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Abstract: The problem of navigating a formation of interconnected tethered drones, named
STEM (System of TEthered Multicopters), in an unknown environment is considered. The
tethers feed electrical power from a ground station to the drones and also serve as communication
links. The presence of more than one interconnected drone provides enough degrees of freedom
to navigate in a cluttered area. The leader drone in the formation must reach a given point of
interest, while the followers must move accordingly, avoiding interference with the obstacles. The
challenges are the uncertainty in the environment, with obstacles of unknown shape and position,
the use of LiDAR (Light Detection And Ranging) sensors, providing only partial information
of the surroundings of each drone, and the presence of the tethers, which must not impact with
the obstacles and pose additional constraints to how the drones can move. To cope with these
problems, a novel real-time planning algorithm based on numerical optimization is proposed: the
reference position of each drone is chosen in a centralized way via a convex program, where the
LiDAR scans are used to approximate the free space and the drones are moved towards suitably
defined intermediate goals in order to eventually reach the point of interest. The approach is
successfully tested in numerical simulations with a realistic model of the system.

Keywords: Autonomous vehicles, Robot navigation, Constrained control, Formation control,
LiDAR sensors, Tethered drones.

1. INTRODUCTION

The drone market has been rapidly expanding in the last
decade, and it is expected to keep growing in the coming
years. Technological advancements and decreasing prices
are driving the interest in the use of unmanned aerial vehi-
cles (UAVs) for various purposes, such as mapping (Casella
and Collin (2017)), emergency response (Nedjati and Viz-
vari (2016)) and building inspection (Rakha and Gorodet-
zky (2018)). Tethered drones are employed in applications
where long operational time is needed and/or the system
must be mechanically anchored for safety. Different aspects
of tethered drones have been investigated (Tognon et al.
(2016); Lee (2015); Lupashin and D’Andrea (2013); Oh
et al. (2006); Choi et al. (2014)) and several commercial
products exist as well (see, e.g., Elistair (2020)).
Differently from the mentioned contributions, where a
single tethered drone is considered, our research explores a
novel tethered multi-drone system, called STEM (System
of TEthered Multicopters), proposed in Fagiano (2017).
STEM consists of a formation of two or more multicopter
drones, tethered to each other and to a ground station.
The tethers transfer electrical power from a ground power
source to the drones, and also provide a power line commu-
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nication network. Their length can be adjusted automat-
ically by onboard winches, according to the formation’s
geometry. Each drone is stabilized by a local feedback
controller, while a high level, centralized control algorithm
computes the reference positions for all the units, accord-
ing to the specific mission. The use of more than one teth-
ered drone is justified by the gained flexibility: a chain of
drones can reach places, e.g. behind obstacles, that a single
tethered drone can not. A prototype STEM featuring two
drones, each with 12 kg of mass and connected by 100-m-
long cables, is currently under development at Politecnico
di Milano.
In this paper, we study in particular the problem of au-
tonomous navigation of STEM in a three-dimensional (3D)
environment, with a-priori unknown obstacles. The goal
is to reach a given point of interest with the first drone
of the series. The other drones in the formation have to
adapt their trajectories to allow the first one to reach its
goal, while making all the units (and the tethers) avoid
the obstacles. Since the latter are supposed to be a priori
unknown, the centralized navigation algorithm can rely
only on the partial information gathered by each unit,
including, in addition to the usual position and attitude of
each drone, the readings of planar LiDAR (Light Detection
And Ranging) sensors installed on the UAVs.
This problem can be classified as a collision avoidance one:
solution methods in the literature range from planning
techniques, such as graph search (Hwangbo et al. (2007);
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Fig. 1. Model of a considered STEM system with three
drones.

Kitamura et al. (1996); Duchoň et al. (2014)), RRT (Li
et al. (2016)), and potential fields (Khatib (1986)), to reac-
tive techniques, e.g., Zapata and Lepinay (1999), Zufferey
and Floreano (2006). However, to the best of the authors’
knowledge, none of the existing approaches can deal with
the combination of aspects in the problem at hand, i.e.:
the presence of the tethers, the fact that the position and
shape of the obstacles is assumed to be fully unknown a
priori, and the use of LiDAR sensors, each one returning
the distance of the closest obstacles along a finite number
of directions.
The main contribution of this paper is a new reactive
approach to deal with these aspects. A real-time algorithm
collects the information from the drones and employs it to
build suitable polytopic constraints. The latter approxi-
mate locally the set of all directions that do not impact
with an obstacle, while also ensuring that any two subse-
quent drones remain in line-of-sight. The presence of tether
catenary is accounted for by a constraint tightening proce-
dure. Then, a quadratic program (QP) is solved to update
the reference position tracked by each drone, in order to
eventually reach the point of interest. To formulate the
approach and test it in a realistic simulation environment,
additional contributions are presented, including a model
of the LiDAR sensors and a model of the tether as a
nonlinear multi-body dynamical system.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

The navigation algorithm we propose in this paper oper-
ates in discrete time with a chosen sampling period Ts.
At each sampling time, it collects information from the
drones and computes and sends back reference position
values. Since it does not employ past information nor it
features an internal state, for notational simplicity we drop
the explicit time-dependence of all the involved variables.

2.1 Multicopter drones

To simulate the system, we employ six-degrees-of-freedom,
nonlinear continuous-time models of the drones, as de-
scribed by Fagiano (2017). The considered setup features
a ground station and N ∈ N drones in series, identified
by indexes i = 1, 2, ..., N . The drone with i = 1, named
leader, is the farthest one in the series from the ground
station, see Fig. 1. The position and velocity vectors of
the i-th drone in a fixed, right-handed inertial reference
frame (X,Y, Z), with Z pointing up, are denoted with
pi, ṗi ∈ R3, where pi = [pX,i, pY,i, pZ,i]

T and ·T is the

matrix transpose operation. The origin of the reference
frame coincides with the position of the ground station.
Electro-actuated winches are installed on the ground sta-
tion and on each drone, except the leader, and can adjust
the length of the tethers connecting any two subsequent
units in the series. We denote with Li the length of the
reeled-out tether connecting drone i to drone i + 1 (and
drone N to the ground station). The drones and the
winches are assumed to be automatically controlled with
local feedback loops that make the UAVs track a reference
position vector, denoted with pref,i, while automatically
adjusting the tether lengths. A possible design approach
for such local controllers is provided in Fagiano (2017).

2.2 LiDAR sensors

Each drone i is equipped with two planar LiDAR sensors,
each one spanning 360 degrees in one of two perpendicular
planes. We assume the LiDARs to be installed on active
gimbals that stabilize their attitude notwithstanding the
drone’s motion. Referring to Fig. 1, one plane, named
“horizontal”, is always parallel to (X,Y ) and elevated
at the drone’s Z−coordinate, while the other one, the
“vertical plane”, is perpendicular to (X,Y ) and can be
oriented by adjusting the gimbal’s yaw angle. This allows
each drone to detect obstacles lying inside one of such
planes, while no information is gathered outside them. The
angular resolution of the LiDARs, in degrees, is θs. For
each drone i, a sensor scan thus produces a vector si ∈ RM
with M = 360

θs
entries si(j), each one corresponding to

the distance of the closest obstacle along the direction jθs
(with j = 0 corresponding to a selected, fixed direction)
for example in the horizontal plane, j = 0 corresponds to
the X−axis:

Xobs
i,j = si(j) cos(jθs)

Y obsi,j = si(j) sin(jθs); j = 0, . . . ,M − 1,
(1)

see Fig. 2 for a visualization. In simulation, vector s
is computed via a collision detection routine between
the obstacles, defined by a series of possibly overlapping
polytopes, and M segments originating from the drones
and directed along the probed directions. The LiDARs
also have a maximum detection range smax: if in a given
direction jθs no obstacle is detected within this range, then
si(j) =∞.
The choice of LiDARs for navigation is advantageous
because they are fast, hence it is possible to use them
in real-time scenarios, they are active sensors, thus they
work in conditions where light and contrast are scarce or
excessive, and they retain accuracy at a distance.
Tethers connecting the drones are modelled as a series of

springs and dampers, the reader is referred to an extended
version of this paper (Bolognini and Fagiano (2020)) for
the detailed model.

2.3 Problem Formulation

The main focus of this work is the supervisory controller
highlighted in Fig. 3. Its inputs are the position vectors
pi, i = 1, . . . , N , the tether lengths Li, i = 1, . . . , N ,
and the LiDAR readings, si, i = 1, . . . , N sent by the
drones, while the outputs are the reference position vectors
pref,i, i = 1, . . . , N to be computed and sent to the
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Fig. 2. Representation of a LiDAR scan along the horizon-
tal plane in the simulation environment. The drone
is represented as a green circle, while the light blue
overarching structure represents an obstacle. Each
line emanating from the drone is a laser beam. Similar
scans are carried out along the vertical plane, at each
time step.

drones in each sampling period. The problem we address
is how to design such a supervisory controller to guide the
leader drone to a point of interest with coordinates ppoi
in the inertial reference (X,Y, Z), specified by an external
agent, while moving the overall formation in order to avoid
collisions between the drones and/or the tethers and the
obstacles.

3. REAL-TIME NAVIGATION AND
OBSTACLE-AVOIDANCE ALGORITHM FOR STEM

Let us collect the decision variables in a single vector
x = [pTref,1, . . . ,p

T
ref,N ]T ∈ R3N , and let us define the

matrix Λ̄ = diag(Λ1, . . . ,ΛN ) ∈ R3N×3N , where diag(·)
denotes a block-diagonal matrix and, for i = 1, . . . , N , Λi
are 3 × 3 diagonal matrices with the tuning parameters
λi ∈ (0, 1) on the diagonal. The proposed navigation
algorithm consists of the following main steps:

(1) Collect the information pi, Li, and si, i = 1, . . . , N ;
(2) Using the collected information, formulate suitable

goals for the drones, expressed as position vectors
pgoal,i ∈ R3 in the inertial frame. Collect the goals
in vector xgoal = [pTgoal,1, . . . ,p

T
goal,N ]T ;

(3) Also based on collected information, build a matrix
A ∈ Rp×3N and vector b ∈ Rp that define polytopic
constraints on the drones’ reference positions;

(4) Compute x∗ as:

Drone
𝑖𝑖 = 1

Local controller 
drone 𝑖𝑖 = 1

Supervisory 
Controller

𝒑𝒑𝑟𝑟𝑟𝑟𝑟𝑟,1

Drone
𝑖𝑖 = 𝑁𝑁

Local controller
drone 𝑖𝑖 = 𝑁𝑁

⋮

𝒑𝒑𝑟𝑟𝑟𝑟𝑟𝑟,𝑁𝑁

⋮
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Fig. 3. Layout of the considered control system. At each
time step, the supervisory controller calculates po-
sition reference values for all drones, based on their
current positions and LiDAR sensor readings.

x∗ = arg min
x

(x− xgoal)
T Λ̄(x− xgoal)

subject to
Ax ≤ b

(2)

(5) Send the optimal position references contained in x∗

to the corresponding drones, repeat from (1) at the
next time step.

Note that (2) is a strictly convex QP of small size with
Hessian Λ̄, a diagonal matrix, which can be solved in very
short time, see e.g. Wang and Boyd (2008); Bemporad
(2016), and is thus suitable for real-time application. The
weights γi are used to trade off, in the cost function, the
distance of the different drones from their goals. Typically,
a larger weight γ1 is assigned to the leader’s cost with
respect to the other ones. The key points of the approach
are the computation of the goals pgoal,i, i = 1, . . . , N and
of A and b, described in the remainder of this section.

Regarding the goals, we initialize pgoal1 = ppoi (i.e.,
the leader’s goal is always equal to the wanted point of
interest), and proceed sequentially, by setting the goal of
drone i+ 1 as:

pgoal,i+1 = pgoal,i − d̄
pgoal,i − pi
‖pgoal,i − pi‖

, (3)

where d̄ is a design parameter and pi the current position
of drone i. Equation (3) corresponds to the geometric
construction presented in Fig. 4, whose aim is to make
each drone i + 1 point a target “behind” drone i on the
line connecting the latter to its goal, at a distance d̄.
Regarding the constraints in (2), for simplicity we first
consider a 2D case, and later extend the approach to 3D.
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Fig. 4. Computation of goals on a plane parallel to (X,Y ).
The goal of drone i + 1 is computed as a point lying
at a user-defined distance d̄ (here 5 m) behind drone
i on the line connecting pgoal,i and pi.

3.1 Computation of constraints in 2D

For the 2D case, let us assume that all drones have the
same Z coordinate, so that their movements are bound
to a plane parallel to (X,Y ). We start by considering
each drone i individually. Recall that the LiDAR readings
si feature a finite entry if an obstacle is detected along
the corresponding direction within the maximum distance,
and infinite otherwise. It is then safe to state that if
the drone moves along one of the directions with infinite
distance in si, no collisions can occur until the next
sampling period. Moreover, if the scans are dense enough
(i.e. if θs is small), then it is reasonable to assume that no



extremely thin obstacle lies between two consecutive scans,
at least at a close distance. Figure 2 shows a graphical
interpretation of this concept. Note that the maximum
distance introduced in Section 2.2 can also be set to a
value smaller than the LiDAR’s limit, for example to
navigate in narrow environments surrounded by obstacles,
and that the intended sampling period (e.g., 0.1 s) is small
compared to the drones’ speed (e.g., 2 m/s). With these
considerations in mind, let us define the following indexes:

j
i

= min
j=1,...,M

j : si(j) =∞
j̄i = max

j=j
i
+1,...,M

j : si(k) =∞, k = j
i
+ 1, . . . , j (4)

the pair (j
i
, j̄i) thus identifies an angular sector spanning

directions with no visible obstacles. The two lines that
limit such a sector are given by:[
− tan(j

i
θs) 1

− tan(j̄iθs) 1

]
︸ ︷︷ ︸

Ai

(
j
i
,j̄i
)

[
pX
pY

]
=

[
− tan(j

i
θs)pX,i + pY,i

− tan(j̄iθs)pX,i + pY,i

]
︸ ︷︷ ︸

bi

(
j
i
,j̄i
)

(5)

Now, assuming that θs

(
j̄i − ji

)
≤ π, the following in-

equality constraints (possibly with a change of sign to se-
lect the half-planes where no obstacles are present) identify
the obstacle-free sector as a polyhedron:

Ai

[
pX
pY

]
≤ bi (6)

Special cases are taken care of, such as when j
i
θs and/or

j̄iθs are equal to
π

2
or

3π

2
, when more non-contiguous,

obstacle-free angular sectors are present, when the sector

is non-convex (if θs

(
j̄i − ji

)
> π) or when the point of

interest lies between the leader drone and an obstacle.
Further details are available in the extended version of
the present paper, see Bolognini and Fagiano (2020).

Once Ai, bi, i = 1, . . . , N have been computed for all
drones, we can build the following constraints on the
reference position for each drone:

Āi

[
pX,ref,i
pY,ref,i

]
≤ b̄i (7)

where ĀN = Ai, b̄N = bN and, for i < N :

Āi = diag(Ai, Ai+1), b̄i =

[
bi

bi+1

]
. (8)

Namely, for each drone we constrain the reference position
to lie inside the intersection of the obstacle-free regions of
the drone itself and of the next one in the series (i.e. its
follower), in order to keep the two UAVs within line-of-
sight of each other, thus ensuring that the i−th tether
between them does not impact with any obstacle, see Fig.
5 for a visualization. This approach also favors recursive
feasibility of the optimization problem at each time step,
because drone i + 1 moves inside an obstacle-free area
and drone i moves inside a subset of it. However, in some
situations the presence of new, previously unseen obstacles
might render constraints (7) unfeasible. In this case, one
can either reduce the distance threshold above which a
scanned direction is deemed obstacle-free, or consider a
different obstacle free-angular sector (if more than one are
present) for one of the two drones. As a matter of fact, in
our tests recursive feasibility was always present. A formal
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Fig. 5. The feasible space for the position reference of drone
i (green circle) is limited by the one seen by drone i+1
(magenta square). If drone i were to travel within its
own constraints only, the tether might impact with
the obstacles.

proof of this property is subject of ongoing research.
The final step to build A and b in (2) is to consider
constraints (7) altogether:

A = diag(Ā1, . . . , ĀN ), b =
[
b̄1, . . . , b̄N

]T
. (9)

3.2 Computation of constraints in 3D

The main difficulty in extending the approach to the third
dimension is the fact that each drone features two planar
sensors, which is not equivalent to one 3D sensor. Thus, the
points where obstacles are detected lie in the geometrical
union of the two planes where the LiDAR scans take place,
and it is not safe to make assumptions on the shape of
the obstacles outside such region. For this reason, at each
time step the algorithm sets the position reference for each
drone in one of these planes and nowhere else. Therefore
it must choose, for each drone, along which plane the
movement will happen for the current sampling period.
As mentioned in Section 2.2, we assume that the vertical
plane where the LiDAR operates can be rotated via a
gimbal. In particular, we assume that the leader carries
out the vertical scan in the plane that contains the point of
interest, while the other drones i+1, i = 1, . . . , N−1, carry
out the vertical scan in the plane that contains drone i.
This is a sensible choice because, as a first approximation,
if there is little wind and the speed of the drones is not
high, the vertical plane containing drones i and i+ 1 also
contains the tether i with its catenary.
The constraints in the vertical plane are derived with the
same approach adopted for the horizontal plane, i.e. equa-
tions (4)-(9). Let us denote with ĀH,i, b̄H,i the terms in
(7) pertaining to the horizontal plane, and with ĀV,i, b̄V,i
those related to the vertical one. Then, after the constraint
sets in both planes have been computed, in order to choose
whether to place the reference position of each drone in
the horizontal or vertical plane, the following quantities
are derived:

cH =


0 if ĀH,i

[
pX,goal,i
pY,goal,i

]
≤ b̄H,i

d

([
pX,goal,i
pY,goal,i

]
, CH

)
otherwise



cV =


0 if ĀV,i

[
pXY,goal,i
pZ,goal,i

]
≤ b̄V,i

d

([
pXY,goal,i
pZ,goal,i

]
, CV

)
otherwise

where pXY,goal,i =

∥∥∥∥ pX,goal,i − pX,ipY,goal,i − pY,i

∥∥∥∥ is the relative po-

sition on plane (X,Y ) of the goal with respect to the
drone (recall that the vertical plane always contains both
points), d(v,A) is the distance between point v and set

A, finally CH =

{[
pX
pY

]
: ĀH,i

[
pX
pY

]
≤ b̄H,i

}
and CV ={[

pXY
pZ

]
: ĀV,i

[
pXY
pZ

]
≤ b̄V,i

}
. If cH ≤ cV , the horizontal

plane is chosen, otherwise the vertical one. Intuitively, this
approach chooses the plane in which the distance between
the corresponding constraint set and the point of interest
(possibly projected on (X,Y ) for the horizontal plane) is
smaller. When the goal is behind an obstacle, this strategy
effectively chooses to circumvent it by moving in the plane
where the required travel length appears to be smaller.
Once the plane has been chosen, the corresponding con-
straints are included in the QP (2), with the addition of
suitable linear constraints to force the position reference
to lie on that plane. The constraints pertaining to the
discarded plane are instead dropped.
Another aspect that must be included in the 3D case is the
presence of the tether catenary. To avoid impact between
the tether and an obstacle in the vertical plane, the fol-
lowing linear constraints are also included, exploiting the
map Z, which describes the vertical distance between a
drone and the lowest point of the cable connecting it to its
follower, as a function of the position of the follower. The
reader is again referred to Bolognini and Fagiano (2020)
for details on how the map is obtained.

pZ,ref,i ≥ (Zobs + ∆Z) + (pZ,i − Zi)
pZ,ref,i+1 ≥ (Zobs + ∆Z) + (pZ,i+1 − Zi),

(10)

where Zobs is the highest point detected by the vertical
LiDAR sensor of drone i + 1, oriented towards drone i,
i.e., the height of the highest detected obstacle below the
cable connecting drone i+1 to i, and ∆Z is a tunable safety
margin. Note that (10) are enforced on both drones i and
i+ 1: this fact might impact feasibility if, for one or both
of the drones, the horizontal plane had been chosen. In
these cases, if the problem is infeasible, the vertical plane
is chosen instead of the horizontal one, and the related
constraints are included in the QP, so that both drones are
allowed to move in Z direction. This is the only exception
to the plane selection approach described above.
As in the 2D case, LiDARs readings are manipulated if the
goal lies between the drone and an obstacle. This is even
more important in 3D, since the ground is considered an
obstacle and if the goal is lower than the leader’s position it
is difficult to descend without modifying the sensor output.
Finally, we include in the optimization program additional
linear constraints pertaining to the reference position of
drone N , pref,N , which prevent it from moving too far
away in the (X,Y ) plane from the ground station.
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Fig. 6. In this simulation, the leader drone is temporarily
prevented from traveling rapidly towards its goal,
because its follower would then be behind a corner.
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Fig. 7. A simulation of the whole system with three
drones and a ground station (the drones move towards
increasing x and y values). Note how the third drone
(yellow triangle) is confined within a restricted area
above the ground station.

4. SIMULATION RESULTS

All simulations were run with Matlab and Simulink. The
latter was employed to simulate the continuous-time dy-
namics of the drones and the tethers and the discrete-time
local controllers in between any two sampling instants of
the supervisory controller, implemented in Matlab. The
QP (2) has been solved with Matlab’s quadprog. We
carried out simulation tests with different shapes of obsta-
cles and positions of the point of interest, covering many
realistic application scenarios, and report here some of the
obtained results. The simulations show that the proposed
algorithm can manage a formation of three drones plus
the ground station so as to guide the aircrafts in 3D space



avoiding the a-priori-unknown obstacles. Figure 6 high-
lights how the follower drone is guided around an obstacle
and the leader is temporarily stopped from approaching
the goal by the propagation of constraints introduced in
section 3.1, in order to avoid a collision between the cable
and the obstacle. The last movements of the leader also
show that the condition where the goal lies between the
drone and an obstacle is correctly recognized and taken
care of, letting the drone approach the obstacle in order
to get to its final destination. Figure 7 also shows that
the leader can reach a goal initially behind an obstacle,
furthermore it illustrates other aspects described in this
paper:

• The third drone, directly connected to the ground
station, hovers close to it in a confined region of space;
• The i−th drone tends to position itself on the line

connecting drone i− 1 to its goal;
• Each drone independently decides whether to move

within the horizontal or vertical plane, depending on
its goal and surroundings;
• The constraints on the horizontal plane are correctly

propagated: in fact the second drone, towards the end
of the simulation test, remains in a region of space
where collision between obstacle and the second cable
is avoided, letting its distance from the leader grow.

5. CONCLUSION

An algorithm able to navigate a formation of tethered
drones in an unknown environment, relying on LiDAR
measurements, was presented. The algorithm operates in
real-time using current information only, and is based on
the solution of a convex QP. The algorithm does not
employ maps nor it stores information about the visited
zones, rather it drives the drone formation to incrementally
explore the environment towards the final goal, thus it is
suitable for navigation in time-varying environments as
well. In the development of this approach, safety was pri-
oritized over performance, because the obstacle-avoidance
feature is a primary concern for the automated flight of
systems such as STEM. This work was aimed at enabling
the autonomous flight in a simulation environment of a
system of tethered drones, and it represents a first step
for further research and development activities. These in-
clude: the inclusion of additional performance indicators
such as speed, energy consumption and repeatability; the
addition of mapping and trajectory generation functions;
the addition of vision-based sensors such as cameras; the
realization of a real-world prototype to experimentally test
the different approaches in a building monitoring task.
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