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Abstract: In this work, we apply a simulation-based framework that makes use of the Value of Information (VoI) 

for identifying the optimal spatial positioning of sensors on pressurized equipment. VoI is a utility-based Figure of 

Merit (FoM) which quantifies the benefits/losses of acquiring information. Sensors are typically positioned on 

pressurized equipment in line with specific recommendations based on operational experience, like UNI 11096 in 

Italy. We show that the recommendations in UNI 11096 are, indeed, justified and that, incidentally, relying on VoI 

for the optimization of the sensor positioning, one can achieve the same monitoring performance, as measured by VoI, 

where following UNI 11096, but with a reduced number of sensors. The proposed VoI-based approach can, thus, be 

used to confirm or revise recommendations coming from operational experience. 
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Acronyms 

FoM Figure of Merit  

GP  Gaussian Process 

NDT Non-Destructive Test 

PFBR Prototype Fast Breeder Reactor 

SG  Steam Generator  

SSC  Systems, Structures, and Components  

UTS Ultrasonic Thickness Testing 

VoI  Value of Information 

 

Nomenclature 

   

F  Random field model 

f(x̄)  Random field at each spatial location x̄  

f̄(x̄)  Multivariate random field vector that affect the behavior of the system at each specific location x̄ 

x̄  Location in the spatial domain 

X̄  Set of locations in the spatial domain Ωx  

ȳ(x̄)  Measurement  

Ȳ  Set of measurements in the spatial domain Ωy 

ȳ(x̄*) Optimal set of measurement  

ȳn
*  Single sensor location that has the max VoI at the nth iteration of the greedy optimization algorithm 

i  Quantity of sensor locations in spatial domain Ωx 

k  Quantity of the realizations of measurement set ȳ(x̄)  

ε̄  Noise vector  

ā  Action vector  

s̄  State vector 

𝛽   Reliability index 

n   Quantity of optimal sensors 

ns  Quantity of sensor locations that share the same uncertainty and geometry 

R   Matrix indicating which positions of the random field is observed 

r  VoI per sensor 

CI  Coefficient of improvement 

Ωx  Spatial domain of sensors locations 

Ωy  Spatial domain of measurements  

𝑝̄ 
𝐹

  Prior distribution of the random field f(x̄) 

𝑝̄ 
𝐹|𝑦̄ 

  Posterior distribution of the random field f(x̄) 

P̄F  Prior probability of failure 

P̄F|ȳ  Posterior probability of failure 

𝔼𝐿(∅) Prior expected loss  

𝔼𝐿(𝑌̅) Posterior expected loss  

𝔼𝐹    Expected value over the prior field 𝑝̄ 
𝐹

 

𝔼𝐹|𝑦̄    Expected value over the posterior field 𝑝̄𝐹|𝑦̄  

𝜇̄ 𝐹   Prior mean of the random variable f(x̄) 

𝜇̄ 
𝐹|𝑦̄ 

  Posterior mean of the random variable f(x̄) 



𝜇̄ 
𝑌̅
  Mean of the random variable f(x̄) derived from the measurement set 

µg  Mean of the limit state  

σg  Standard deviation of the limit state 

ΣF   Prior covariance matrix of the random variable f(x̄) 

Σ𝐹|𝑌̅  Posterior covariance matrix of the random variable f(x̄) 

ΣY̅   Covariance matrix of the measurement 

Σε   Covariance matrix of the noise 

Cf  Cost of failure  

Cp   Cost of failure prevention 

VoIUNI  VoI obtained by UNI 11096 sensor positioning 

nUNI  Number of sensors as for UNI 11096 sensor positioning 

𝑟𝑈𝑁𝐼   VoI ratio for UNI 11096 sensor positioning 

C  Cost of measurement 

𝑉𝑜𝐼   Value of information 

M  Benefit of conducting measurement  

fs (x̄) Strength random field  

ft (x̄) Failure threshold field  

g(x̄)  Limit state function  

 

 

1. INTRODUCTION 

Safety-critical Systems, Structures, and Components (SSCs) need to comply with safety standards. 

Guidelines are developed for testing the compliance to the safety standards. However, the guidelines are 

not necessarily resulting from a formal process and may involve shortcomings and over-conservatism which 

may lead to unnecessary costs (1,2). Also, guidelines should not slow down industrial advancements but 

rather flexibly reflect methodological developments and technological advancements (3). For example, let 

us consider the Italian regulatory code UNI 11096 (4), the European norm EN 13445 (5), or the American 

norm ASME Boiler & Pressure Vessel Code (BPVC) (6), all aimed at describing the positioning of 

thickness sensors to monitor pressurized equipment that may suffer of creep, and all based on 

experimental/operational past experience, such as in-service inspections and structural analyses (7). These 

guidelines might be challenged when dealing with new SSCs on which there is limited experience. 

In the context of SSCs creep, for example, market competition has pushed industry to operate the SSCs at 

high design stresses (and, in some cases, beyond design stresses) (8,9), while new knowledge on creep 

phenomenon becomes available. This has recently resulted in a deep revision of the guidelines (10,11), 



making scheduled inspections by Non-Destructive Tests (NDTs) recommended to prevent SSCs creep and 

failures (12,13,1,14). On the other hand, condition monitoring and intelligent analysis of data collected by 

sensors may help predicting degradation escalation and anticipating the risk of failure (15,16,17,18,19). 

In this work, we use the concept of Value of Information (VoI) to find how to optimally position ultrasonic 

thickness gauges on a pressurized equipment, for largest benefit in terms of reduced costs and increased 

data accuracy. VoI is a mathematical concept standing on Bayesian statistical decision theory and applied 

in different fields for supporting decision making, from economics to engineering (20). For practical 

meaning, we consider the problem of positioning sensors on a simulated manifold of a Steam Generator 

(SG). The novelty of this work lies in use of the VoI-based sensors positioning framework for comparing 

the outcomes with standards/recommendations/guidelines for monitoring of energy SSCs issued by 

regulatory bodies, to confirm their validity or suggest improvements. Results show that the VoI based 

sensor positioning allows reducing the number of sensors to be positioned with respect to the guidelines in 

(4), while achieving the same VoI. This shows that guidelines can benefit from VoI and simulation to obtain 

cost-effective solutions that overcome the shortcomings of relying only on past operational experience.  

The paper is organized as follows. Section 2 introduces the VoI concept and presents the framework that 

uses VoI and simulation for optimal positioning of sensors. Section 3 illustrates the case study that consists 

in the positioning of sensors on a SG; the solution for sensors positioning obtained following the guideline 

in UNI 11096 is benchmarked with that derived from the proposed VoI-based approach. Section 4 

concludes the paper with some remarks. 

 

2. Value of Information  

Value of Information (VoI) is a mathematical concept used in Bayesian statistical decision theory to 

quantify (in monetary terms) the gain that one could obtain by updating prior available information with 

new one, before adopting it (21). Indeed, the process of acquiring information (here specifically consisting 

in  measurements from sensors) may not always be justified because of the high cost, and one finds this out 



only after (the information is acquired by the measurements taken) (22,23). In other words, VoI predicts 

(by simulation) the economic benefit of collecting measurements in specific sensors locations, by 

accounting (in addition to the cost of the sensor and measurement acquisition chain) for the costs that the 

decision-maker might incur when adopting mitigative actions to counteract SSC degradation (or its failure, 

in case no action is taken) based on the collected measurements. This provides a powerful tool for 

comparing different locations of measurement before physically placing the sensors on the SSCs (i.e., a 

location that has larger VoI value is more beneficial) and makes it possible to find the most beneficial set 

by solving an optimization problem that finds the observation that has the largest VoI. 

The mathematical framework for quantifying the VoI is recalled in the following: In general terms, a spatial 

domain Ωx can be defined over the SSC of interest and indicated by its spatial coordinates. For example, 

each location on a 2-dimensional Ωx can be indicated as x̄ = {x1, x2}. For practicality, the spatial domain Ωx 

is discretized into a finite set of i locations X̄ = {x̄1, x̄2, …, x̄i}. A spatial model F= f(x̄) can be introduced on 

the spatial domain Ωx to measure a certain property of the SSC at each location x̄ (e.g., for a pressurized 

vessel, a random field f(x̄) of stress, at each location x̄). If multiple random fields f(̄x̄) (e.g., stress, 

temperature, thickness and so on) insist on the SSC, F = f̄(x̄) can be defined as a multivariate random field, 

possibly with dependencies (24). 

The spatial model can be described based on design values and operational experience (i.e., prior 

knowledge), eventually assigning prior distributions 𝑝̄ 𝐹 of values to the relevant variables (e.g., the 

distribution of the internal stress in a pressurized vessel). 

Similar to the spatial domain Ωx, the measurements spatial domain Ωy can be defined at locations x̄ = {x1, 

x2} where the measurements can be taken (i.e., Ωy  ⊆ Ωx). The measurement set ȳ(x̄) is the collection of 

measurements at the generic location x̄ (e.g., measurements of realizations of the multivariate random field 

f(̄x̄)). Then, Ȳ is defined as the set of measurements ȳ(x̄) at the selected locations x̄: 

𝑦̄ (𝑥̄ ) = R𝑓̅(𝑥̄ ) + 𝜀̅   (1) 

where R is a row matrix indicating which locations in Ωx are observed (i.e., R is a row matrix with zero 



value for the non-observed locations of X̄ and 1 for the observed locations), and ε̄ is a vector of random 

noise measurements, usually assumed to be distributed like a Gaussian with zero mean and covariance 

matrix Σε (24). When new information become available (new measurements are recorded), the distribution 

of the model f(̄x̄) can be updated. Specifically, Bayesian inference allows updating the prior distributions 

𝑝̄ 𝐹 to obtain the posterior distribution 𝑝̄ 𝐹|𝑦̄ .  

Prior and posterior distributions, 𝑝̄ 𝐹 and 𝑝̄ 𝐹|𝑦̄  can be used by a decision-maker to decide an action from a 

set of possible actions ā. In particular, the SSCs prior probability of failure P̄F (x̄)  and posterior probability 

of failure P̄F|ȳ (x̄) that can be inferred from 𝑝̄ 𝐹 and 𝑝̄ 𝐹|𝑦̄ , respectively, can support, in a risk-informed 

perspective, a decision-maker choice of maintenance by balancing risk and actions costs, on the basis of 

the most informative set that can be collected.  

To this aim, a loss function L(f ̄(x̄), ā) can be introduced as negative utility (i.e., loss) that may come from 

taking  a decision. For example, in case a decision of action is taken based only on the prior knowledge 𝑝̄ 𝐹 

without relying on additional measurements (∅), the prior expected loss 𝔼L(∅) can be minimized to find 

the optimal action: 

𝔼𝐿(∅) = 𝑚𝑖𝑛{𝔼𝐹𝐿(𝑓̅(𝑥̄ ), 𝑎̄ )}   (2) 

On the other hand, if ȳ(x̄) is available, the decision can be taken a posteriori of collecting the information 

ȳ(x̄), i.e., with respect to 𝑝̄ 𝐹|𝑦̄ , and minimizing the posterior expected loss 𝔼𝐿(𝑦̄ (𝑥̄ )): 

𝔼𝐿(𝑦̄ (𝑥̄ )) = 𝔼𝑌min{𝔼𝐹|𝑦̄  𝐿(𝑓̅(𝑥̄ ), 𝑎̄ )}  (3) 

For example, based on 𝑝̄ 𝐹 (e.g. the prior knowledge on the field of stress on a plate with growing cracks, 

providing a failure probability estimate P̄F(x̄) due to the load applied) a repair decision might be taken that 

differs from the one that would have been taken if the posterior probability of failure P̄F|ȳ(x̄) would have 

been considered, if P̄F|ȳ(x̄) were updated with the new measurements ȳ(x̄) that have become available.  

 

For the pressurized vessel, 𝑝̄ 𝐹|𝑦̄  reflects the updated distribution of the stress, conditioned on the collected 

information ȳ(x̄): within the here proposed simulation-based approach, the measurement corresponds to a 



random realizations in a specific location i. To account for this stochasticity, we assume that in each 

location, we simulate the collection of K alternative measurements, and 𝑝̄ 𝐹 and 𝑝̄ 𝐹|𝑦̄  are collected 

accordingly with their consequent losses as in Equations (2) and (3). K different stochastic realizations of 

𝑦̄ (𝑥̄ 𝑖) represent K different posterior expected losses (𝔼𝐿(𝑦̄ (𝑥̄ 𝑖))𝑘 which are averaged to quantify the 

posterior expected loss conditioned on the measurement at a specific location i as: 

𝔼𝐿(𝑦̄ (𝑥̄ 𝑖)) =
∑ (𝔼𝐿(𝑦̄ (𝑥̄ 𝑖))𝑘
𝐾
𝑘=1

𝐾
  (4) 

The difference between 𝔼L(∅) and 𝔼𝐿(𝑦̄ (𝑥̄ )) quantifies the benefit of taking decisions informed by the 

new information 𝑦̄ (𝑥̄ ), and is, thus, the VoI: 

VoI (𝑦̄ (𝑥̄ )) =  𝔼L(∅) − 𝔼L(𝑦̄ (𝑥̄ ))  (5) 

 

2.1. VoI-based sensor positioning 

As mentioned before, decisions are made optimal by the informativeness of ȳ(x̄). The cost-effectiveness of 

ȳ(x̄) holds when its cost C(ȳ(x̄)) is less than (or equal) to the VoI gained (i.e., VoI(𝑦̄ (𝑥̄ ))≥ C(ȳ(x̄))), and the 

utility M(𝑦̄ (𝑥̄ ))≥ 0: 

M(𝑦̄ (𝑥̄ )) = VoI (𝑦̄ (𝑥̄ )) − C(𝑦̄ (𝑥̄ ))  (6) 

The optimal set of measurement ȳ(x̄*), i.e., the set which maximizes the utility M(ȳ(x̄)), is determined by 

the optimal number of sensors n and their positioning. In principle, the optimal positioning of sensors can 

be found by simulating every possible set of measurement location on Ωy by a combinatorial and 

computationally impractical way of solving Equation (7): 

𝑦̅̄∗(𝑥̄ ) = 𝑎̄𝑟𝑔𝑚𝑎̄𝑥̄ 𝑌  ⊆𝛺𝑌  (𝑀(𝑌̅))   (7) 

Alternatively, optimization approaches can be used: in greedy optimization approach, firstly the optimal 

positioning for a single sensor is searched by simulation (i.e., n = 1) and, then, based on this result, the next 

sensor is positioned until, iteratively, the maximum desired M(𝑌̅) is reached by updating the nth 𝑝̄ 𝐹 from the 

(n-1)th 𝑝̄ 𝐹|𝑦̄  to take into account the availability of new measurements taken at the selected location (25,26).  

2.2. VoI-based sensor positioning for Gaussian fields  



A particular case of the sensor positioning procedure described in Section 2.1 is the sensor positioning on 

Gaussian fields, which means that f(̄x̄) is normally distributed on Ωx (27), with a mean function value m(x̄), 

a standard deviation 𝜎(𝑥̄ ), and covariance k(x̄, x̄′) with correlation ρ(x̄, x̄′) (i.e.,  𝑘(𝑥̄ , 𝑥̄ ′) =  𝜎(𝑥̄ )𝜎(𝑥̄ ′)𝜌(𝑥̄ , 𝑥̄ ′)) 

between locations x̄ and x̄′. This means, also, that when a measurement is taken at a given location (𝑥̄1, 𝑥̄2), 

any other measurement at any other location (𝑥̄1′, 𝑥̄2′) is correlated with (𝑥̄1, 𝑥̄2) according to the exponential 

correlation function (28): 

ρ(𝑥̄1, 𝑥̄2, 𝑥̄1
′ , 𝑥̄2

′ ) = exp ( -√
((𝑥̄1−𝑥̄1

′)
2
+(𝑥̄2−𝑥̄2

′)
2
)

𝜆2
)  (8) 

where 𝜆 is called scale parameter (in the case study of Section 3, 𝜆 is taken equal to 100 mm). 

 In various cases, spatially distributed systems can be assumed to be Gaussian (29,28) and, Bayesian 

inference for the sensors positioning can exploit the property of conjugate priors (30), as discussed 

hereafter.  

Specifically: 

• the multivariate field f̄(x̄) can be described by the mean vector 𝜇̄ 𝐹 = 𝑚̅(𝑥̄ ) containing multivariate 

mean values m(x̄) of different SSC properties and a covariance matrix ΣF =  𝑘(𝑥̄ , 𝑥̄ ′), with a prior 

distribution 𝑝̄ 𝐹: 

𝑓(̅𝑥̄ )  ~ 𝑝̄ 
𝐹
=  ℕ(𝜇̄ 

𝐹
, Σ𝐹)   (9) 

• the measurement set ȳ(x̄) of Equation (1) is modeled as an independent, identically distributed, zero 

mean Gaussian distribution covariance matrix Σε can be described as distributed by a multivariate 

normal distribution with 𝜇̄ 𝑌̅ = R𝜇̄ 𝐹 ,Σ𝑌̅ = RΣFR
T + Σε (Equation (10)): 

𝑦̄ (𝑥̄ ) ~ 𝑝̄ 𝐹|𝑦̄  =  ℕ(𝜇̄ 𝑌̅, Σ𝑌̅)   (10) 

The conjugate posterior of f(̄x̄) is, thus, a Gaussian distribution (31):  

𝑓 ̅| 𝑦̄ (𝑥̄ ) ~ ℕ (µ 𝐹|𝑦̄  ,  Σ𝐹|𝑌̅)   (11) 

with: 

𝜇̄ 𝐹|𝑦̄ = 𝜇̄ 𝐹 + Σ𝐹R
TΣ𝑌̅

−1(𝑦̄ (𝑥̄ )− 𝜇̄ 𝑌̅) (12) 



and 

Σ𝐹|𝑌̅ = Σ𝐹 − Σ𝐹R
TΣ𝑌̅

−1RΣ𝐹   (13) 

being the posterior mean and covariance, respectively. 

 

3. Application of the VoI-based Approach for Optimal Sensor 

Positioning on a SG Undergoing Creep 

The application of the VoI-based approach for sensor positioning described in Section 2.1. is here shown 

with respect to the optimization of sensors positioning on a manifold of the SG of a Prototype Fast Breeder 

Reactor (PFBR) (See Figure 1), whose thickness can be measured by Ultrasonic Thickness Testing (UTS). 

 

 

Figure 1:The manifold of a SG of a PFBR used as test case for the VoI-based approach for sensor positioning 

Under the assumed operating conditions listed in Table 1, the manifold may suffer of creep due to the large 

design pressure and temperature, and long exposure time that may lead to failure. 

Table 1: Operating conditions of the SG 

Design pressure 189 barg 

Design temperature 
778 °K = 505 °C    inlet 

723 °K = 450 °C    outlet  

Material 
9Cr-1Mo-V-Nb (Plate) 

ASME SA-387/SA-387M Grade 91 

Percentage of life 

spent 
35% 

Operating hours 100,000 h 

Tensile strength 475 MPa 

Thickness 20 mm 

 

Failure would occur at location x̄ if the thickness (i.e., the Gaussian strength random field fs (x̄)) is smaller 

than a threshold thickness, here assumed equal to a constant value of 16.9 mm on the whole Ωx (i.e., the 



failure threshold field ft (x̄) calculated in (32) in line with (33) using the NIMS creep database (34), that 

contains creep data collected in experiments related to pressurized equipment of NPP of the same material 

and operating under the same conditions of the manifold considered in our case). 

Since fs (x̄) is a Gaussian field and ft (x̄) is a constant, the limit state function 𝑔(𝑥̄ ) =  𝑓𝑠(𝑥̄ ) − 𝑓𝑡(𝑥̄ ) is a 

Gaussian g(x̄) ~ N (µg(x̄), σg(x̄)), which implies a probability of manifold failure P̄(x̄) (i.e. the probability 

that g(x̄)<0) equal to: 

𝑃̅(𝑥̄ ) =  Φ(−β(𝑥̄ ))   (14) 

where Φ(.) is the standard normal cumulative distribution function, and 𝛽 is the reliability index equal to: 

𝛽(𝑥̄ ) =   
𝜇𝑔(𝑥̄ )

𝜎𝑔(𝑥̄ )
  (15) 

The technical procedure in the Italian guideline ISPESL n. 48/2003 (33) and, specifically, the norm (UNI 

11096, 2012) (4) is used as benchmark for the sensors positioning. In line with (4), 32 thickness gauges are 

placed in the locations (*) of Figure 2, among 160 locations available. Notice that holes of subchannels 

within the manifold are neglected in line with (4).  

 

Figure 2: Schematic view of the unwrapped manifold with sensor locations (x̄), in line with (UNI 11096, 2012). 

This benchmark positioning is, however, independent from the actual fs (x̄) that may vary, due to the 

manifold production process. The following common cases are considered (see Figure 3): 

1. Circumferential welding of two extruded manifolds. 

2. Longitudinal welding of a rectangular plate. 

3. Circumferential welding of two manifolds resulting from a longitudinal welding of two rectangular 

plates. 



4. Manifold extrusion. 

 

Figure 3: schematic view of the four case studies. 

In all these cases, the fs (x̄) is modeled with a Gaussian model 𝑝̄ 𝐹(𝑥̄ )  =  ℕ ~ (20mm, 1mm) except for the 

welding and Heat Affected Zone (HAZ), where 𝑝̄ 𝐹(𝑥̄ )  of fs (x̄) is ℕ ~ (20mm, 2mm). Figure 4 shows the 

standard deviation of fs (x̄) for all the cases (the lighter the color, the larger the standard deviation). 

 

Figure 4: Standard deviation of fs (x̄) for the four case studies 

 
Knowing that ft (x̄) is equal to 16.9 mm, the prior probability of failure P̄F (x̄) can be calculated at any 

location x̄ of the manifold, as plotted in Figure 5 (the warmer the color, the larger the probability of failure). 



 

Figure 5: Prior probability of failure P̄F (x̄) for the four case studies 

At this point, it can be decided to: 1. do nothing (a = 0) with zero cost, or 2. mitigate degradation (a = 1) 

(for, example, for mitigating creep, one can either reduce the operational stress (i.e., lowering pressure, 

temperature, …), or sleeve the risky area, or perform a weld repair (35), or any combination of these with 

cost Cm). Depending on the true state (s̄) of the manifold, unknown to the decision maker, (i.e., too much 

degraded (s = 0) that would entail failure cost of Cf, or operational (s = 1)), one sets the loss function value: 

𝐿(𝑓̅(𝑥̄ ), 𝑎̅̄) =  {

0                                             𝑖𝑓 𝑠 = 1 𝑎̄𝑛𝑑 𝑎̄ = 0
𝐶𝑓 = 200𝐾€                         𝑖𝑓 𝑠 = 0 𝑎̄𝑛𝑑 𝑎̄ = 0 

 𝐶𝑚 =  5𝐾€                                                  𝑖𝑓 𝑎̄ = 1

}    (16) 

 

In other words, if no mitigation action is performed (a = 0) and the true state is operational (s = 1), then 

the decision comes with zero cost; otherwise, if the actual state is too degraded (s = 0), then, a wrong 

decision comes with cost Cf . It is assumed that, regardless of the true state of the manifold, if a failure 

mitigation action is undertaken, the payoff is the cost Cm.  

For the proposed application, the prior expected loss 𝔼L(∅) = ∑ 𝔼𝐿𝑖(∅)
160
𝑖=1  is quantified by simultaneously 

accounting for all the 160 prior expected losses, where, for the 𝑖-th location, the prior expected loss is: 

𝔼𝐿𝑖(∅) = 𝑚𝑖𝑛{𝔼𝐹𝐿𝑖(𝑓(̅𝑥̅̄𝑖), 𝑎̅̄𝑖)} = 𝑚𝑖𝑛{𝔼𝐹𝐿𝑖(𝑓(̅𝑥̅̄𝑖), 0), 𝔼𝐹𝐿𝑖(𝑓(̅𝑥̅̄𝑖), 1)} = 𝑚𝑖𝑛{𝐶𝑓 × 𝑃𝐹 (𝑥̅̄𝑖), 𝐶𝑚 }  (17) 

being 𝔼𝐹𝐿𝑖(𝑓(̅𝑥̅̄𝑖), 0) the failure cost 𝐶𝑓 = 200 𝐾€ weighted by the probability of failure 𝑃𝐹(𝑥̅̄𝑖) (if no action 



is taken, a=0), and 𝔼𝐹𝐿𝑖(𝑓̅(𝑥̅̄𝑖), 1) corresponds to the cost 𝐶𝑚 = 5𝐾€ (if maintenance action is taken, a=1). 

Also the posterior expected loss 𝔼L(𝑦̄ (𝑥̄ )) = ∑ 𝔼𝐿𝑖(𝑦̄ (𝑥̄ ))
160
𝑖=1  is quantified by simultaneously accounting 

for all the 160 posterior expected losses where, for the 𝑖-th location, the posterior expected loss conditional 

on the measurement set 𝑦̄ (𝑥̄ ) is: 

𝔼𝐿𝑖(𝑦̄ (𝑥̄ )) = 𝑚𝑖𝑛{𝐶𝑓 × 𝑃𝐹|𝑦̄  (𝑥̅̄𝑖), 𝐶𝑚 }  (18) 

being 𝑃𝐹|𝑦̄  (𝑥̅̄𝑖) the posterior probability of failure of location  𝑥̅̄𝑖.  

It is worth mentioning that 𝔼L(∅) and 𝔼L(𝑦̄ (𝑥̄ )) have been calculated as the sum of all the prior and posterior 

losses, respectively, of all the 160 locations, because we conservatively assume that the manifold integrity 

is lost when at least one measurement location is overlooked ignoring the necessary mitigative action to 

counteract manifold failure. 

In Figure 6, the P̄F, the prior ā and the prior expected loss of each ith location 𝔼Li for the case 1 

(circumferential welding of two extruded manifolds) are plotted resulting in a total prior expected loss 

𝔼L(∅) = ∑ 𝔼Li(∅)160
𝑖=1 , which can be interpreted as the utility value of taking decisions ā on the prior belief 

𝑝̄ 𝐹, when due account is given to all the 160 prior expected loss values 𝔼Li of each ith discretized locations 

𝑥̄ . 

 

 

Figure 6: Prior probability, prior actions and the prior expected loss for the case study 1 

 



When a new measurement ȳ(x̄) is taken, it reduces the uncertainty of f(x̄). In each realization, 𝑝̄ 𝐹 is to be 

updated in 𝑝̄ 𝐹|𝑦̄  to calculate the posterior probability of failure P̄F|ȳ, the posterior actions (ā) and the posterior 

expected loss 𝔼𝐿𝑖(𝑦̄ (𝑥̄ )) for each ith location (see Figure 7, where the posterior expected loss field is plotted  

conditioned on a specific observation at location x̄o shown by the circle). Finally, 𝑉𝑜𝐼(𝑦̄ (𝑥̄ )) is calculated 

using Equation (5) and 𝔼L(𝑦̄ (𝑥̄ )) = ∑ ELi(𝑦̄ (𝑥̄ ))160
𝑖=1 .  

 

 

Figure 7: The plot of the posterior expected loss field, conditioned on a specific observation at location x̄o. 

In this case study, VoIUNI is the standard value to be reached by the inspection scheme assuming that the 

inspection costs are neglected (i.e., C(𝑦̄ (𝑥̄ ))=0). As a result, the largest VoI of the case study comes from 

the set of measurement that fills all the i=160 candidate locations with sensors. Instead, we are looking for 

a set that its benefits exceeds that of the standard value VoIUNI to evaluate the proposed simulation-based 

methodology’s capabilities and compare it with the experience-based standard in recommending better 

sensors positioning strategy. 

The optimal n sensors locations ȳ(x̄*) can be found with the greedy optimization method whose flowchart, 

tailored on the specific case study, is given in Figure 8.  



 

Figure 8: Flowchart for VoI-based greedy optimization  

At each n-th iteration, we aim at positioning one sensor among the 160 candidate positions. The posterior 

field (p̄F|ȳ)n  is calculated K=10000 times to simulate K different stochastic realizations of 𝑦̄ (𝑥̄ 𝑖). The 

posterior expected loss 𝔼𝐿(𝑦̄ (𝑥̄ 𝑖)) =
∑ (𝔼𝐿(𝑦̄ (𝑥̄ 𝑖))𝑘
10000
𝑘=1

10000
 (Equation (4)) is calculated and VoI(ȳ(x̄i) is 

quantified; the sensor position ȳn
* that yields the largest VoI(ȳ(x̄i)) value among the 160 candidate positions 

is added to the optimal set ȳ(𝑥̅̄∗) and the prior belief (p̄F)n of the next iteration becomes the posterior field,  

informed by ȳ(𝑥̅̄∗) (i.e., (p̄F)n  = p̄F|ȳ(ȳ(𝑥̅̄∗)). The search of the optimal location sets stops when the set ȳ(𝑥̅̄∗) 

yields a VoI value greater than or equal to VoIUNI  that represents the positioning of 32 sensors in the 32 

locations identified by (*) in Figure 2 (as supported by the technical procedure in the Italian guideline 

ISPESL n. 48/2003 (33) and, specifically, the norm (UNI 11096, 2012) (4), assuming that inspection costs 

are negligible with respect to Cm and Cf ). 

Figure 9 shows the contour plots of VoI at the first iteration of greedy optimization, where the circle 

identifies the location where the max VoI would have been reached if the sensors were positioned there. 



 

Figure 9: VoI contours for the four case studies at the first iteration n=1. 

It can be seen that locations close to the HAZ (with larger uncertainty) also have larger VoI; a further proof 

comes from the case study 4, for which all locations have the same 𝑝̄ 𝐹 and, therefore, the VoI for any i-th 

location is almost identical with (all other locations (i.e., slight difference in VoI is due to the stochasticity 

of the random field characterization)). 

Figure 10 shows the optimal sensors positions ȳ(x̄*) for each of the case studies. The number of sensors n 

required to exceed VoIUNI is 5, 17, 18, 32, respectively (where the numbers indicate the order of positions 

selected by the optimization strategy). 



 

Figure 10: Sensor positioning using the greedy optimization algorithm for the four case studies 

In all cases, n< nUNI=32 and the ratio r = 
𝑉𝑜𝐼

𝑛
 is defined to show the VoI-per-sensor in each case study. 

Similarly, 𝑟𝑈𝑁𝐼 = 
VoIUNI

𝑛UNI
 shows the VoI-per-sensor obtained by positioning by the (4) guidelines with 

nUNI=32. Table 2 compares quantitatively the VoI, number of sensors n, and the VoI-per-sensor ratio r in 

the different case studies, with their corresponding values of the (UNI 11096, 2012) sensors positioning. 

The VoI-per-sensor ratio r of the case studies are compared with their associated rUNI values, with the 

coefficient of improvement CI showing how much the VoI-per-sensor ratio r is improved using the 

suggested framework (CI= 
𝒓

𝒓𝑼𝑵𝑰
). 

 
Table 2: Comparison between the UNI 11096 and the proposed method for sensor positioning 

Case 

Study 

VoI n r  VoIUNI nUNI 𝒓𝑼𝑵𝑰  CI 

1 2.6495e+04 5 5299 2.6386e+04 32 824.56 6.43 

2 9.9772e+04 17 5868.94 9.4014e+04 32 2937.94 2.00 



3 1.0727e+05 18 5959.44 1.0420e+05 32 3256.23 1.83 

4 6.1561e+03 28 219.86 5.9847e+03 32 187.02 1.18 

 

It can be seen that the VoI-based sensor positioning strategy in all cases gives a better VoI-per-sensor than 

following the normative recommendation of (4). 

3.1.  Considerations on Geometrical Symmetry 

Due to the symmetry of the manifold geometry and thickness distribution, one might argue that positioning 

sensors in locations ns with the same uncertainty should not imply differences in VoI. To test this 

hypothesis, let us consider case study 1, in which ns=8 potential sensors locations fall in the HAZ area with 

large uncertainty (i.e., elements in the frame highlighted in Figure 11) and they may be equally selected as 

one of the optimal location of each greedy optimization iteration (i.e.,  ȳn
*). These locations are sketched in 

Figure 11 (top). 

 

 

Figure 11: Sensor positioning for case study 1 

As mentioned in Section 3, to exceed the VoIUNI value of case study 1, a measurement set ȳ(x̄*) comprised 

of n=5 sensors was needed (shown in Figure 11 (bottom)). However, if the sensor positioning approach is 

repeated 1000 times to find ȳ(x̄*) and the probability that each one of these ns locations being selected as 

one of the n optimal sensors of ȳ(x̄*) is calculated, the results shown in Figure 12 are obtained, showing that 

the probability of each location being selected as one of the n optimal sensors positionings is 62±5%, which 



proves that the locations ns sharing the same uncertainty and geometrical properties have almost equal 

probability to be selected as one of the optimized locations for sensor positioning of the optimal set ȳ(x̄*). 

 

 

Figure 12: Probability of the sensors locations to be selected as one of the optimal positions (%) 

 

4. Conclusions 

In this paper, a VoI-based, simulation-optimization framework has been presented for optimal sensors 

positioning. The framework has been applied to position the optimal sensors for monitoring the condition 

of a pressurized equipment degrading under creep. The main limitation of the proposed simulation-

optimization framework is that it relies on a greedy optimization method which might encounter difficulties 

in some applications on a non-sub-modular metric like VoI (26). Despite this, in the application considered, 

the sensors positioning obtained using the proposed framework gives results that not only justify the 

positioning of the standard (4), but also require less sensors to reach the VoI that would be obtained by duly 

implementing the current guidelines/norms. Then, the proposed advanced computational framework can be 

used for supporting the development of guidelines based on past operational experience and could be 

particularly useful for those ones with limited past operational records. 
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