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Abstract: Worldline N=1 and N=2 supersymmetric sigma models in curved background

are useful to describe spin one-half and spin one particles coupled to external gravity,

respectively. It is well known that worldline path integrals in curved space require regu-

larization: we present here the mode-regularization for these models, finding in particular

the corresponding counterterms, both in the case of flat and curved indices for world-

line fermions. For N=1, using curved indices we find a contribution to the counterterm

from the fermions that cancels the contribution of the bosons, leading to a vanishing total

counterterm and thus preserving the covariance and supersymmetry of the classical action.

Conversely in the case of N=2 supersymmetries we obtain a non-covariant counterterm with

both curved and flat indices. This work completes the analysis of the known regularization

schemes for N=1,2 nonlinear sigma models in one dimension.
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1. Introduction

Sigma models with worldline supersymmetries describe first quantized spinning particles

in D-dimensional space-time. The case of N = 1 supersymmetry characterizes a one-half

spin particle [1 – 3] while spin one particles and differential forms can be described by the

N = 2 model [4, 5]. In this paper we are interested to study the nonlinear versions,

relevant for describing particles propagating in a curved space. In particular we discuss

mode regularization for the N = 1, 2 nonlinear sigma models. These quantum mechanical

models were originally used to calculate chiral [6 – 8] and trace anomalies [9, 10] in a simpler

way than using standard QFT Feynman rules.1 They are also very useful to evaluate one-

loop effective actions and scattering amplitudes for a Dirac (N = 1) or Maxwell/Proca

field and differential forms (N = 2) coupled to scalar, antisymmetric tensor, gauge fields

backgrounds [12 – 16], or to curved space-time (external gravity), as in [17 – 20].2

The Euclidean action with N = 1 rigid supersymmetry, coupled to space-time metric,

is

S[x, ψ] =
1

β

∫ 0

−1
dτ

[
1

2
gµν(x)ẋµẋν +

1

2
ψaψ̇

a +
1

2
ωµab(x)ẋ

µψaψb + β2V (x)

]
(1.1)

where a, b = 1, . . . ,D are spacetime flat vector indices and µ, ν = 1, . . . ,D label space-

time coordinates. This action allows to calculate by path integral methods the transition

1For a detailed treatment of anomalies calculation using quantum mechanics see, for example [11].
2For a useful review on worldline methods in QFT and additional references see [21]. For recent appli-

cations in curved space see [22 – 25].
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N = 0 N = 1 N = 2

MR −1
8R− 1

24 (Γµ
νσ)

2
? ?

? ?

TS −1
8R+ 1

8g
µνΓα

µλΓλ
να

1
8g

µνΓα
µλΓλ

να + 1
16(ωµab)

2 1
8g

µνΓα
µλΓλ

να + 1
8 (ωµab)

2

1
16g

µνΓα
µλΓλ

να 0

DR −1
8R 0 0

0 0

Table 1: Known counterterms for different regularizations. For N = 1, 2 the upper (lower) box

refer to fermions with flat (curved) indices.

amplitudes 〈x, α|e−β bH |y, β〉 with Ĥ = Q̂2 = −∇2/2 + R/8, where Q̂ = i∇/ /
√

2 is the

conserved supercharge,3 and α, β specify the spin degrees of freedom. The potential V

takes into account the counterterms arising in the regularization of the path integral.

In the case of N = 2, the Euclidean action reads

S[x, ψ1, ψ2] =
1

β

∫ 0

−1
dτ

[
1

2
gµν(x)ẋµẋν +

1

2
ψaiψ̇

a
i (1.2)

+
1

2
ωµab(x)ẋ

µψa
i ψ

b
i −

1

8
Rabcdψ

a
i ψ

b
i ψ

c
k ψ

d
k + β2V (x)

]
,

where i, k = 1, 2 are O(2) indices labeling fermion species; the term proportional to Rψψψψ

is dictated by classical supersymmetry, while V contains the quantum counterterms.

In order to fix counterterms we study the partition function

Z(β) = Tr e−β bH =

∫

PBC
Dx

∫

ABC

∏

i

Dψi e
−S , (1.3)

with i = 1 for N = 1, and i = 1, 2 for N = 2. Such path integrals can be evaluated

for generic gµν(x) in a perturbative series in β. Although physical divergences are absent

in quantum mechanics, formally divergent or ambiguous Feynman diagrams appear in

the perturbative expansion. In order to solve such ambiguities a regularization scheme is

needed, the most used are time-slicing (TS), mode regularization (MR) and dimensional

regularization (DR).

It is well known that Feynman diagrams lead to different results depending on the

scheme chosen, but Z(β) has to be unique, therefore scheme-dependent counterterms are

needed to recover the physical result. This is the general philosophy of renormalizable QFT,

and quantum mechanics can be considered as a particular QFT which lives in D = 0 + 1

dimensions. Power counting considerations show that the model is super-renormalizable,

so that a two-loop computation, i.e. up to first order in β (as βL−1 indicates the loop

dependence of the correction), is sufficient to fix the counterterms. The known counterterms

related to the different regularization schemes are listed in table 1 (for the N = 0 case we

take as quantum Hamiltonian H = −∇2/2 without non-minimal coupling to the scalar

curvature).

3
∇µ is the fully covariant derivative acting on spinors and ∇/ = γµ

∇µ.
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Mode Regularization for bosonic (N = 0) nonlinear sigma models was studied and

used for trace anomalies calculations in [9, 10] and the complete counterterm was obtained

in [26]. In this paper we study the extension of MR to N = 1, 2 supersymmetric sigma

models.

Time Slicing is the natural regularization that arises in the derivation of the path

integral from the operatorial methods using the relation between Weyl ordering and the

midpoint prescription [27]. Weyl ordering of the quantum Hamiltonian was used in [28] to

identify the bosonic counterterm. Its non covariant part was derived independently in [29]

performing a change of coordinates (point canonical transformations) in the Hamiltonian

in flat space. By carefully studying the relation between operator methods, discretized and

continuous path integrals, the Feynman rules to be used in the continuum limit for Time

Slicing were derived in [30], while the extensions to N = 1, 2 can be found in [31], where the

N = 1, 2 TS counterterms are derived by Weyl ordering the supersymmetric Hamiltonians.

Dimensional Regularization was applied to quantum mechanics in [32], where the ab-

sence of non-covariant counterterms was noted. The complete counterterm was found

in [33, 34]. The extensions to N = 1 and N = 2 were studied in [18] and [19], respectively.

An extensive discussion of these regularization schemes can be found in [11].

Before describing our calculation, let us recall that the regularization scheme also

includes a treatment of the functional measures; the bosonic one is suitably covariantized:

Dx ∼
∏

τ

√
gDx ∼

∏

τ

√
g(x(τ))dDx(τ);

while the covariant fermionic measure is the standard functional measure
∏

τ dDψi(τ) if

worldline fermions are chosen to carry flat indices. In order to obtain translational invariant

measures, useful for perturbative calculations, we rewrite
∏

τ

√
g by a path integral over

auxiliary ghost fields [9, 10]:

∏

τ

√
g(x(τ)) ∝

∫
DaDbDc e−Sgh ,

where

Sgh =
1

β

∫ 0

−1
dτ

1

2
gµν(x) (aµaν + bµcν) ;

with a being a commuting field while b and c anticommuting. As we shall see, ghosts

contributions cancel potential infinities from Feynman diagrams, leaving a finite remainder;

the comparison with the expected answer for the transition amplitude (this takes the role of

imposing the necessary renormalization conditions) fixes the counterterm. In the following

we will compute such counterterms for the susy sigma models with both flat and curved

indices for fermions. We start with the N = 1 model, and then perform the N = 2

calculations which are quite similar.

– 3 –
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2. N = 1 Sigma model

2.1 Flat indices

The total quantum action for the N = 1 susy sigma model is

S =
1

β

∫ 0

−1
dt

[
1

2
gµν(x)

(
ẋµẋν + aµaν + bµcν

)
+

1

2
ψa

(
ψ̇a + ωµab(x)ẋ

µψb

)
+ β2VMR(x)

]
;

(2.1)

where VMR is the mode-regularization counterterm we have to find, necessary to make

contact with transition amplitudes calculated from Ĥ = −∇/ 2/2.

In order to fix VMR we perform the two loop calculation of

K(x0, β) = tr〈x0|e−β bH |x0〉 =

∫

x(−1)=x(0)=x0

DxDaDbDc

∫

ABC
Dψ e−S , (2.2)

where the trace is performed only over ψ’s; and we compare it with the same transition

element calculated with the other regularization schemes. First of all we split the action

in free (S2) and interacting (Sint) parts, i.e.

S2 =
1

β

∫ 0

−1
dτ

[
1

2
gµν(x0)

(
ẋµẋν + aµaν + bµcν

)
+

1

2
ψaψ̇a

]
; (2.3)

Sint =
1

β

∫ 0

−1
dτ

[
1

2

(
gµν(x) − gµν(x0)

)(
ẋµẋν + aµaν + bµcν

)
(2.4)

+
1

2
ωµ ab(x) ẋ

µψaψb + β2 VMR(x)

]
;

so denoting as usual the normalized free average of a function f with 〈 f 〉, K(x0, β) up to

order β reduces to

K(x0, β) = A〈 e−Sint 〉 = A

[
1 − 〈 S3 〉 +

1

2
〈 S2

3 〉 − 〈 S4 〉
]
,

where 〈 Sk 〉 is the part of the action of order βk/2−1, and A is the value of the free path

integral,

A =

∫

x0→x0

DxDaDbDc

∫

ABC
Dψ e−S2 = (πβ)−D/2 .

We now perform the usual classical background - quantum fluctuations split: xµ(τ) =

xµ
0 + qµ(τ) , where qµ(−1) = qµ(0) = 0, (vanishing boundary conditions); so we can write

S3 and S4 as:

S3 =
1

β

∫ 0

−1
dτ

[
1

2
∂λgµν

(
qλq̇µq̇ν + qλaµaν + qλbµcν

)
+

1

2
ωµ ab q̇

µψaψb

]
, (2.5)

S4 =
1

β

∫ 0

−1
dτ

[
1

4
∂λ∂σgµν q

λqσ

(
q̇µq̇ν + aµaν + bµcν

)
+

1

2
∂λωµ ab q

λq̇µψaψb

]
+ β VMR ;

(2.6)
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from now on all the x-dependent functions are intended to be calculated at the point x0 if

not otherwise specified. According to the vanishing boundary conditions,4 we expand the

q, a, b, c fields in a sine series, obtaining

φµ(τ) =
∞∑

m=1

φµ
m sin(πmτ) ,

where φ stands for one of the already mentioned fields. On the other side ψ’s have an-

tiperiodic boundary conditions, so we expand these fields with half-integer modes (r =

±1/2,±3/2, . . . ):

ψa(τ) =
∑

r ∈Z+1/2

ψa
r e

2πirτ .

We perform mode regularization by introducing an integer mode cut-off M , so that the

infinite sums become:
∞∑

m=1

→
M∑

m=1

,
∑

r∈Z+1/2

→
M+1/2∑

r=−M−1/2

;

so that we can define the regulated functional measure as

DqDaDbDcDψ ∝ lim
M→∞

M∏

m=1

D∏

a=1

M+1/2∏

r=1/2

dDqmdDamdDbmdDcmdψa
−rdψ

a
r .

Performing the τ -integral in S2, introducing sources and completing squares as usual

we obtain the following two-point correlation functions or propagators, all the others being

zero:

〈 qµ(τ)qν(σ) 〉 = −βgµν(x0)∆(τ, σ) ,

〈 aµ(τ)aν(σ) 〉 = βgµν(x0)∆gh(τ, σ) ,

〈 bµ(τ)cν(σ) 〉 = −2βgµν(x0)∆gh(τ, σ) ,

〈 ψa(τ)ψb(σ) 〉 = βδab∆AF (τ − σ) ;

with5

∆(τ, σ) = −
M∑

m=1

2

π2m2
sin(πmτ) sin(πmσ)

M→∞−−−−→ τ(σ+1)θ(τ−σ)+σ(τ+1)θ(σ−τ) ,

∆gh(τ, σ) = 2

M∑

m=1

sin(πmτ) sin(πmσ)
M→∞−−−−→ δ(τ, σ) ,

∆AF (τ − σ) =

M+1/2∑

r=−M−1/2

1

2πir
e2πir(τ−σ) M→∞−−−−→ 1

2
ǫ(τ − σ) ,

where δ(τ, σ) and θ(τ −σ) act on functions with compact support on [−1, 0] while ǫ(τ −σ)

is the sign distribution acting on antiperiodic functions.

4ghosts have the same boundary conditions as q’s.
5the subscripts gh and AF stand for ghosts and Antiperiodic Fermions respectively.

– 5 –
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We are now ready to make perturbative calculations on S3, S
2
3 and S4 using standard

Wick contractions and the propagators listed above, obtaining:

〈 S3 〉 = 0 , (2.7)

〈 S4 〉 =
β

4
∂λ∂σgµν

[
gλσgµνI1 + 2gλµgσνI2

]
− β

2
∂σωµ abg

σµδabI3 + β VMR , (2.8)

〈 S 2
3 〉 = − β

4
∂λgµν ∂σgαβ

[
gλσgαβgµνI4 + 2gλσgµαgνβI5 + 4gλµgνσgαβI6

+ 4gλαgµσgνβI7 + 4gλµgσαgνβI8

]
(2.9)

+
β

2
∂λgµν ωσ ab

[
gλσgµνδabI9 + 2gλµgσνδabI10

]

− β

4
ωµ ab ων cd

[
gµνδabδcdI11 − 2gµνδacδbdI12

]
,

where the Ik are listed in appendix B. The value of I12 is indicated with I because we

were not able to compute it analytically (though numerically it is seen to converge to 1/6).

These contributions sum up, at order β, to:

K(x0, β) =
1

(πβ)D/2

[
1 − β

(
1

24
R+

1

24
gγσg

αµgβνΓγ
αβΓσ

µν − I
4
gµνωµ abω

ab
ν + VMR

)]
.

(2.10)

This result can be compared with the one obtained employing other regularization

schemes [31, 18] that reads

K =
1

(πβ)D/2

[
1 − β

24
R+O(β2)

]
. (2.11)

Hence we obtain

VMR = − 1

24
Γ2 +

I
4
ω2 , (2.12)

with the index contraction rules given in (2.10). The part independent on I is part of the

bosonic MR counterterm6 (see table 1) [26], while the remainder is due to the fermions.

In order to fix I analytically we calculate the partition function

Z[β] =

∫
dDx

√
g(x)K(x, β) = Tr e−β bH =

∫

PBC
DxDaDbDc

∫

ABC
Dψ e−S .

In fact, periodic boundary conditions permit the use of translational invariant propagators

(the so-called string inspired propagators) which are simpler to deal with; the drawback is

that since K(x, β) is integrated over x, we loose information about total derivatives that

could affect VMR, but since eq. (2.12) shows that this counterterm does not contain such

terms, we do not have to care about them (see discussions in [35, 36]).

6The covariant piece −R/8 is not subtracted because its presence is demanded by the quantum Hamil-

tonian.
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First of all we expand x, a, b, c respecting periodic boundary conditions, in particular

we separate the x zero mode from the rest:

xµ(τ) =
M∑

−M

qµ
m e2πimτ = xµ

0 +
M∑

m=−M
m6=0

qµ
m e2πimτ = xµ

0 + qµ(τ) ;

and

aµ(τ) =

M∑

−M

aµ
m e2πimτ , bµ(τ) =

M∑

−M

bµm e2πimτ , cµ(τ) =

M∑

−M

cµm e2πimτ ;

while ψ’s are expanded as before. So the measure splits into:

DxDψDaDbDc = dDx0DqDψDaDbDc .

Finally we can write Z[β] as:

Z[β] =

∫
dDx0A(x0, β)〈 e−Sint 〉 ,

where A contains an extra
√
g(x0) factor due to the ghost’s zero mode, i.e.

A = (πβ)−D/2
√
g(x0) .

The propagators now become

〈 qµ(τ)qν(σ) 〉 = −β gµν(x0)∆SI(τ − σ) ,

〈 aµ(τ)aν(σ) 〉 = β gµν(x0)∆GH(τ − σ) ,

〈 bµ(τ)cν(σ) 〉 = −2β gµν(x0)∆GH(τ − σ) ,

where7

∆SI(x) = −
M∑

m=−M
m6=0

1

4π2m2
e2πimx M→∞−−−−→ −1

2
x2 +

1

2
|x| − 1

12
, x ∈ [−1, 1] ,

∆GH(x) =

M∑

m=−M

e2πimx M→∞−−−−→ δ(x) .

Fermionic propagators are the same as before. The structure of 〈 S3 〉, 〈 S4 〉, 〈 S2
3 〉 is

the same as in eq.s (2.7), (2.8), (2.9), but the Ik take now different values, as reported in

appendix B. Using the counterterm in (2.12), which depend explicitly on I, we obtain

Z[β] =
1

(πβ)D/2

∫
dDx0

√
g(x0)

[
1 + β

(
− 1

24
R+

1

24
ω2 − I

4
ω2 +

1√
g(x0)

∂µAµ

)
(2.13)

+O(β2)

]

7
SI denotes string inspired propagators, while GH denotes ghost propagator with periodic boundary

conditions.

– 7 –
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where the total derivative ∂µAµ can be dropped; however for the sake of completeness we

write Aµ explicitly:

Aµ =
√
g

(
1

24
gµνgαβ∂αgβν − 1

48
gµνgαβ∂νgαβ

)
.

The partition function in (2.13) is consistent with the result in (2.11) if I = 1/6, so

the counterterm VMR is given by

VMR = − 1

24
gγσg

αµgβνΓγ
αβΓσ

µν +
1

24
gµνωµ abω

ab
ν . (2.14)

2.2 Curved indices

The result just found for VMR suggests that a more symmetric treatment of the superpart-

ners x and ψ can make the counterterm vanish by supersymmetry, as we will see. For this

reason, we introduce worldline fermions with curved indices contracting the ψ’s with the

vielbein:

eµa(x)ψa ≡ ψµ .

Using such new fields as dynamical variables, the susy sigma model action becomes

S =
1

β

∫ 0

−1
dτ

{
1

2
gµν(x)

[
ẋµẋν + ψµψ̇ν + ψµΓν

αλ(x)ψλẋα

]
+ β2V ′

MR(x)

}
,

where V ′
MR is the quantum counterterm. It is worthwhile noting that now space-time

gravity is described only by means of the metric tensor and Christoffel coefficients. This

is a nice feature, since the 1-D susy sigma model can be used for doing 1-loop calculations

in the QFT of a Dirac field (see, for example, [18]), and space-time fermions are coupled

to gravity mainly through the vielbein formalism. Using antisymmetry of Grassmann

variables the action simplifies to

S =
1

2β

∫ 0

−1
dτ

[
gµν ẋ

µẋν + gµνψ
µψ̇ν − ∂µgναψ

µψν ẋα + 2β2V ′
MR

]
.

Since fermions carry curved vector indices, their covariant measure is defined accordingly

as8

Dψ =
∏

τ

1√
g(x(τ))

Dψ .

The procedure to fix the counterterm is perfectly analogous to the flat indices case of

section 2.1, but to manage the 1/
√
g factors in the measure, we introduce a new commuting

ghost field αµ(τ) as in [18], so the total action S[x, a, b, c, ψ, α] reads:

S =
1

2β

∫ 0

−1
dτ

[
gµν

(
ẋµẋν + ψµψ̇ν + aµaν + bµcν + αµαν

)
− ∂µgναψ

µψν ẋα + 2β2V ′
MR

]
.

(2.15)

8g is to the power −1/2 since fermionic fields are Grassmann variables.
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The free part S2 now results:

S2 =
gµν(x0)

2β

∫ 0

−1
dτ

[
ẋµẋν + ψµψ̇ν + aµaν + bµcν + αµαν

]
.

The ψ propagator is slightly modified and reads

〈 ψµ(τ)ψν(σ) 〉 = βgµν(x0)∆AF (τ − σ) ;

and since α’s are related to ψ’s they have anti-periodic boundary conditions as well. Ex-

panding them accordingly and finding propagators in the usual manner we find:9

〈 αµ(τ)αν(σ) 〉 = βgµν(x0)∆FG(τ − σ) , where ∆FG(x) =

M+1/2∑

r=−M−1/2

e2πirx M→∞−−−−→ δA(x) ,

where x ∈ [−1, 1] and δA is the delta distribution acting on anti-periodic functions; while

the other propagators remain the same as in section 2.1.

The interacting action up to order β is Sint = S3 + S4, where10

S3 =
1

2β
∂αgµν

∫ 0

−1
dτ

[
qαq̇µq̇ν + qαψµψ̇ν + qα(aµaν + bµcν) + qααµαν + q̇µψνψα

]
,

S4 =
1

β

∫ 0

−1
dτ

[
1

4
∂α∂βgµνq

αqβ

(
q̇µq̇ν + ψµψ̇ν + aµaν + bµcν + αµαν

)

+
1

2
∂β∂µgναψ

νψµq̇αqβ

]
+ βV ′

MR .

For the sake of simplicity we introduce a condensed notation as follows:

(∂αgµν)2 = gαβ gµλ gνσ ∂αgµν ∂β gλσ

(∂αgµν) (∂µgαν) = gαβ gµλ gνσ ∂αgµν ∂λ gβσ

∂βg = gµν ∂βgµν , gβ = gµν ∂µgβν , gβ = gβµ gµ

∂2g = gαβ gµν ∂α∂βgµν , ∂αgα = gαβ gµν ∂α∂µgβν .

With this notation the averages of S3, S4 and S2
3 result:

〈 S3 〉 = 0 ,

〈 S4 〉 =
β

4

[
∂2g(I1 − I13) + 2∂αg

α(I2 + I3)
]
+ βV ′

MR ,

〈 S2
3 〉 = − β

4

[
∂αg∂

αg(I4 − 2I15 + I16 − 2I17) + (∂αgµν)2 (2I5 − I12 − I19)

+ gα∂αg(4I6 − 2I9 − 4I14 + 2I18) + ∂αgµν∂µgαν(4I7 + I12)

+ gαg
α(4I8 − 4I10 + I11)

]
;

9
F G stands for Fermion’s Ghosts.

10the x field has already been split in classical background - quantum fluctuation.
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the Ik are again reported in appendix B. Hence, summing up and comparing with eq. (2.11),

we fix the counterterm in the case of curved indices:

K(x0, β) =
1

(πβ)D/2

[
1 − β

(
1

24
R+ V ′

MR

)
+O(β2)

]
⇒ V ′

MR = 0 . (2.16)

We see, as anticipated at the beginning, that fermionic and bosonic contributions to the

counterterm are equal in magnitude and cancel out (while in DR they are separately

zero), leaving a covariant and supersymmetric action. The price of introducing new ghost

variables and different fermionic vertices, actually make perturbative calculations slightly

more efficient.

3. N = 2 Sigma model

Extending the supersymmetric partners of the x fields to the doublet ψi (i = 1, 2) with

O(2) internal symmetry we obtain the sigma model with N = 2 extended supersymmetries,

whose actions, in the cases of flat and curved indices, read

Sf [x, ψ1, ψ2] =
1

β

∫ 0

−1
dτ

[
1

2
gµν(x)

(
ẋµẋν + aµaν + bµcν

)
+

1

2
ψaiψ̇

a
i (3.1)

+
1

2
ωµab(x)ẋ

µψa
i ψ

b
i −

1

8
Rabcd(x)ψ

a
i ψ

b
i ψ

c
k ψ

d
k + β2VMR(x)

]
,

Sc[x, ψ1, ψ2] =
1

β

∫ 0

−1
dτ

[
1

2
gµν(x)

(
ẋµẋν + ψµ

i ψ̇
ν
i + aµaν + bµcν + αµ

i α
ν
i

)
(3.2)

+
1

2
gµν(x)ψµ

i ẋ
λΓν

λσ(x)ψσ
i − 1

8
Rµνλσ(x)ψµ

i ψ
ν
i ψ

λ
kψ

σ
k + β2V ′

MR

]
.

These actions allow to compute amplitudes with Hamiltonian:11

Ĥ = −1

2
∇2 − 1

8
Rabcdψ

a
i ψ

b
iψ

c
kψ

d
k =

1

4

{
Qi , Qi

}
;

and, as in the previous section, we will derive the required counterterm by a two-loop

calculation of tr〈x0|e−β bH |x0〉, where the trace is taken over the fermionic Hilbert space

only. The introduction of ghosts is perfectly analogous to the N = 1 case. The propagators

are the same as before, and diagonal in fermion species

〈 ψa(µ)
i (τ)ψ

b(ν)
j (σ) 〉 = βδab(gµν)δij∆AF (τ − σ) .

The term proportional to Rψψψψ gives a vanishing contribution at two-loop level. The

fermionic part of S3 splits into S3,1 + S3,2, each part depending only on a single fermionic

specie, and furthermore the mixed part 2S3,1S3,2 gives a null contribution to 〈 S2
3 〉. For

this reason, the fermionic contribution to VMR is simply doubled with respect to the N = 1

case; thus the cancellation between bosonic and fermionic terms does not occur, leaving

unfortunately a non-covariant quantum action. Performing calculations, and comparing

〈 e−Sint 〉 with the result given in [19], i.e. 1−βR/24, we easily find the mode regularization

counterterms for the N = 2 model:

VMR =
1

12
gµνωµabω

ab
ν − 1

24
gµαg

νγgσδΓµ
νσΓα

γδ , V ′
MR =

1

24
gµαg

νγgσδΓµ
νσΓα

γδ .

11Qi, i = 1, 2 are the conserved supercharges
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N = 0 N = 1 N = 2

MR −1
8R− 1

24 (Γµ
νσ)

2 − 1
24 (Γµ

νσ)
2
+ 1

24(ωµab)
2 − 1

24 (Γµ
νσ)

2
+ 1

12(ωµab)
2

0 1
24 (Γµ

νσ)
2

TS −1
8R+ 1

8g
µνΓα

µλΓλ
να

1
8g

µνΓα
µλΓλ

να + 1
16(ωµab)

2 1
8g

µνΓα
µλΓλ

να + 1
8(ωµab)

2

1
16g

µνΓα
µλΓλ

να 0

DR −1
8R 0 0

0 0

Table 2: Counterterms for N = 0, 1, 2 sigma models.

4. Conclusions

In this work we have completed the analysis of the known regularization schemes for

the N = 1 and N = 2 nonlinear sigma models by investigating MR. We have calcu-

lated the counterterm for the N = 1 case using fermions with flat indices obtaining

VMR = −Γ2/24 + ω2/24; the structure of such term suggested the possibility of com-

pensation between bosonic and fermionic parts in the case of curved indices. In fact an

explicit calculation showed this to be the case: the curved indices counterterm V ′
MR = 0

vanishes leaving classical supersymmetry and covariance of the action unbroken. Such

compensation between bosonic and fermionic contributions is perhaps expected in super-

symmetric models, although not necessary, since such terms depend on the regularization

scheme chosen: in fact even if it holds also in dimensional regularization [18], it is not

true in time slicing. Furthermore we showed in section 3 that for the N = 2 model mode

regularization gives a non-covariant, susy-breaking counterterm Γ2/24, while both dimen-

sional regularization and time slicing [19, 31] give a vanishing counterterm. In MR, one

may interpret the vanishing of N = 1 counterterm as due to the fact that this model is

supersymmetric even off-shell (we have an equal number of bosonic and fermionic fields);

and as a signal that such regularization scheme preserves the symmetry. On the other

hand, in the N = 2 model the number of fermionic and bosonic fields is not the same,

and supersymmetry is realized only on-shell; this could be the reason for which a non-zero

counterterm is needed at the quantum level to restore supersymmetry. Anyway direct cal-

culation gives the explicit answer. With our finding we can summarize the counterterms

for the various regularization schemes in table 2.

A. Curvatures

The vielbein field is related to the metric tensor via usual formula

gµν(e(x)) = δabe
a
µe

b
ν ;

and the vielbein postulate ∇µe
a
ν = 0 ensures the compatibility between Christoffel connec-

tion and metric, furthermore it relates Γ’s to ω’s in the following way:

ω a
µ b = eaν∂µe

ν
b + eaνΓν

µβe
β
b .
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Connection coefficients are given explicitly in terms of metric or vielbein by:

Γµ
νσ =

1

2
gµλ

(
∂σgλν + ∂νgσλ − ∂λgνσ

)
,

ωµab =
1

2
eνa ( ∂µeb ν − ∂νeb µ) − 1

2
eνb ( ∂µea ν − ∂νea µ) − 1

2
e c
µ e

ν
a e

σ
b ( ∂νec σ − ∂σec ν) .

For the Riemann tensor we use the convention
[
∇µ, ∇ν

]
V λ = R λ

µν σ V
σ ,

and we construct the Ricci tensor and the curvature scalar as:

Rµν = R λ
λµ ν , R = Rµ

µ > 0 on a sphere.

Finally R as a function of metric and its derivatives could be written as:12

R = −∂ 2g + ∂ αgα +
3

4
(∂αgµν)2 − 1

2
(∂αgµν) (∂µgαν) − 1

4
(∂βg)

2 + (∂βg) g
β − g2

β .

B. Feynman diagrams

We report here the integrals Ik with their results and respective Feynman Diagrams. First

of all we present the twelve integrals needed in the case of flat indices, with vanishing

boundary conditions and for N = 1:

I1 = + =

∫ 0

−1
dτ∆|τ (•∆• + ∆gh)|τ = −1

6
,

I2 = =

∫ 0

−1
dτ•∆|2τ =

1

12
,

I3 = =

∫ 0

−1
dτ•∆|τ∆AF |τ = 0 ,

I4 = + + + =

=

∫ 0

−1

∫ 0

−1
dτdσ(•∆• + ∆gh)|τ∆(•∆• + ∆gh)|σ = − 1

12
,

I5 = − =

∫ 0

−1

∫ 0

−1
dτdσ∆(•∆•2 − ∆gh

2) =
1

4
,

12using the condensed notation introduced above.
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I6 = + =

∫ 0

−1

∫ 0

−1
dτdσ•∆|τ •∆(•∆• + ∆gh)|σ =

1

12
,

I7 = =

∫ 0

−1

∫ 0

−1
dτdσ•∆•∆•∆• = − 1

12
,

I8 = =

∫ 0

−1

∫ 0

−1
dτdσ•∆|τ •∆•∆•|σ = − 1

12
,

I9 = + =

∫ 0

−1

∫ 0

−1
dτdσ(•∆• + ∆gh)|τ ∆•∆AF |σ = 0 ,

I10 = =

∫ 0

−1

∫ 0

−1
dτdσ•∆|τ •∆•∆AF |σ = 0 ,

I11 = =

∫ 0

−1

∫ 0

−1
dτdσ∆AF |τ •∆•∆AF |σ = 0 ,

I12 = =

∫ 0

−1

∫ 0

−1
dτdσ•∆•∆2

AF = I ;

where dots stand for derivatives with respect to the corresponding time variable, straight

lines are qq propagators, wiggly lines ψψ propagators, dashed lines ghosts propagators and

at each vertex corresponds a time integral. We have not found a convenient way to compute

I12 = I directly in the continuum limit.

Then we report the result for flat indices but now in the string inspired case: the

twelve diagrams have the same expression as before provided the substitution of any ∆

with ∆SI and every ∆gh with ∆GH; the results then are I1 = −1/12, I2 = 0, I3 = 0,

I4 = 0, I5 = 1/6, I6 = 0, I7 = 0, I8 = 0, I9 = 0, I10 = 0, I11 = 0, I12 = 1/6 . Using SI

there is no problem in calculating I12 in the continuum limit.

Finally we write down the additional integrals required in the curved indices case:

I13 = + =

∫ 0

−1
dτ ∆|τ (•∆AF + ∆FG)|τ = 0 ,

I14 = + =

∫ 0

−1

∫ 0

−1
dτdσ •∆|τ •∆(•∆AF + ∆FG)|σ = 0 ,

I15 = + =

∫ 0

−1

∫ 0

−1
dτdσ •∆•|τ∆(•∆AF + ∆FG)|σ = 0 ,
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I16 = + + 2

=

∫ 0

−1

∫ 0

−1
dτdσ (∆•

AF + ∆FG)|τ ∆ (∆•
AF + ∆FG)|σ = 0 ,

I17 = + =

∫ 0

−1

∫ 0

−1
dτdσ (•∆AF + ∆FG)|τ∆∆gh|σ = 0 ,

I18 = + =

∫ 0

−1

∫ 0

−1
dτdσ (∆•

AF + ∆FG)|τ∆•∆AF |σ = 0 ,

I19 = − − 2 =

∫ 0

−1

∫ 0

−1
dτdσ∆(•∆•

AF ∆AF − •∆AF ∆•
AF − 2∆2

FG) =
1

12
;

where the zig-zag lines stand for α propagators.

To perform all these integrals we used the following relations, valid in mode regular-

ization, i.e. for finite M :

∆gh =••∆ , (B.1)

(•∆• +••∆)|τ = ∂τ (•∆|τ ) , •∆SI|τ = 0 , (B.2)
•∆•

SI + ∆GH = 1 , ∆AF |τ = 0 , (B.3)

∆•
F + ∆FG = 0 , ••∆SI = e−iπx∆•

AF − e−2πi(M+1)x − 1 . (B.4)

For a detailed discussion of the techniques used in solving such integrals see [11].
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