Goal 7 (SDG7). In addition to its 
main purpose, we believe this tool might be of interest in the study of integrated smart energy 
districts and in general integrated energy systems with high penetration of renewables, where 
the interaction among different kinds of energy demands is considered.  

Abstract: Energy system models for off-grid systems usually tend to focus solely on the provision 
of electricity for powering simple appliances, thus neglecting more energy-intensive and critical 
needs, such as water heating. The adoption of a Multi-Energy System (MES) perspective would 
allow us not only to provide comprehensive solutions addressing all types of energy demand, but 
also to exploit synergies between the electric and thermal sectors. To this end, we expand an existing 
open-source micro-grid optimization model with a complementary thermal model. Results show 
how the latter achieves optimal solutions that are otherwise restricted, allowing for a reduction in 
the Levelized Cost of Energy (LCOE) of 59% compared to a conventional microgrid, and an increase 
of reliance on renewable sources of 70%.  

Keywords: energy system; thermal; electric; modeling; off-grid; rural electrification 
 

1. Introduction 

To meet the challenging targets of climate change mitigation and ensuring affordable access to 
energy to present and future generations, it is imperative to develop innovative sustainable energy 
strategies addressing all types of energy demands [1–3]. Despite the progress experienced in recent 
years, the International Energy Agency estimates that still 900 million people do not have access to 
electricity, most of them living in rural areas [4]. The lack of reliable access to electricity is considered 
a limit on people’s opportunities and quality of life. The role of energy as pivotal to sustainable 
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development is now widely recognized by the international community, as evidenced by the 
Sustainable Development Goals (SDGs) that include “access to affordable, reliable, sustainable, and 
modern energy for all” by 2030 as a target in the SDG7. The literature emphasizes that electricity 
access in rural areas should always be accompanied and sustained by other enabling activities and 
services to contribute to greater education attainment, enhanced business opportunities, and a higher 
quality of life [5]. Rural areas are generally sparsely populated, isolated, and characterized by high 
illiteracy rates, lack of access to healthcare, and lack of a clean water supply, which lead to “standards 
of living that almost universally lag far behind urban areas” [6]. This situation is even more stressed 
by the limited progress in rural electrification due to the high cost of grid extension, which is not 
balanced by gains in local markets [7]. The complexity of the problem becomes even higher if we 
consider all the activities that involve thermal energy too. Indeed, electric energy accounts only for 
about 15% of global total final energy consumption, while much larger shares are associated with 
transport (29%) and heating (52%) needs [1]. Households account for the majority of energy 
consumed in rural areas—they require energy mainly for cooking, water heating, lighting, and space 
heating. According to Kaygusuz [8], up to 80–100% of households’ energy consumption is devoted 
to cooking and water heating that, in cold climates, indirectly can supply also space heating. 
Although in few emerging countries the situation in the last decades has improved and a general 
shift to modern energy has been achieved, the rural households often do not benefit from it since 
modern fuels and the related technologies may have higher capital and maintenance costs [7]. As a 
consequence, people that live in rural areas are often dependent on solid biomass fuels (SBF) for 
thermal energy needs, and the use of SBFs increase households’ air pollution, bringing the levels of 
air quality and thermal comfort under the minimum standard conditions [9,10].  

What is more, the smart integration of multiple energy vectors and storage options—usually 
referred to as the “Multi-Energy System” or “Smart Energy System” approach [2,3]—has been proven 
to allow for optimal energy system configurations that would remain unexplored within a single-
sector domain [11]. Indeed, non-electric storage options are typically cheaper than their electric 
counterparts, and can be supplied by multiple energy vectors [11,12]. For instance, thermal storage 
can be fed both by direct heat and by electricity (through heat pumps or resistances), thus ensuring 
an increased flexibility of the overall system and a significantly higher penetration of renewable 
sources, or reduction of use of a primary non-renewable energy supply [12,13].  

Adopting such a Multi-Energy System (MES) perspective might prove even more important in 
the context of off-grid areas, where both electric and thermal energy needs are typically satisfied by 
non-renewable fuels, associated with an unreliable and expensive supply-chain [14]. In such contexts, 
increasing the penetration of locally-available renewable sources would imply reducing the 
dependency on external fuel imports and the economic instability associated with price fluctuations. 
In fact, adoption of micro-grids in rural areas for providing access to electricity [7] is a subject greatly 
explored in scientific literature [15–24] and that is becoming a more frequently adopted solution in 
development projects both financed privately or by international organizations [25,26]. 

Nevertheless, projects regarding access to energy in off-grid villages usually tend to focus solely 
on the provision of electric energy for powering simple appliances, thus neglecting other energy 
needs—such as cooking, space heating and water heating—that are not traditionally satisfied by 
electricity and that require significantly higher amounts of energy [3,14]. The need for appropriate 
modeling for the vital purposes of planning and analysis of energy systems comes naturally with the 
rapid development of technologies and policies [27]. In particular, developing countries request an 
entirely different approach with respect to industrialized regions when modeling residential energy 
consumption. First, the socio-economic factors that are driving residential energy use, such as income 
and household size, are more heterogeneous in developing countries rather than in industrialized 
ones. Secondly, the future demand profile is affected by different factors and, in developing countries, 
it is more likely to evolve due to both the ongoing household electrification process and the transition 
from basic to modern appliances. Thirdly, in developing countries the relationship between economic 
monetary data and energy data is less obvious as a result of data quality, but also due to the role of 
the informal economy. Current energy models rarely consider these factors [28].  
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Despite the abundance of tools for modeling and optimizing off-grid systems, the large majority 
of them do not allow for an MES perspective, and even when some non-electric energy technologies 
and loads are allowed, only a restricted and pre-defined set of options is available. This is also owing 
to the lack of adequate modeling tools allowing the comprehensive analysis of multi-energy vectors 
and storage options at a village scale. In fact, modeling thermal energy systems for village-scale off-
grid contexts requires an increasing effort, in terms of: (i) higher temporal resolution of load curves 
that may include cooking, space heating, and water heating activities [29]; and (ii) higher spatial 
resolution and necessity to include topographic constraints for most energy conversion technologies, 
in the absence of centralized heat distribution networks [3]. Such barriers are exacerbated by the fact 
that most of these tools are released as closed-source, non-modifiable software, preventing 
adaptability to the context and to users’ needs, as well as repeatability [30]. This is the case, for 
example, of the widespread tools HOMER Energy [31], DER-CAM [32], and iHOGA [33,34]. 
Although these software tools are widely used, as they have the maximum combination of renewable 
energy systems and perform optimization and sensitivity analysis for off-grid energy systems, they 
still present strong limitations on control methods, load demand management, and economic 
planning [21]. Exploration of multi-energy isolated systems has been conducted by Karavas et al. [35–
37], who explore energy management of autonomous “polygeneration microgrids”, which highlight 
the economical convenience of adopting these kinds of integrated supply system. As a response to 
the lack of open-source models for off-grid energy systems optimization, Balderrama et al. recently 
released the open-source MicroGridsPy, a Python-based modeling framework conceived for the 
optimization of hybrid electric micro-grids [16]. In this study, we expand MicroGridsPy by 
integrating it with a novel complementary high-resolution thermal energy system model, including 
thermal energy conversion technologies, storage options, and back-up systems. The expanded model 
results in an integrated village-scale MES optimization tool (MESpy), which we apply to generate a 
set of scenarios for the implementation of a sustainable and resilient energy system for the case of the 
rural village of Toconao, located in the Atacama Desert in Chile, which is currently totally dependent 
on imports of diesel-generated electricity and liquid propane gas (LPG) for its energy supply. In 
particular, we focus on the two most energy-demanding final uses of the village, namely domestic 
hot water (DHW) and electric appliances for residential, commercial, and institutional uses. Our 
analysis aims at investigating the potential benefits, in terms of energy cost, overall system efficiency, 
penetration of renewables and imports dependency, ensured by the integration of the thermal and 
electric energy systems, compared to scenarios in which all energy needs are satisfied by means of 
traditional fuels or electricity only.  

The remainder of this paper is structured as follows: Section 2 presents the case study, to which 
we apply our proposed modeling framework as proof of concept, and characterizes the different 
modeled scenarios; Section 3 presents the modeling approach of the thermal side of the energy system 
model proposed; the results of the modeling phase are presented and discussed in Section 4; finally, 
in Section 5 we draw the conclusions deriving from the work.  

2. Case Study and Scenario Characterization 

In the period of June–July 2017, we conducted a field campaign to assess the baseline energy 
situation of Toconao. The village population was about 800 inhabitants, grouped into 332 households. 
It comprised 32 commercial activities—such as restaurants and small grocery stores—a public school, 
and 6 public offices. Electricity was supplied by diesel-fired generation units from the nearby village 
of San Pedro de Atacama, yet the cost of electricity tariffs were more than double the national average 
and the supply was subject to frequent blackouts, typically lasting for several days and necessitating 
reliance on a 320-kW diesel backup generator. LPG bottles, delivered to the village by trucks on a 
weekly basis, represent instead the main source for the supply of thermal energy for final uses. As 
seen for electricity, the gas price is also significantly higher than the national and regional average 
[38] due to its isolated location. Overall, the village shows a marked dependency on expensive, non-
renewable, unreliable, and imported primary energy sources. In addition, it is worth noting that an 
estimated more than half of the total final energy consumption is due to thermal demand—in 
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accordance with the abovementioned global trend—mostly driven by DHW loads. On the other 
hand, the area is characterized by a significant solar energy potential due to its latitude and height 
above mean sea level, with a total annual global horizontal irradiation of 2578 kWh/(m2∙year).  

Figure 1 presents a conceptual scheme of the village and the energy carriers considered in this 
study. Toconao will be considered as an isolated country and the International Energy Agency’s 
(IEA’s) energy accounting method [39] will be adopted to estimate the Total Primary Energy Supply 
(TPES) entering the system. 

 
Figure 1. Conceptual scheme of the village of Toconao for energy accounting purposes. 

We propose four configuration scenarios (summarized in Figure 2) to analyze how different 
energy system architectures may improve the energy cost, the overall energy efficiency of the village, 
the renewables penetration, and the dependency on import, namely: 

(a) Traditional energy system, in which all main energy needs (electric and DHW) are satisfied 
by means of the current mix of sources and technologies, i.e., diesel generators and LPG boilers. 

(b) Conventional micro-grid, in which a typical hybrid micro-grid (including photovoltaic (PV) 
panels, batteries, and diesel generators) is installed to only supply purely electric loads, while DHW 
loads are covered by LPG boilers. This configuration scenario is defined to represent the mainstream 
strategy adopted in the framework of off-grid projects, which rarely take into account non-electric 
loads. 

(c) Multi-good micro-grid, where the hybrid micro-grid is sized in order to meet all the energy 
needs of the village, hence including DHW loads, which are in this case supplied by means of electric 
heaters. 

(d) Integrated multi-energy system, where solar thermal collectors, hot-water tanks, and LPG 
boilers are coupled with the hybrid micro-grid to serve DHW loads. The micro-grid can also interact 
with the thermal energy system through electric resistance heating elements installed inside hot-
water tanks. In this configuration, electricity can be thus stored both directly, in battery banks, and 
indirectly, in hot-water tanks for thermal use.  

It is worth specifying that the possibility of cogeneration from the diesel generators is not taken 
into account within the scenarios, due to the absence of a centralized heat distribution network and 
to the low realism of assuming the construction of such an infrastructure in the context of interest. 
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Figure 2. Schematic summary of the four scenarios considered: (a) traditional energy system; (b) 
conventional micro-grid; (c) multi-good micro-grid; (d) integrated multi-energy system. 

3. Modeling Approach 

3.1. Load Profiles 

For the generation of multi-energy load demand profiles we adopted a similar approach to the one 
used in previous work [40] making use of the open-source tool RAMP [41]. RAMP relies on a high-
resolution (1-min time-step) bottom-up stochastic approach that builds on information about 
appliances’ ownership and time of use collected via interviews in the field. The model is based on the 
definition of different classes of users, each characterized by a number of individual users and a set of 
electrical and thermal appliances. Each run of the model computes a one-day load curve by simulating 
the random variability of the functioning times and absorbed power of each appliance per user; the sum 
of all the single loads results in the total aggregated demand of the study area. The interested reader 
can refer to the original RAMP work [41] for a more detailed description of the model. 

3.1.1. Electric Load Curves 

Electric load profiles are generated based on four different sets of input data, reproducing four 
specific seasonal behaviors. The data were collected during a field campaign conducted by the 
authors in the study area (2017), in which specific questionnaires to investigate the ownership and 
usage patterns of electrical and thermal appliances were administered to the population. The 
seasonality of the loads refers to dawn and dusk times, which influence the working hours of street 
lighting, outdoor, and indoor lights. Also, the school follows seasonal behavior and the electric load 
is considered null during the holiday period (December–February). Moreover, the loads are modeled 
depending on the day of the week, and, for example, the school is not considered to have any load 
during the weekends. 

The collected data are used to build a table of electricity behavior of the different identified 
categories of users inside the village, reported in Tables S1 and S2 of the Supplementary Information. 
For each user, the type and number of owned appliances are identified, and for each appliance its (i) 
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power, (ii) number of daily functioning time windows, (iii) time windows start and end times, (iv) 
percentage of variability of time windows start and end times, (v) total daily functioning time, (vi) 
percentage of variability of total daily functioning time, (vii) minimum time the appliance is kept on 
after a switch-on event, (ix) percentage of occasional use, and (x) weekend or weekday use. 
Stochastically simulating the energy consumption of each user inside the village based on this 
information, the aggregated electric load profile is generated. The interested reader can refer to the 
original work describing the RAMP tool [41] and to a previous work in which the described 
methodology is adopted and coupled with a mini-grid sizing tool for a case study in Bolivia [40]. 

3.1.2. Thermal Load Curves 

RAMP is specifically designed to generate not only electrical demand profiles but thermal 
demand profiles as well—DHW needs in this specific case. In order to improve the characterization 
of the power needed for heating the water for domestic purposes, a modification to RAMP is 
proposed: according to Fischer et al. [42] the daily groundwater temperature was derived from the 
daily average ambient temperature through Equation (1). 𝑇௚௪(𝑛ௗ௔௬) = 𝑇௔௠௕തതതതതത − 3 cos ൬ 2𝜋365 ൫𝑛ௗ௔௬ − 𝑛ௗ௔௬௠௜௡൯ ൰ [𝐾] (1) 

where: 

 𝑇௚௪[𝐾] is the groundwater temperature; 
 𝑛ௗ௔௬ [−] is the progressive number of the considered day of the year; 
 𝑇௔௠௕തതതതതത [𝐾] is the yearly average ambient temperature;  
 𝑛ௗ௔௬௠௜௡ [−] is the progressive number of the day with the lowest temperature of the year. 

Once the daily groundwater temperature is computed, it is possible to calculate the power 
consumed by the three main tasks identified: showers, handwashing, and dishwashing: 𝑃௧௔௦௞ = 𝑚௪ሶ 𝑐𝑝௪൫T୲ୟୱ୩ − 𝑇௚௪൯ (2) 

where: 

 𝑃௧௔௦௞[𝑊] is the power required to heat the water for the operation of the task; 
 𝑚௪ሶ  [𝑙/𝑠] is the water mass flow required by the task, retrieved from references [43,44]; 
 𝑐𝑝௪  ቂ ௞௃௞௚ ௄ቃ is the water isobaric specific heat;  

 T୲ୟୱ୩ [𝐾] is the temperature of the water needed for the specific task, retrieved from references 
[43,44];  

 𝑇௚௪[𝐾] is the groundwater temperature. 

The time series with the powers of the DHW-related tasks are then fed to the RAMP model. The 
modifications to RAMP are available with the repository of the model [45]. 

Furthermore, differently from electric loads, thermal loads related to different user classes are 
not aggregated in a single total load profile. In fact, considering the absence of a centralized heat 
distribution network, thermal loads need to be spatially bound to the site of consumption. 
Accordingly, we model a separate thermal load profile for each user class, namely:  

(i) commercial activities,  
(ii) domestic, 
(iii) public offices, 
(iv) school. 

No seasonality is considered for thermal loads, which are stochastically generated for 365 days 
based on the same set of input data. Further details about the data and the assumptions made for the 
creation of electric and thermal loads are provided in Supplementary Information. 
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3.2. Multi-Energy System 

The MESpy model, accessible at the GitHub Repository [45], builds on the existing concept 
developed by Balderrama et al. [16] for purely electric micro-grids, by adding a complementary 
thermal energy system model comprising solar thermal energy conversion technologies (flat-plate 
solar thermal collectors), thermal storage (hot-water tanks) and traditional back-up systems (LPG 
boilers). Thermal technologies are not connected by any centralized heat distribution network, and 
thus direct heat consumption remains bound to the site of generation. Nevertheless, the electric and 
thermal systems are interconnected by means of electric resistance heating elements that are modeled 
inside hot-water tanks, thus allowing a “smart” electric recharge of the thermal storage that gives rise 
to a more flexible MES, as shown by the sketch in Figure 3. Such electric resistance heating elements 
are also interpreted as standalone components to model electric heaters in the multi-good micro-grid 
configuration. The main inputs and output of MESpy are summarized in Table 1. 

Table 1. Main inputs and outputs of the Multi-Energy System model. 

Inputs Outputs 
PV panel output Optimal system size 

Solar collector output Net Present Cost (NPC) 
Electric load profile Levelized Cost of Energy (LCOE) 
Thermal load profile Electric dispatch strategy 
Economic parameters Thermal dispatch strategy 

Further details about the specific technical characteristics of the modeled technologies, and 
about PV panels’ and solar collectors’ outputs, are available in Figure 3. 

 
Figure 3. Schematic representation of the integrated electric and thermal energy system model. The 
thermal energy system is not a single centralized entity but rather the aggregate of multiple user-scale 
individual systems, which are modeled for each user within each user class and only connected 
through the electricity grid, in the absence of a heat distribution network. 

It is worth noting that, while the electric energy system consists of a single entity, the thermal 
energy system is composed of multiple user-scale energy systems, which reproduce topographically 
constrained generation and consumption for each user within each user class. In other terms, the 
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model considers each thermal user class k (as listed above: commercial activities, domestic, public 
offices, and school) as a separate system consisting of the aggregate of Nk user-scale subsystems 
(where Nk is the number of users within the k-th class). Indeed, the thermal energy balance (Equation 
(3)) satisfies independently the thermal demand (in this case DHW only) for each thermal user class 
k, and for each time step t.  𝐸்௛,௖௟௔௦௦ ௗ௘௠௔௡ௗ(𝑘, 𝑡)=  𝐸௕௢௜௟௘௥(𝑘, 𝑡) + 𝐸்௔௡௞೚ೠ೟(𝑘, 𝑡) − 𝐸஼௨௥௧(𝑘, 𝑡)+ 𝐸௟௢௦௧ ௟௢௔ௗ,௧௛(𝑘, 𝑡)     ∀𝑘, ∀𝑡 

(3) 

where 𝐸௕௢௜௟௘௥ is the energy supplied by the LPG boilers, 𝐸்௔௡௞೚ೠ೟ the energy supplied by the hot 
water tank, 𝐸஼௨௥௧  is the fraction of the excess energy produced by solar collectors that cannot be 
stored in the tank, and 𝐸௟௢௦௧ ௟௢௔ௗ,௧௛ is the accepted fraction of unmet thermal load—which we set at 
1% for all the scenarios. 

On the electrical side, the energy balance (Equation (4)) includes the energy generated by PV 
panels (𝐸௉௏ ) and diesel generators (𝐸ீ௘௡), the energy flows to and from the battery (𝐸௕௔௧,௖௛  and 𝐸௕௔௧,ௗ௜௦ ), the electric energy that is curtailed (𝐸஼௨௥௧ ), the energy supplied to the thermal storage 
through electric resistance heating elements (𝐸ோ௘௦,௧௢௧ ), and the fraction of accepted unmet load 
(𝐸௟௢௦௧ ௟௢௔ௗ)—set at 1%, as for thermal loads. 𝐸ா௟,ௗ௘௠௔௡ௗ(𝑡) = 𝐸௉௏(𝑡) + 𝐸ீ௘௡(𝑡) − 𝐸௕௔௧,௖௛(𝑡) + 𝐸௕௔௧,ௗ௜௦(𝑡) − 𝐸஼௨௥௧(𝑡) − 𝐸ோ௘௦,௧௢௧(𝑡)+ 𝐸௟௢௦௧ ௟௢௔ௗ(𝑡)   ∀𝑡 

(4) 

where 𝐸ோ௘௦,௧௢௧ is the cumulative energy absorbed by the electric resistance heating elements of all n 
thermal classes, as shown by Equation (5). 

𝐸ோ௘௦,௧௢௧(𝑡) =  ෍ 𝐸ோ௘௦,௖௟௔௦௦(𝑘, 𝑡)     ∀𝑡௡
௞ୀଵ  (5) 

As compared to the original MicroGridsPy model, which includes both linear programming (LP) 
and mixed-integer linear programming (MILP) optimization modes depending on the way the diesel 
generator is modeled, the novel MESpy model is based uniquely on a LP configuration. This choice 
is motivated by the necessity to keep the computational time within a reasonable range while we 
increase the temporal resolution of the model from the original 1 h to the current 1 min. 

3.2.1. Electric Components 

The equations adopted to model the behavior of the electric components, and thus constraining 
the variables in Equation (4), are kept identical to those already introduced by Balderrama et al. [16] 
for the original MicroGridsPy model, in its LP version. The reader is thus referred to the 
abovementioned study for further details.  

3.2.2. Thermal Components 

Solar Thermal Collectors 

The total thermal energy provided by the solar collectors (𝐸ௌ஼೟೚೟) for each class k is computed as 
the energy generated by a single collector (𝐸ௌ஼)—which is given as an input to the model—multiplied 
by the number of solar collectors in the class, 𝑁ௌ஼. 𝐸𝑆𝐶𝑡𝑜𝑡(𝑘, 𝑡) = 𝐸𝑆𝐶(𝑘, 𝑡) ∙ 𝑁𝑆𝐶(𝑘)     ∀𝑘, ∀𝑡 (6) 

Further details about the specific flat-plate collector model used as a reference, and about how the 
collector output is obtained, are provided in Supplementary Information. It is worth noting that 𝑁ௌ஼(𝑘) 
is an optimization variable for each class and is not given as an input. Indeed, it is indirectly taken into 
account in Equation (3), due to its contribution to the definition of 𝐸்௔௡௞೚ೠ೟(𝑘, 𝑡) (Equation (7)). 
  



Appl. Sci. 2020, 10, 7445 9 of 20 

 

Hot-Water Tanks 

Hot-water tanks provide an option for thermal energy storage within the model, and can be fed 
by both solar collectors and electric resistance heating elements. The tanks are represented adopting 
a fully-mixed (or thermal capacity) model [46]: for each time-step t and for each class k, the thermal 
energy stored in the tank (𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡)) is computed based on the balance reported in Equation (7). 
The latter considers the energy stored in the preceding step (𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡 − 1)), the energy supplied 
by solar collectors (𝐸ௌ஼೟೚೟) and by the electrical resistance (𝐸ோ௘௦,௖௟௔௦௦ ∙ 𝜂ோ௘௦ , with 𝜂ோ௘௦  = 1), and the 
energy flow outside the tank (𝐸்௔௡௞೚ೠ೟ ). Energy losses due to the heat transfer between thermal 
storage and environment are taken into account by means of an efficiency parameter (𝜂௧௔௡௞ = 0.999), 
following the approach proposed by Duffie and Beckman [47]. 𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡) = 𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡 − 1) ∙ 𝜂௧௔௡௞ + 𝐸ௌ஼೟೚೟(𝑘, 𝑡) + 𝐸ோ௘௦,௖௟௔௦௦(𝑘, 𝑡) ∙ 𝜂ோ௘௦ − 𝐸்௔௡௞೚ೠ೟(𝑘, 𝑡)  ∀𝑘, ∀𝑡 

(7) 

A set of constraints is also defined, as shown in Equations (8)–(10). In particular: 
 The energy stored in the tank is constrained not to exceed the maximum capacity 𝐶ௌை஼௧௔௡௞ of 

the tank, for each class k. 𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡) ≤ 𝐶ௌை஼௧௔௡௞(𝑘)     ∀𝑘, ∀𝑡 (8) 

 The energy stored in the tank is constrained to be kept above a minimum value (defined as depth 
of discharge, 𝐷ௌை஼), defined as a percentage of the nominal tank capacity. 𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡) ≥ 𝐶ௌை஼௧௔௡௞(𝑘) ∙ 𝐷ௌை஼     ∀𝑘, ∀𝑡 (9) 

 The thermal energy flow out of the tank (𝐸்௔௡௞೚ೠ೟ ) is constrained to be lower than the tank 
maximum power of discharge (𝑃௢௨௧,௠௔௫) multiplied by a delta time (∆𝑡) calibrated on the time-step. 𝐸்௔௡௞೚ೠ೟(𝑘, 𝑡) ≤ 𝑃௢௨௧,௠௔௫(𝑘) ∙ ∆௧     ∀𝑘, ∀𝑡 (10) 

It is worth noting that, in opposition to Battery Energy Storage System (BESS), where the depth 
of discharge is due to the fact that batteries have a minimum level of charge at which they can 
discharge during the functioning cycle as constrained by electrochemical limitations, in the case of 
thermal storage the depth of discharge is due to a different phenomenon. The energy contained in 
the water tank is defined by an energy balance to the mass of water 𝐸௧௔௡௞ = 𝑚௪௔௧௘௥ ∙ Δ𝑇. Following 
this equation, the level of zero energy corresponds to the tank containing water at ground 
temperature T୥୵ . Since the user does not desire to use water at ground temperature, but at a 
minimum temperature T୲ୟୱ୩, as defined in Section 3.1.2, the minimum level at which the tank can 
operate is defined by this desired temperature, resulting in the tank depth of discharge. 

Electric Resistance Heating Elements 

Electric resistance heating elements are modeled inside hot-water tanks to maintain a minimum 
level of stored thermal energy (i.e., a minimum water temperature) as well as to serve as an additional 
backup system to satisfy the thermal demand when needed. The decision about the possible switch-
on of electric resistances at each time step is a result of the cost-optimization problem, as it is for LPG 
boilers, optimization of which is considered for each user class independently. The resistance is 
assumed to have a unitary efficiency (𝜂ோ௘௦) and the energy provided per unit time-step (𝐸ோ௘௦,௖௟௔௦௦(𝑘, 𝑡)) 
is constrained to not exceed its nominal capacity (𝐶ோ௘௦), as shown in Equation (11). 𝐸ோ௘௦,௖௟௔௦௦(𝑘, 𝑡) ≤ 𝐶ோ௘௦(𝑘) ∙ ∆𝑡    ∀𝑘, ∀𝑡 (11) 

LPG Boilers 

LPG boilers act as a backup system connected directly to the thermal load. The thermal energy 
per unit time-step provided by LPG boilers (𝐸஻௢௜௟௘௥ ) is constrained to remain below its nominal 
capacity value (𝐶஻௢௜௟௘௥).  



Appl. Sci. 2020, 10, 7445 10 of 20 

 

𝐸஻௢௜௟௘௥(𝑘, 𝑡) ≤ 𝐶஻௢௜௟௘௥(𝑘) ∙ Δ𝑡    ∀𝑘, ∀𝑡 (12) 

The model also computes the LPG consumption (𝐿𝑃𝐺௖௢௡௦) dividing the energy supplied by the 
boilers by their nominal efficiency (𝜂௕௢௜௟௘௥) and the LPG heating value, as shown by Equation (13). 𝐿𝑃𝐺௖௢௡௦ = 𝐸௕௢௜௟௘௥𝜂௕௢௜௟௘௥ ∙ 𝐿𝐻𝑉௅௉ீ (13) 

3.2.3. Optimization 

The objective function is the minimum total Net Present Cost (NPC) of the energy system, 
computed in Equation (15). 𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = min(𝑁𝑃𝐶) (14) 

𝑁𝑃𝐶 = 𝐼𝑛𝑣 + ෍ 𝑌𝐶𝐶(1 + 𝑒)௡ே
௡ୀଵ + 𝐶𝑜𝑠𝑡௥௘௣ (15) 

where 𝐼𝑛𝑣 is the total investment cost, 𝑌𝐶𝐶 is the yearly constant cost of the project, 𝑁 is the project 
lifetime, 𝑒 is the discount rate factor, and 𝐶𝑜𝑠𝑡௥௘௣ is the cost of components replacement (in this case 
defined for batteries only). 

The total investment cost is calculated as the summation of the specific investment costs multiplied 
by the total installed capacity of each component. The specific costs are provided in Table S1 in the 
Supplementary Information and are considered as the total installed cost, including hardware costs 
(component, cabling costs), and installation costs (connection costs including inverters cost if required), 
per unit of capacity. 

The total investment is evaluated by summing the capital costs of all the installed components, 
computed based on their specific costs (expressed in USD/kW for generation technologies and 
USD/kWh for storage). Equation (16) reports the detailed calculation of the investment cost, in which 𝑓𝑢𝑛 represents the percentage of the investment that is financed by a bank (or any another entity). 

𝐼𝑛𝑣 = ൥𝑁௉௏𝐶௉௏𝑈௉௏ + 𝐶௕௔௧𝑈௕௔௧ + 𝐶௚௘௡𝑈௚௘௡
+ ෍൫𝑁ௌ஼(𝑘)𝑈ௌ஼𝐶ௌ஼ + 𝑈்௔௡௞𝐶ௌை஼௧௔௡௞(𝑘)௡

௞ୀଵ+ 𝑈஻௢௜௟௘௥𝐶஻௢௜௟௘௥(𝑘)+𝑈ோ௘௦𝐶ோ௘௦(𝑘)൯൩ ∙ (1 − 𝑓𝑢𝑛) 

(16) 

𝑌𝐶𝐶  is calculated as shown by Equation (17), where 𝐶𝑜𝑠𝑡ை&ெ  is the cost of operation and 
maintenance of the system and 𝐶𝑜𝑠𝑡௙௜௡௔௡ is the fixed-rate loan payment, while the other variables 
represent costs associated with the use of fossil fuels and the cost of losing the unmet load (𝐿𝐿௖௢௦௧).  

𝑌𝐶𝐶 = 𝐶𝑜𝑠𝑡ை&ெ + 𝐶𝑜𝑠𝑡௙௜௡௔௡ + ෍ 𝐶𝑜𝑠𝑡஽௜௘௦௘௟(𝑡) +்
௧ୀଵ ෍ 𝐶𝑜𝑠𝑡୥ୟୱ(𝑡) + 𝐿𝐿௖௢௦௧்

௧ୀଵ (𝑡) (17) 

𝐶𝑜𝑠𝑡௙௜௡௔௡ in Equation (18) is computed as per Equation (18), where 𝑖 is the number of years in 
which the loan has to be paid back and 𝑟 is the interest rate. 𝐶𝑜𝑠𝑡௙௜௡௔௡ = 𝐼𝑛𝑣 × 𝑓𝑢𝑛 × 𝑟1 − (1 + 𝑟)ି௜  (18) 

The cost of components replacement is finally computed as per Equation (19), where 𝑦 is the 
number of years after which a battery is replaced. 𝐶𝑜𝑠𝑡௥௘௣ = 𝐶௕௔௧ × 𝑈௕௔௧(1 + 𝑒)௬  (19) 



Appl. Sci. 2020, 10, 7445 11 of 20 

 

𝐶𝑜𝑠𝑡௥௘௣ = 𝐶௕௔௧ × 𝑈௕௔௧(1 + 𝑒)௬  (20) 

Based on the NPC, the model also evaluates the Levelized Cost of Energy (LCOE) as in Equation (20), 𝐿𝐶𝑂𝐸 = 𝑁𝑃𝐶∑ 𝐸ௗ௘௠௔௡ௗ(1 + 𝑒)௡ே௡ୀଵ  (21) 

where 𝐸𝑑𝑒𝑚𝑎𝑛𝑑 is the total energy demand (electric and thermal) of the system. 
An overall system efficiency is also computed as per Equation (21), 𝜂௢௩௘௥௔௟௟ = 𝐸ௗ௘௠௔௡ௗ,௡௘௧∑ 𝐸௦௨௣௣௟௬,௝௝  (22) 

where 𝐸ௗ௘௠௔௡ௗ,௡௘௧ is the net (i.e., after subtracting the lost load) total energy demand, and 𝐸௦௨௣௣௟௬,௝ 
is the total energy supplied by each j-th energy supply technology (such as diesel generators, PV 
panels, LPG boilers, and solar thermal collectors). 

4. Results and Discussion 

4.1. Generated Load Profiles 

Figure 4 reports four different load profiles, one per each modeled season, of the electric daily 
load profile of the entire village, generated with a 1-min time-step. The profile shows a peak of about 
175 kW in the evening (approximately around 8:00 p.m.).  

 
Figure 4. Total electric load profile in an average day in different seasons. 

Thermal loads are represented in Figure 5, disaggregated for user class. As expected, these are 
characterized by almost-instantaneous significant peaks, especially as regards the school user class, 
being a single user with several short hot-water needs during the day. 
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Figure 5. Thermal load profiles for the four user classes: (top right) domestic; (top left) commercial 
activities; (bottom left) public offices; and (bottom right) school. 

The two modeled energy demands correspond to a Total Final Consumption (TFC) of about 3245 
MWh/year, with a share of 25% for electricity and 75% for DHW, in accordance with the literature [8]. 

4.2. Optimization Results 

The MES model provides the optimal energy system configuration for each of the selected 
scenarios. The results in terms of LCOE, Total Primary Energy Supply (TPES), import dependency 
and renewables penetration are summarized in Table 2. 

Table 2. Summary of selected indicators for the four proposed scenarios. 

 Traditional Energy System (Baseline) 
Conventional  
Micro-Grid 

Multi-Good  
Micro-Grid 

Integrated Multi-
Energy System 

TPES [ktoe] 467.8 322.2 362.3 442.9 
Imports [%TPES] 100% 77.0% 16.2% 6.3% 

Renewables [%TPES] 0% 23.0% 83.8% 93.7% 
BESS Use [%TFC_el] 0% 67.8% 61.0% 53.8% 
LCOE [USD/kWh] 0.259 0.220 0.198 0.090 

All the proposed scenarios result in an improvement of the energy situation of the village as 
compared to the baseline situation. The conventional micro-grid configuration, in which thermal 
needs are still constrained to be satisfied by LPG boilers alone, already allows the user to achieve a 
consistent reduction of TPES and a significative reduction in the LCOE. However, renewables 
penetration and energy independency are significantly lower than for the integrated multi-energy 
system case and are achieved at the expense of a higher LCOE. This highlights how focusing solely 
on electric needs does not allow for the identification of the overall optimal solution. Similarly, the 
multi-good micro-grid scenario, in which all energy needs (including DHW, through electric heaters) 
are satisfied by an electric micro-grid, is associated with a lower LCOE value than the conventional 
microgrid solution, but still far from the results that can be achieved with a fully integrated system. 
In fact, although the system is in this case characterized by a very high penetration of solar PV panels, 
the micro-grid size increases significantly as a consequence of the need to manage two different loads 
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with a single and costly storage option: as shown in Table 3, the installed PV capacity is more than 
four times that of the conventional micro-grid configuration, also the battery bank is almost four-fold 
and the diesel genset capacity is almost the same size as the baseline case, while it was almost left 
unused in the conventional microgrid. As expected, this configuration is suboptimal due to the 
restriction that is derived from the exclusion of the possibility of installing LPG boilers or thermal 
storage. It also results in far the highest investment cost among the four system configurations 
considered, confirming its low feasibility in rural contexts. 

Table 3. Summary of installed nominal capacities, total investment, and operations and maintenance 
(O&M) costs for different energy conversion and storage technologies in the four proposed scenarios. 

 
Traditional Energy 
System (Baseline) 

Conventional  
Micro-Grid 

Multi-Good 
Micro-Grid 

Integrated Multi-
Energy System 

PV panels [kW] - 320 1312 321 
Battery storage 

[kWh] 
- 1621 6257 1563 

Diesel gensets 
[kW] 

181 19 159 42 

Solar collectors 
[kW] 

- - - 1703 

Hot-water tanks 
[kWh] 

- - - 8533 

LPG boilers [kW] 1417 1417 - 1 
Electric heaters 

[kW] 
- - 1467 229 

Total investment 
cost [MUSD] 

0.18 1.68 6.24 2.56 

Total O&M cost 
[MUSD] 

11.55 8.31 2.74 1.53 

Net Present Cost 
[MUSD] 

11.73 9.98 8.98 4.09 

This result underlines how the idea of satisfying all types of energy demand through electric 
appliances implies significant complications in terms of system management and dispatch strategy, 
leading to an unprofitable overreliance on electric storage options and an unrealistic size of installed 
renewable power. This can be seen in the graphical representation of the electrical dispatch in Figure 
6c: the electricity production of the multi-good micro-grid far exceeds the purely electric load, as a 
relevant excess needs to be redirected to electric heaters in order to also satisfy thermal loads. 
Conversely, the excess electricity conveyed to thermal loads in the integrated multi-energy system 
scenario represents only a negligible fraction of the total electricity production, i.e., that needed to 
compensate losses from the storage tanks.  

The integrated multi-energy system is the configuration allowing for the lowest LCOE, 
notwithstanding the need to have thermal energy conversion technologies spatially bound to the site 
of consumption and the subsequent impossibility to exploit economies of scale. This is a result of the 
combined presence of a second renewable energy conversion technology (solar collectors) and, 
moreover, of an additional and more cost-effective energy storage option, i.e., hot-water tanks. Figure 
7 shows the thermal energy dispatch for representative users within each thermal user class, in the 
integrated multi-energy system. It is noteworthy how the adoption of solar collectors and hot-water 
tanks, integrated with the electric resistances, as technology to satisfy the DHW needs, made the 
thermal side of the system almost energy independent: the proposed system is capable of satisfying 
the totality of the thermal demand on its own, as it emerges from the low installed capacity of the 
LPG boilers in Table 3. 
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Figure 6. Electric energy dispatch strategy in the four modeled scenarios, namely: (a) baseline; (b) 
conventional micro-grid; (c) multi-good micro-grid; (d) integrated multi-energy system. The 
represented day is September 23rd 2017. Representative days for all the modeled seasons are reported 
in the Supplementary Information of this work. 

This is a consequence of the fact that PV generation follows the same production pattern of solar 
collectors, bound to the daily solar irradiance profile. If other renewable sources, with a different 
daily production profile (such as wind), were exploitable, they could potentially further benefit from 
the presence of thermal storage, which could also be electrically charged and used during morning 
and evening peaks.  
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Figure 7. Example of thermal energy dispatch for representative single users for each of the four 
modeled user classes. The represented day is September 23rd 2017. Representative days for all the 
modeled seasons are reported in the Supplementary Information of this work. 

Figure 7 represents the thermal dispatch strategy of the configuration scenario for the integrated 
multi-energy system, and shows in barred blue the output from the storage tank, fed by both electric 
resistance and solar collectors, and subject to thermal dispersion towards the environment, as can be 
deducted from the downward slope of the state of charge during the night. The resistance and the solar 
collector output energy are plotted in the background, and when they are not satisfying the loads, they 
are charging the tank, or curtailed. Curtailment is not plotted to avoid an overcrowded plot.  

5. Conclusions and Future Work 

The study shows that the novel open-source MES optimization tool that we developed, building 
on the existing MicroGridsPy, effectively allows for the generation and comparison of multiple 
integrated thermal and electric energy system configurations for off-grid contexts. In particular, the 
application of the tool to the Chilean village of Toconao confirms how the integration of multiple 
energy vectors and storage options allows to identify the lowest-cost optimal solutions that remain 
unreachable within a single-sector perspective. Indeed, both “micro-grid” configurations proposed 
(conventional and multi-good) face some limitations as compared to the integrated multi-energy 
system, either in terms of economic viability or technical feasibility.  

In fact the conventional micro-grid (b) configuration, in which thermal loads are not involved in 
the optimization of the new supply technology, and left to be satisfied with the same technology 
adopted in the traditional energy system (a), lowers the NPC of the project by 15%, mainly by cutting 
the use of diesel through the 20 years of operation, overcompensating the higher installation cost of 
the PV technology, but leaves untapped the potential of the integration of the two energy systems.  

The multi-good micro-grid (c) represents a first step towards this integration. In this 
configuration the totality of the thermal load is satisfied by the electric microgrid, by means of electric 
water heaters. This configuration shows slight improvements in terms of NPC, and hence, of LCOE, 
showing a further reduction of 8% in the Net Present Cost, meaning 23% less than the traditional 
energy system (a). While from the point of view of penetration of renewable energy in the system, 
this configuration with a penetration of 83% results in 60% more solar energy bring used in the system 
compared with configuration (b). 

Reaching the higher level of integration in this work is represented by the multi-energy system 
(d), configuration in which thermal loads and electrical loads can be satisfied by a completely 
integrated system, made up of PV panels; battery electric storage system; a back-up diesel generator; 
thermal solar collectors; a hot-water storage tank, with electric resistances able to heat up the 
contained water; and back-up LPG boilers. In this configuration is possible to reach a minimum NPC 
that is 65% lower than the traditional energy system (a), 59% lower than the conventional micro-grid 
(b), and 54% lower than the multi-good micro-grid (c). What is more, a LCOE of 0.090 USD/kWh and 
a renewable penetration of 93.7% are reached.  

A “Multi-Energy” or “Smart Energy System” perspective is thus critical to achieve overall 
optimal energy systems configurations, especially in relationship with the inclusion of multiple 
storage options. Potentially, larger benefits might be achieved in cases where different renewable 
energy sources can be coupled and where even more energy vectors and storage options can be 
integrated. Furthermore, the link between the electric and thermal sector is in this case limited to the 
supply of energy to counterbalance heat losses from thermal storage, but it might be improved by 
considering the use of heat pumps or combined heat and power (CHP) plants.  

It is also worth noting how the focus of the present analysis is the comparison of different energy 
system scenarios from an overall point of view. As such, it does not aim at accurately reproducing 
the physical behavior of all the modeled technologies, which may be indeed obtained, if needed, by 
implementing a MILP logic. We are aware of this limitation and future work is planned to explore 
the effects of implementing it. For instance, MILP would allow better evaluation of the choice of 
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installing or not installing solar thermal collectors on a given building, by binding the decision to a 
minimum integer number of kW installed per user type, rather than allowing a linear space of 
optimization from 0 to infinite that produces less realistic figures (such as having fractions of the 
unitary nominal collector capacity installed). Also, from a thermodynamic point of view, the 
modeling of specific components such as the storage tank might be improved, within a MILP domain, 
by passing from a fully-mixed model to a multi-node or other types of models that allow to take into 
account stratification, as well as by adopting a temperature-dependent heat loss factor. However, it 
should be noted that the fully-mixed approach here adopted provides a lower bound of performance 
and represents hence a conservative approach.  

Supplementary Materials: The following are available online at www.mdpi.com/2076-3417/10/21/7445/s1, 
Figure S1: Summer Electric energy dispatch strategy in the four modelled scenarios, Figure S2: Autumn Electric 
energy dispatch strategy in the four modelled scenarios, Figure S3: Winter Electric energy dispatch strategy in 
the four modelled scenarios, Figure S4: Summer thermal energy dispatch for representative single users for each 
of the four modelled user classes, Figure S5: Autumn thermal energy dispatch for representative single users for 
each of the four modelled user classes, Figure S6: Winter thermal energy dispatch for representative single users 
for each of the four modelled user classes, Figure S7: Solar thermal collector efficiency curve, as a function of the 
reduced temperature difference, Table S1: User types and number of users per each type, as defined in RAMP, 
Table S2: Number of electric appliances and thermal appliances defined in RAMP for each User type, Table S3: 
Modelling parameters adopted in the four configurations. 
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Abbreviations 

MES Multi-Energy System 
LPG Liquid Propane Gas 
DHW Domestic Hot Water 
TPES Total Primary Energy Supply 
TFC Total Final (energy) Consumption 
NPC Net Present Cost 
LCOE Levelized Cost of Energy 
LP Linear Programming 
MILP Mixed-Integer Linear Programming 
BESS Battery Energy Storage System 

Nomenclature 𝑇௚௪ Groundwater temperature K 𝑛ௗ௔௬ Progressive number of the considered day of the year - 𝑇௔௠௕തതതതതത Yearly average ambient temperature K 𝑛ௗ௔௬௠௜௡ Progressive number of the day with the lowest temperature 
of the year - 𝑃௧௔௦௞ Power required to heat the water for the operation of the 
task W 𝑚௪ሶ  Water mass flow required by the task l/s 𝑐𝑝௪ Water isobaric specific heat kJ/(kg K) 
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𝐸்௛,௖௟௔௦௦ ௗ௘௠௔௡ௗ(𝑘, 𝑡) Thermal energy demand Wh 𝐸௕௢௜௟௘௥(𝑘, 𝑡) Energy supplied by the boiler Wh 𝐸்௔௡௞೚ೠ೟(𝑘, 𝑡) Energy exiting the hot-water tank Wh 𝐸஼௨௥௧(𝑘, 𝑡) Fraction of the excess energy produced by solar collectors 
that cannot be stored in the tank Wh 𝐸௟௢௦௧ ௟௢௔ௗ,௧௛(𝑘, 𝑡) Allowed fraction of unmet thermal load Wh 𝐸ா௟,ௗ௘௠௔௡ௗ(𝑡) Electricity demand of the study area Wh 𝐸௉௏(𝑡) Energy produced by the PV panels Wh 𝐸ீ௘௡(𝑡) Energy produced by the generator Wh 𝐸௕௔௧,௖௛(𝑡) Flow of energy into the battery Wh 𝐸௕௔௧,ௗ௜௦(𝑡) Flow of energy out of the battery Wh 𝐸஼௨௥௧(𝑡) Electric energy that is curtailed Wh 𝐸ோ௘௦,௖௟௔௦௦(𝑘, 𝑡) Energy supplied to the thermal storage through electric 
resistance heating elements 

Wh 𝐸ோ௘௦,௧௢௧(𝑡) Cumulative energy absorbed by the electric resistance 
heating elements of all n thermal classes 

Wh 𝐸௟௢௦௧ ௟௢௔ௗ(𝑡) Allowed fraction of unmet electric load Wh 𝐸ௌ஼೟೚೟(𝑘, 𝑡) Total thermal energy provided by the solar collectors Wh 𝐸ௌ஼(𝑘, 𝑡) Energy generated by a single solar collector Wh 𝑁ௌ஼(𝑘) Number of solar collectors in the class - 𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡) Thermal energy stored in the tank at the time step t Wh 𝐸ௌை஼೅ೌ೙ೖ(𝑘, 𝑡 − 1) Thermal energy stored in the tank at the timestep t–1 Wh 𝜂௧௔௡௞ Coefficient accounting for energy losses due to the heat 
transfer between thermal storage and environment - 𝜂ோ௘௦ Thermal efficiency of the electric resistances - 𝐷ௌை஼ Depth of discharge - 𝑃௢௨௧,௠௔௫(𝑘) Tank maximum power of discharge W 𝐿𝑃𝐺௖௢௡௦ LPG consumption l 𝜂௕௢௜௟௘௥ Boiler efficiency - 𝐿𝐻𝑉௅௉ீ Lower heating value of the LPG kJ/kg 𝐼𝑛𝑣 Total investment cost $ 𝑌𝐶𝐶 Yearly constant cost of the project $ 𝑒 Discount rate - 𝑟 Interest rate - 𝐶𝑜𝑠𝑡௥௘௣ Cost of components replacement $ 𝑁௉௏ Number of installed PV panels - 𝐶௉௏ Capacity of a PV unit kW 𝑈௉௏ Specific cost of PV unit $/kW 𝐶௕௔௧ Capacity of installed battery bank kWh 𝑈௕௔௧ Specific cost of battery bank $/kWh 𝐶௚௘௡ Capacity of installed generator kW 𝑈௚௘௡ Specific cost of generator $/kW 𝑁ௌ஼(𝑘) Number of solar collectors installed - 𝐶ௌ஼ Capacity of a solar collector kW 𝑈ௌ஼ Specific cost of solar collector $/kW 𝐶ௌை஼௧௔௡௞(𝑘) Capacity of the installed hot-water tank kWh 𝑈்௔௡௞ Specific cost of the hot-water tank $/kWh 𝐶஻௢௜௟௘௥(𝑘) Capacity of the installed boiler kW 𝑈஻௢௜௟௘௥ Specific cost of the boiler $/kW 𝐶ோ௘௦(𝑘) Capacity of the installed electric resistance kW 𝑈ோ௘௦ Specific cost of the electric resistance $/kW 𝑓𝑢𝑛 Percentage of the investment financed by a bank - 
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𝐶𝑜𝑠𝑡ை&ெ Cost of operation and maintenance of the system $ 𝐶𝑜𝑠𝑡௙௜௡௔௡ Fixed-rate loan payment $ 𝐶𝑜𝑠𝑡஽௜௘௦௘௟(𝑡) Cost of the used diesel $ 𝐶𝑜𝑠𝑡୥ୟୱ(𝑡) Cost of the used LPG $ 𝐿𝐿ୡ୭ୱ୲(𝑡) Cost of the actually unmet load $ 𝐸ௗ௘௠௔௡ௗ Total energy demand (electric and thermal) of the system kWh 𝐸ௗ௘௠௔௡ௗ,௡௘௧ Net (i.e., after subtracting the lost load) total energy 
demand 

kWh 𝐸௦௨௣௣௟௬ Total energy supplied by each j-th energy supply 
technology kWh 𝜂௢௩௘௥௔௟௟ Overall system efficiency - 
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