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Abstract
Multispectral/hyperspectral Fluorescence Lifetime Imaging Microscopy (λFLIM) is a promising toolfor studying functional and structural biological processes. The rich information content provided by amultidimensional dataset is often in contrast with the acquisition speed. In this work, we develop andexperimentally demonstrate awide-fieldλFLIM setup, based on a novel time-resolved 18x1 Single PhotonAvalanche Diodes (SPAD) array detector working in a single pixel camera scheme, which parallelizes thespectral detection reducing the measurement time. The proposed system, which implements a single-pixel camera with compressive sensing scheme, represents an optimal microscopy framework towardsthe design of λFLIM setups.

Fluorescence lifetime imaging microscopy (FLIM) is a powerful, non-invasive, imaging tool which providesfunctional and structural information to study photophysical processes in biological samples [1] and nano-materials [2]. In particular, FLIM iswidely used to study biological processes in combinationwith geneticallyencoded fluorescent tags, and endogenous (e.g. NADH) fluorophores. Fluorescence lifetime is indepen-dent on excitation intensity and extremely sensitive to the fluorophore’s microenvironment. Hence, it iswell suited to probe local temperature, pH,metabolic state, ion concentration, and fluorescence resonanceenergy transfer (FRET) efficiency [3, 4]. Likewise, the fluorescence spectrum provides a fundamental fin-gerprint to discriminate different fluorophores [5]. For these reasons, spectrally resolved FLIM (λFLIM)technique, which combines spatial, spectral and temporal information, leads to an unprecedented sensi-tivity [6, 7] to draw a comprehensive picture of photophysical processes.
Biological specimens are intrinsically dynamical systems (e.g. metabolic processes), while many materialsare subjected to photobleaching and, generally, a trade-off between acquisition time and information con-tent has to be found. FLIM techniques are commonly based on two different schemes: (i) wide-field and (ii)raster scan. The first scheme allows for very fast measurements, but it generally shows limited spectral andtemporal resolutions, while the second one allows for high spatial resolution at the cost of a long acquisi-tion time, which is proportional to the number of pixels. Despite several optimizations and technologicalimprovements devised throughout the years to reduce the measurement time (i.e. high speed scannersand highly sensitive detectors), the acquisition speed still remains a challenging issue.
In the last decade, the compressive sensing (CS) paradigm [8] has been introduced: a novel approach aimingat fully recovering information from an undersampled set of measurements. In classical signal processing,the number of elements to be acquired has at least to double the highest frequency component presentin the signal spectrum. It has been mathematically proven that, when a signal has a sparse representationunder a basis (e.g. Fourier, Wavelet, Hadamard, etc.), this limit can be overcome by recovering a signalwith N degree of freedom using a set of M�N measurements [9].
The main success of CS applied to imaging relies on the single-pixel camera (SPC) implementation [10].
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When a 2Dmapof functional datamust be acquired and 2D array detectors (e.g. CCDor CMOS cameras) arenot appropriate, the SPC collects photons through a single-pixel detector measuring the inner product ofthe spatial distribution of light and a family of 2D test functions belonging to a complete basis set. The imageis, afterwards, retrieved by solving a linear inverse problemwith proper sparsity constrains. The nature andperformances of the single-pixel detection system is a key aspect [11] for a multidimensional acquisition. Infact, it should provide spectral resolution, time resolution, ultimate sensitivity, or a combination thereof,which are not available in native 2D detectors. By applying CS to λFLIM it is possible to strongly reduce theacquisition time with minimum loss of information and a reduced amount of data to be transferred andprocessed. More recent approaches, capable of high-compression thanks to deep-learning strategies hasbeen proposed for macroscopic field of view [12].
Multispectral fluorescence microscopy by means of a SPC, was firstly proposed by Studer et al. [13]. Re-cently, a macroscopic (field of view of a few centimeters) multispectral fluorescence lifetime imaging sys-tem has been proposed by Pian et al. [7] to address problems like diffuse optical tomography, molecularimaging and guided surgery [14]. The system by Pian et al. is based on a time-resolved spectrophotometer,which allows the parallel acquisition in spectrum and time. The detection device is based on amultichannelphotomultiplier tube (PMT) (one channel for each spectral band) and a routing system, which is capableof encoding the channel detecting the photon. The routing system has inherently some drawbacks: firstly,the photon-counting statistics imposes a limitation on the overall count-rate over the channels (∼1% of thepulsed laser source repetition-rate), secondly, two photons impinging simultaneously on the detector arediscarded [15].
Improving parallelization among spectral channels leads to a higher photon harvesting efficiency and, con-sequently, to a further reduction of measurement time for a given signal-to-noise ratio (SNR). Recently, ahigh-performance single-photon avalanche diode (SPAD) 32×1 linear array module designed with customtechnology has been proposed by Peronio et al. [16]. This module features an array of SPAD detectorswith 50 µm diameter, 250 µm of pitch, maximum count rate of 4 × 106 cps per channel and less than
20 × 103 cps of dark count rate at 25°C. The module embeds four eight-channel TCSPC boards, equippedwith high performance 14-bit ADCs, working in parallel. The performances of the custom SPAD array arebetter thanmore common 2D CMOS SPADmatrices for quantum efficiency, temporal resolution and differ-ential non-linearity of the converters [17]. In particular, quantum efficiency is higher in the green spectralregion and it could be optimized for the red band, while CMOS are more sensitive in the blue region. Tem-poral resolution is about 30 ps, while for CMOS matrices is hundreds of picoseconds. Despite PMTs stillrepresent a milestone in photon counting, in recent years SPADs have overtaken PMTs for better quantumefficiency, low working voltage, immunity to electromagnetic fields, compactness, scalability (in terms ofchip dimension and integration in dense arrays) and robustness.
In this work we propose and experimentally validate a multispectral fluorescence lifetime imaging mi-croscopy system based on the single-pixel camera approach combined with a novel SPAD linear array mod-ule.

Figure 1: Experimental setup of the multispectral time-resolved wide-field single pixel fluorescence micro-scope. Legend: L = lens, M = mirror, DM = dichroic mirror, F = filter, FM = flip mirror, O = objective.
The setup is shown in Fig.1. It features a 40MHz mode-locked supercontinuum fiber laser (Fianium Inc.,SC-450) emitting light pulses of about 30 ps, full width at half maximum (FWHM). The laser beam is spec-trally filtered by a band-pass filter (10 nm FWHM) centered at 480 nm (FB480-10, Thorlabs, Inc.), coupledto a graded-index fiber (100 µm diameter) then expanded and projected by a lens (L1, f = 25 mm) on a Dig-
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ital Micromirror Device (DMD, V-7000 ViaLUX GmbH). The DMD is a spatial light modulator constituted byan array (1024×768) of independently tiltable micromirrors, of size 13.7×13.7 µm2 each. The modulatedlight is collected by a second lens (L2, f = 200 mm) and reflected by a dichroic mirror (DM, cut-on 505nm)towards an objective (O1, Plan N 40×/0.65 infinity corrected, Olympus Corp.). The microscope works inepi-fluorescence configuration. The collected fluorescence, selected by a long pass filter F (FEL500, Thor-labs, Inc.), can be addressed by a flip mirror (FM), either to a cooled 16-bit 512×512 charge-coupled device(CCD) camera (Versarray 512, Princeton Instruments) through a 200 mm tube lens (L3) or to the SPC. Onthe SPC side, the fluorescence signal is coupled into a step-index optical fiber (300 µm diameter, NA 0.4)through a lens (L4, f =150mm) and an objective (O2, Plan N 20×/0.40 infinity corrected, Olympus Corp.).The light from the distal end of the fiber is then focused on the entrance slit of an imaging spectrometer(Horiba CP140, f/2, 30nm/mm). The 32×1 SPAD array is placed in the output plane of the spectrometerfor recording the spectrally- and time-resolved data. The field of view (FOV) is 140×140 µm2. Out of theoriginal 32 SPADs, 18 have been exploited for the current measurements.
The DMDmodulates the light with a set of 1024 Scrambled Hadamard patterns, which are pseudo-randombinary 32×32 matrices [18]. We obtained positive and negative entries by taking two measurements perpattern, with complementary binary pattern pairs, and taking the difference between them. Each elementof the matrix involves 11×11 mirrors of the DMD which corresponds to a 4.4×4.4 µm2 area on the sample.For a given illumination pattern, each measurement encodes part of the spatial information, and containsthe average spectral-temporal information over the illuminated FOV.
Said bλ,t the vector of the k = 1, . . . , 1024 measurements for the wavelength λ and the time bin t, and
C a k × k sensing matrix of the used patterns, the unknown vector of the spatial distribution aλ,t, whichis resolved in time and wavelength, is retrieved by solving the linear problem b = Ca. This leads to acollection of as many bidimensional images, as the product of temporal and spectral elements. Combiningthe reconstructed images in a 4D matrix, each pixel of the stack contains the unmixed information in timeand spectrum.
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Figure 2: (a) Reconstruction of the FOV with 1024 patterns, from a spatial and temporal integration of themultidimensional SPC dataset. PSNR = 20.39 dB referred to the CCD image (b). Picture of the FOV takenwith the CCD camera. The unit (white bar) is 20 µm. (c) Example of the spectral and temporal content fromone pixel located in a bead.
We tested the multi-dimensional recording properties of our system on a microscope slide with micro-spheres of 15 µmdiameter with fluorescent thin rings (FocalCheck F36909, Invitrogen). Each bead containsdifferent fluorophores and, with 480 nm excitation wavelength, two of them (emitting at 515 nm and 580nm, respectively) are simultaneously excited.
Each illumination pattern lasts for 200 ms, leading to a total measurement time of about 7 minutes, con-sidering N = 1024 Scrambled Hadamard patterns. The illumination power on the sample is about 100 µW.At this value, when the DMD projects a flat, uniform pattern, the detector count-rate is 4× 106 cps at themost highly illuminated SPAD detector, corresponding to a total count rate of 33.5× 106 cps, consideringthe entire array.
Fig.2(a) shows the fluorescence intensity of the FOV, reconstructed from the multi-dimensional datasetby integrating over the entire spectral and temporal dimensions. We observe that the retrieved image issimilar to the one captured by the CCD camera, which is show in Fig.2(b). The brightness of the bottom-
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right bead is lower compared to the others due to slight inhomogeneity of the illumination profile. Yet,underneath each pixel of the intensity map in Fig.2(a), the entire spectral and temporal information isavailable, as shown in Fig.2(c). The counts for each spectral band, over 200 ms acquisition time, changefrom a minimum of 87× 103 counts at 609 nm to a maximum of 83× 104 counts at 520 nm.
In order to evaluate the quality of the reconstruction (i.e. the similarity between the reconstructed andCCD images) the peak signal-to-noise ratio (PSNR) is estimated. PSNR is defined [13] as 10log(d2/MSE),where d is the dynamic range of the images, andMSE is themean squared error between the reference andthe reconstructed image. The PSNR is 20.39 dB for the image in Fig.2(a), which represents the baseline ofthe reconstruction quality for evaluating the robustness of themethodwhen the number ofmeasurementsis reduced.
From the time/spectrum map in Fig.2(c), we observe the presence of two emission peaks around 515 nmand 580 nm, which correspond to different dyes. In order to retrieve the lifetime maps, the fluorescencedecay in each pixel for each wavelength is fitted to a bi-exponential model, after applying a temporal bin-ning of 20 ps to the raw data. The fits, over the pixels covering the region of the beads and in the spectralbands of the two dyes, give a bi-exponential decay with τ1 = 0.84 ± 0.17 ns and τ2 = 3.35 ± 0.11 ns(A1 = 31±5% andA2 = 69±4%) for the dye emitting at the lower wavelength, and amono-exponentialdecay with τ3 = 3.86 ± 0.15 ns for the one emitting at the longer wavelength. In Fig.3 we show a syn-thetic representation of the fit results, where the retrieved lifetimes for two wavelengths in each pixel arereported as average lifetimes according to the following expression τM = A1τ1 +A2τ2.
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Figure 3: Fit results: (a) Amplitude of the decays normalized on the most intense pixel at 520 nm. (b)Average lifetimes at 520 nm.(c) Amplitudes normalized on the most intense pixel at 580 nm. (d) Averagelifetimes at 580 nm. Scale bar: 20 µm.
Up to now, the image reconstruction has been carried out by using the whole scrambled Hadamard dataset (M = N), which is a complete orthonormal basis set. To exploit the possibility of recovering the imageby using a subset of M�N patterns (CS case), a random selection of M patterns out of the N availablehas been performed. Consequently, the linear problem becomes undetermined, ill-posed, and it has tobe solved with regularization. The chosen reconstruction algorithm is the Total Variation Minimization byAugmented Lagrangian and Alternating Direction Algorithms (TVAL3)[19], a state-of-the-art solver in CSapplications which is suitable for images with piecewise constant features [20, 21]. The reconstruction hasbeen performed for each time and wavelength.
We considered different compression ratios (CR = 1-M/N) from 10% to 98% and calculated the PSNR at eachstep, assuming the CCD camera image as reference. TVAL3 parameters are optimized to obtain the highestpossible PSNR per each compression ratio. The corresponding CR 0% is the one shown in Fig.2(a). ThePSNR analysis is reported in Fig.4(a) and it can be seen that, remarkably, up to CR 70% the PSNR is constantaround 20.6 ± 0.1 dB, demonstrating the spatial redundancy of the dataset. Afterwards, at CR 90% theimage quality drops of about 0.4 dB with respect to average value of the cited range, however, the contrastof the beads over the background is still high and allows a clear discrimination among them. For highercompressions, the image quality rapidly worsens, and it becomes difficult to recognize the beads withoutsome a priori information, like a camera image.
In Fig.4 (b)-(c) two examples of reconstructed images at CR 80% and 90%, respectively, are shown. It isworth noting that, up to CR 90%, the spectral and temporal shapes are not significantly affected by com-pression. Fig.4(d) shows the normalized emission spectrum (integrated over time) at three different CRs(70%, 80% and 90%) and non-compressed one (in blue) showing a similar behavior. The same agreement
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Figure 4: PSNR is reported at different compression ratio (a). The reconstructed SPC images at differentcompression ratios are shown at 80% (b) and 90% (c), respectively. Scale bar: 20 µm. The emission spec-trum extracted from a pixel (identified by the red arrow in (b)) (d). The uncompressed dataset is in blue,CR 70% (red), CR 80% (yellow) and CR 90% (purple). The temporal decay extracted from the same pixelrelatively to peak at 515 nm (over 30 nm) (e) and 580 nm (over 20 nm) (f).
is also observed for the temporal dimension, as shown in Fig.4(e) for the bi-exponential decays at lowerwavelengths and Fig.4(f) for the mono-exponential decay at longer wavelengths. Therefore, by applying aCR 90% it is possible to strongly reduce the acquired dataset and, consequently, the measurement timewhich, in our case, is reduced to 42 seconds, with only a small loss of spatial details in the reconstruction,as reported by PSNR of 20.20 dB.
Thanks to the high parallelism of the detector array, which increases the counting efficiency, we can reachthe reported count rate of 33.5× 106 cps, that is much higher than a traditional single router-based mul-tispectral counting system limit (∼1x106 cps). The better counting efficiency leads to a reduction of theintegration time, for a given illumination power and SNR.
With the proposed system, it is possible to strongly reduce the total measurement time. This perspectiveis promising for in vivo cellular studies and intravital microscopy, and in general for applications where fastacquisition is needed because of the dynamical changes of the biological sample or when light exposureshould be limited due to photobleaching. Moreover, in many cases, it is possible to devise strategies formerging low-resolutionmulti-dimensional datasetwith high-resolution CWdata to obtain a high-resolutionhypercube. This possibility will be investigated in a future work. The main limiting factor is representedby the low fill factor of the SPAD, which reduces the light harvesting efficiency. The low fill factor is givenby the small dimension of each detector (a diameter of 50 µm) and the pitch between adjacent elements(250 µm). However, the custom SPAD technology allows us to build larger diodes, e.g. of 200 µmdiameter[22] with a pitch of 250 µm. Thus, a 16 times improvement in light-harvesting efficiency is expected onlyby geometrical aspects. Consequently, this can be exploited to further reduce the acquisition time and/orillumination power and/or to rise the spatial resolution by increasing the number of patterns according tothe characteristics of the specific sample and application. Furthermore, the use of a microlens array andadditional cooling system can be used respectively to further increase the light harvesting and reduce thedark count rate.
In conclusion, in this work, to the best of our knowledge, we present and experimentally demonstratethe first scheme for compressive λFLIM microscopy based on single-pixel camera scheme, coupled to acustom time-resolved 18x1 SPAD array. We believe that the proposed scheme is highly promising towardsthe design and development of a fastmultidimensional fluorescence lifetimemicroscopy. Furthermore, theuse of wide field spatial modulated light can be well adapted to exploit different strategies simultaneouslysuch as optical sectioning [23] and multi-photon microscopy [24] in combination with FLIM. Future workwill be devoted to further reducing the acquisition time by developing SPAD arrays with larger detectionarea and novel compressive sensing algorithms to reach higher compressions, aiming at faster acquisitionfor biological and material science applications.
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Supplementary Material
Details on the 32x1 SPAD array The developed detectionmodule consists of two units [16]: a detection headand a TCSPCboard. The twomodules are connected bymeans of a Samtec cablemadeof 32 pairs of coupledcoaxial cables allowing the transmission of the timing information between the two units. The detectionmodule hosts the SPAD detectors in a sealed chamber, the front-end electronics and dedicated powersupply networks to generate the numerous bias voltages needed for the detectors, the quenching andreadout electronics and the temperature control systembased on a Peltier cell. The SPAD chip is a 32x1 arrayof detectors built in custom technology in order to have good detection efficiency ( 50% at 550nm), lowdark count rates (average count rate of 400c/s at 10 °C) and high time resolution (< 65ps FWHM includingthe electronics). The diameter of each SPAD is 50um while the pitch between the detectors is 250um. Thefront end consisting of a pseudo n-MOS inverter is integrated within the same chip in order to minimizethe capacitive load, which is paramount to collect the avalanche current for timing purposes. The outputof the front-end is fed to an array of integrated comparators built in 0.35 µm CMOS technology providingLVDS (low-voltage differential signaling) outputs. The detection head provides both a counting and a timingoutput for each detector. The Counting output is generated by the integrated Active Quenching Circuits(AQCs) and routed towards an internal FPGA thatmanages the data processing and communication via USBdirectly towards the PC. On the contrary, the Timing output generated from the integrated comparators isbuffered and then sent to the TCSPC module. Here, the timing signals coming from the detection head areused as STARTs of the TCSPC module while the STOP is provided by the end user and it is common to allchannels. The 32 timing signals are handled by 4 identical 8-channel board. Each board features 2 arraysof time-amplitude converters (TACs) with picosecond resolution developed in SiGe 0.35um technology, an8-input ADC and a FPGA that stores the ADC data and manages the dithering technique. The four cardsmerge the data into a high-speed USB 2.0 hub. The system has a single DC power supply (8-16V) anda consumption of about 30W. Each channel can convert 4MHz signals thus generating up to 128 Megaconversions per second. The module is connected to a computer via a USB 3.0 interface. We exploit sucharray geometry to detect the line-shaped spectrum relayed by the spectrometer.
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