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Abstract

The semi-Lagrangian numerical method, in conjunction with semi-implicit time in-
tegration, provides numerical weather prediction models with numerical stability for
large time steps, accurate modes of interest, and good representation of hydrostatic and
geostrophic balance. Drawing on the legacy of dynamical cores at the Met Office, the use
of the semi-implicit semi-Lagrangian method in an operational numerical weather pre-
diction context is surveyed, together with details of the solution approach and associated
issues and challenges. The numerical properties and performance of the current opera-
tional version of the Met Office’s numerical model are then investigated in a simplified
setting along with the impact of different modelling choices.

Keywords: Semi-Lagrangian method, semi-implicit method, dynamical core,

normal mode analysis

AMS subject classification: 65N06, 65N12, 65N22

1. Introduction

Many – perhaps most – of the operational numerical weather pre-
diction (NWP) models employ a combination of semi-implicit (SI) and
semi-Lagrangian (SL) discretizations (that combination is referred to as
SISL). Examples of such models are IFS [1], in use at the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF); ARPEGE [2], at
Météo-France; GEM [3], at the Canadian Meteorological Centre (CMC);
GRAPES [4], at China Meteorological Administration (CMA); the Japan
Meteorological Agency (JMA, [5])’s model; SL-AV [6], at Russia’s Roshy-
dromet; GFDL’s HIRAM [7] and NCAR’s CAM-FV [8] in the US, as well
as the Met Office’s Unified Model [9] in use, in addition to the UK, at the
Australian Bureau of Meteorology and at the Korea Meteorological Admin-
istration.
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SISL modelling: a Met Office perspective

The semi-Lagrangian scheme is essentially a Lagrangian advection
scheme applied over each time step in which the advection of a quantity is
evaluated by tracing back from a mesh point to where an assumed parcel of
air originated at the previous time step (the departure point). The advected
quantity is then evaluated by interpolation to that departure point using
values of the quantity at surrounding mesh points at the previous time step.
It is termed semi -Lagrangian because it is only Lagrangian for the duration
of the time step - the parcel of air is constrained to always arrive at a mesh
point at the end of the time step. The authors of [10] give a comprehensive
review of the history, use and benefits of the semi-Lagrangian scheme.

The semi-implicit scheme is a time integration method that averages
tendencies over one or more time steps, with the average involving unknown
quantities at the next time level. In its two-time-level, time-centred form, it
is equivalent to the Crank-Nicholson scheme. It is termed semi -implicit be-
cause the time-averaging is traditionally applied only to a specific selection
of terms. For example, non-linear terms are traditionally separated into a
linear component that is evaluated implicitly and a non-linear residual that
is evaluated explicitly. As will be discussed in this article more recent in-
carnations of the scheme apply the time averaging more consistently to all
the terms and solve the resulting non-linear equations iteratively. For these
schemes, perhaps iterative-implicit is a more suitable term, e.g. [11].

It is common for large scale geophysical models to combine the SI scheme
with the SL scheme because in the resulting SISL scheme advection by the
meteorologically important jets is stably and accurately handled by the
semi-Lagrangian method whilst the modes of oscillation (Rossby waves,
gravity waves, acoustic waves, and their variants) are stably handled by
the semi-implicit method. For the SI scheme the accuracy of each mode
of oscillation is determined by how well it is resolved by the chosen time
step. This is particularly important for non-hydrostatic compressible models
that admit acoustic modes, which are known by themselves not to be of
meteorological importance (although the effects of compressibility on other
modes might be) yet have extremely small time scales. In contrast Rossby
modes are very important to the accuracy of a forecast but have significantly
longer time scales. It is therefore of considerable benefit to employ a scheme
that allows the time step to be chosen to resolve the important modes whilst
being stable (but not accurate) for the modes that are not resolved.

There are many benefits that accrue from the SISL combination of these
schemes and their excellent stability properties. First, time steps can be
used that are large enough so that the temporal discretization errors are
of the same order as the spatial discretization errors [10]. Second, numer-
ical stability permits the efficient use of global latitude-longitude meshes
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(with their clustering of mesh points near to the poles). This itself brings
advantages in terms of accuracy and efficiency. We refer to [12] for a com-
prehensive review of the pros and cons of various choices for global meshes.
A further, and perhaps less well known, benefit is the natural way in which
an SI scheme can preserve the underlying balanced components of large
scale geophysical flows, such as geostrophic and hydrostatic balance [13].

The Met Office started experimenting with semi-Lagrangian schemes
in the early 1990s [14]. This work built on experience with a semi-implicit
scheme used for the Met Office’s mesoscale model [15] and led to the de-
velopment of the SISL dynamical core known as the New Dynamics [16].
(Here “dynamical core” is taken to mean that part of the numerical model
that governs the evolution of resolved atmospheric fluid dynamical pro-
cesses.) The New Dynamics became the operational dynamical core of the
Met Office’s Unified Model (UM) in 2002. By that time the SISL approach
had been reasonably widely applied to the hydrostatic primitive equations
(HPEs). However, the development of the New Dynamics faced a number
of new challenges:

• Following the work of [17] the UM does not make the shallow-
atmosphere approximation and retains the full Coriolis terms. This
choice is in contrast to the HPEs which make both the shallow-
atmosphere approximation and the traditional approximation to the
Coriolis terms. We refer to [18] for a discussion of approximate equa-
tion sets.

• The Unified Model is so termed because the same dynamical core
is used for all model configurations, from high resolution numeri-
cal weather prediction to long term climate simulations [9], includ-
ing the mesoscale model configuration for which non-hydrostatic
effects are important. Application of the SISL scheme to a nonhy-
drostatic model was a significant departure from its usual applica-
tion to the HPEs, and was contemporary with similar development
in the CMC’s model GEM [3].

• Associated with not making the hydrostatic approximation the
model uses a height-based vertical coordinate in contrast to the
usual pressure-based ones. Although [19] had proposed a pressure-
based coordinate for use in a non-hydrostatic model, this was not ap-
propriate for a deep-atmosphere model, i.e. one that does not make
the shallow approximation. Since then the authors of [20] general-
ized Laprise’s approach by recognizing that in a shallow-atmosphere
model pressure and mass are interchangeable, whereas this is not
the case in a deep-atmosphere model, see [21]. If height is not used
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in a deep-atmosphere model, then mass, as opposed to pressure, is
the appropriate variable to use as a vertical coordinate.

• The long term climate simulations required excellent mass conser-
vation which at the time of development of New Dynamics (i.e.
the late 1990’s [14]) was a challenge. We refer to [22] for in-depth
discussion on mass conservation issues.

Overcoming these challenges was a considerable achievement by the design-
ers of the New Dynamics [14] but, by necessity of what was understood at
the time, the design had a number of shortcomings. Addressing these issues
led to the development of ENDGame (Even Newer Dynamics for General
atmospheric modelling of the environment, [23]), which became the opera-
tional dynamical core of the UM in 2014. Over the 20 years since the New
Dynamics, ENDGame has exploited the key development on efficient iter-
ative approaches to the solution of the SISL equations. The use of these
approaches was pioneered at Environment Canada and is summarized in a
nonhydrostatic setting in [24]. The technique was explored in the ECMWF
model by [25] and in a New Dynamics setting by [26].

By considering the example of ENDGame, this paper aims to describe
some of the characteristics of a SISL method in the context of operational
NWP. Section 2 describes the general SISL approach, before focusing on
the iterative approach and the departure point calculation. The features of
the numerical scheme are then demonstrated in a simplified vertical column
setting in section 3, where related results with particular modelling choices
are also presented. Section 4 contains some concluding remarks.

2. The semi-implicit semi-Lagrangian approach

2.1. The general approach

Consider the equation

(1)
DF

Dt
= G,

where F = F (x, t), and G = G (x, t) are generic scalar or vector variables,
and D

Dt(·) = ∂
∂t(·) + u · ∇(·) denotes the material derivative. The semi-

implicit discretization of (1) is obtained by first integrating it in time along
a trajectory x = x (t) to obtain:

(2) F [x (t+∆t) , t+∆t]− F [x (t) , t] =

t+∆t
∫

t

G
[

x

(

t′
)

, t′
]

dt′.
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Then, in a centred, second-order accurate scheme the right-hand side is
approximated using the trapezoidal rule, giving:
(3)

F [x (t+∆t) , t+∆t]−F [x (t) , t] =
∆t

2
{G [x (t+∆t) , t+∆t] +G [x (t) , t]} .

In a semi-Lagrangian scheme x (t+∆t) is denoted as xA, the arrival point
which is constrained to be a mesh point, and x (t) is denoted as xD, the
departure point which will in general not be a mesh point. Additionally
using superscript n to denote evaluation at time t and n+1 to denote time
t+∆t, expression (3) can be rearranged as

(4)

(

F −
∆t

2
G

)n+1

A

=

(

F +
∆t

2
G

)n

D

.

When applied to a full model, F represents the model state vector, and
in general G will be a non-linear function of F . The challenge is then how
to solve (4) for Fn+1. This is usually achieved by linearizing G in some
manner, either at the spatially continuous or spatially discrete level.

2.2. Some specific issues

As a specific example of how G might be linearized, let G represent
the vertical component of the pressure gradient term which, using the
ENDGame choice of prognostic variables, is

(5) Gn+1
A ≡ cpθ

n+1
A δzΠ

n+1
A .

Above, cp denotes the specific heat at constant pressure, Π = (p/p0)
R/cp is

the Exner function, R the gas constant, and θ the potential temperature,
i.e., the temperature a fluid parcel attains if transported isentropically at
sea-level pressure p0 to a height with pressure p. In (5) δz denotes either
the continuous or discrete vertical derivative.

If the traditional semi-implicit approach (i.e. that which is usually ap-
plied to the HPEs) is followed then a semi-implicit reference profile is chosen
that is fixed in time for both θ and Π, i.e. θref , and Πref . Note that in the
HPE context it is usual to choose the reference profile to be isothermal
(and also to write the pressure gradient term in terms of temperature T
and logarithm of pressure log p). If the perturbations from the reference
profiles are denoted by a prime superscript then expression (5) is rewritten
exactly as:

(6) G = cpθrefδzΠref + cpθrefδzΠ
′ + cpθ

′δzΠref + cpθ
′δzΠ

′.
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A tractable linear problem in the unknowns θn+1 and Πn+1 can then be
obtained by evaluating the two linear terms using time level n + 1 for the
primed quantities but evaluating the non-linear residual term, cpθ

′δzΠ
′,

using known time-level values of θ′ and Π′. These known values might be
either time-level n values or a second-order temporal extrapolation from
time levels n and n− 1.

If the actual atmospheric perturbations from the assumed reference pro-
files are small then this approach will be both accurate and stable since the
terms that are lagged in time will be genuinely small. However, consider
what happens when the actual atmospheric vertical profile is observed to
have profiles θ = θS and Π = ΠS (which both vary in time) so that the
genuinely small, perturbation quantities are θ′′ ≡ θ− θS and Π′′ ≡ Π−ΠS .
Then the non-linear term becomes

(7) cpθ
′δzΠ

′ = cp
(

θS − θref + θ′′
)

δz
(

ΠS −Πref +Π′′
)

.

The terms θS − θref and ΠS −Πref are not small, perturbation quantities.
Yet in the approach outlined above they are handled in an explicit manner.
Noting that the actual atmospheric profiles are not known a priori – they
are part of the solution – then unless care is taken this approach can lead
to an instability.

The presence of such an instability was first analyzed in the context
of a three-time-level HPEs model by [27] and later extended to two-level
schemes by [28]. The latter analysis showed that the instability could be
avoided by choosing the reference temperature profile to be warmer than
any expected atmospheric profile. This is because of the effect that the
choice of reference profile has on the propagation speed of gravity waves
(the warmer the profile the slower the propagation speed).

Whilst the HPEs only admit Rossby waves and gravity waves, a nonhy-
drostatic model also admits acoustic waves. It was pointed out in [11] that
stability of the acoustic waves requires the reference profile to be colder
than any expected atmospheric profile. Essentially because of the different
dispersion relation, the choice of a colder reference state slows the speed of
acoustic waves [29]. The authors of [11] conclude that stability is therefore
difficult to obtain by this method in models that admit both gravity and
acoustic waves.

2.3. Evolving the ENDGame approach

As a non-hydrostatic compressible model admitting both acoustic and
gravity waves, the New Dynamics appears to sidestep the issue raised in
section 2.2 by not (explicitly) using a reference profile at all. Instead, by
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using a rather complex set of predictors and correctors (described in [16]),
expression (5) is discretized using solely a mix of time level n and n + 1
quantities. However, the disadvantage of this approach is that there is little
control over the complexity of the resulting Helmholtz problem. That used
in the New Dynamics has a 45 point stencil which can result in scalability
problems on massively parallel computer architectures.

In addition, the choice of the reference profile determines the magnitude
of the quantities estimated at the different time levels. As a result, the model
prediction depends on the choice of reference profile, the dependence only
vanishing asymptotically, as the time step tends to zero. This aspect was
investigated in a shallow-water context by [30], the results of which strongly
influenced the design of ENDGame.

The approach followed in ENDGame therefore attempts to have good
flexibility over which terms are retained in the Helmholtz problem, allowing
for a design with improved scalability, whilst reducing the dependence of
the scheme on any choice of reference profile. This is achieved in three steps.

• The first step involves the use of the model configuration at the
previous time level tn as reference profile. The profile therefore varies
time step by time step (though its time dependence is not accounted
for within a model time step). This reference profile is used to create
terms that are linear in the prognostic quantities.

• The second step involves choosing the linear terms that need to
be evaluated implicitly in order to stabilize the model, and hence
choosing the form of the Helmholtz problem. The resulting linear
terms are simply added and subtracted from the non-linear term in
question (see the worked example below).

• The third step involves the iteration of the whole scheme, so that
both the non-linear term (that is not part of the Helmholtz problem)
and, for specificity, the linear term that was subtracted from it, are
evaluated at the previous iteration (not at the previous time step).

As an example, consider again the pressure gradient term (5). Inspired by
the linearization used in (6), expression (5) can be rewritten exactly as

Gn+1
A = +

[

cpθrefδz
(

Πn+1
A −Πref

)

+ cp
(

θn+1
A − θref

)

δzΠref

]

+cpθ
n+1
A δzΠ

n+1
A

−
[

cpθrefδz
(

Πn+1
A −Πref

)

+ cp
(

θn+1
A − θref

)

δzΠref

]

.(8)

Within an iterative procedure in which the next, unknown iterative value
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is denoted by superscript (k + 1), expression (8) is then approximated as:

Gn+1
A ≈ G

(k+1)
A ≡ +

[

cpθrefδz

(

Π
(k+1)
A −Πref

)

+ cp

(

θ
(k+1)
A − θref

)

δzΠref

]

+cpθ
(k)
A δzΠ

(k)
A

−
[

cpθrefδz

(

Π
(k)
A −Πref

)

+ cp

(

θ
(k)
A − θref

)

δzΠref

]

.(9)

The terms involving values at iteration (k + 1) are used in forming the
Helmholtz operator, the remaining terms, involving values at iteration (k),
appear on the right-hand side of the Helmholtz problem.

At convergence (so that for example θ(k+1) = θ(k)) this scheme solves the
full non-linear problem, independently of the size of the time step (provided
that it is chosen so that the scheme converges). Since θn and Πn are model
solutions and evolve realistically in time, using them as reference profiles
for the solution at the next time step means that the model solution is not
dependent on some arbitrary initial choice of reference profile. This is true
even if the scheme is not iterated to convergence. Additionally, the choice
θref = θn, Πref = Πn aids convergence of the scheme.

2.4. The semi-Lagrangian departure point

So far it has been assumed that the departure point xD is known. How-
ever, except for very simple flows this is not the case and the departure point
has to be determined by solving the trajectory or kinematic equation [31]:

(10)
Dx

Dt
= u.

In view of the similarity between this equation and equation (1), an ob-
vious method to solve (10) is the discretization given by (4) which, when
rearranged, results in:

(11) x
n
D = x

n+1
A −

∆t

2

(

u
n+1
A + u

n
D

)

.

An interesting aspect of this equation is that it is doubly implicit: both u
n
D

and u
n+1
A are unknown until xn

D is known. This aspect has led to various
approximations being used, for a discussion of some of which see [32]. As
analyzed by [33] though, many of these approximations lead to instabilities.
The advantage of employing an iterative scheme, as discussed in section
2.3, is that these issues can be avoided by embedding the departure point
calculation within that iterative scheme so that, at convergence, expression
(11) is recovered.
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2.5. The iterative approach employed in ENDGame

Using the notation of section 2.1, the ENDGame scheme can be sum-
marized for one time step as:

1. Given Fn and x
n−1
D , initialize the estimate of the model state vector

F at the next time level, denoted by F (0), and also an estimate of xn
D,

denoted by x
n(0)
D ;

2. Evaluate the vector Gn;
3. Outer loop:

(a) Evaluate the next estimate of the departure points, x
n(k+1)
D , from

x
n(k)
D = x

n+1
A − ∆t

2

(

u
(k)
A + u

n(k)
D

)

;

(b) Interpolate Gn to those departure points to obtain Gn
D;

(c) Inner loop:

i. Evaluate the latest estimates for Gn+1, i.e. evaluate G(k) as a func-
tion of F (k);

ii. Evaluate the linearized terms required for the Helmholtz problem;
iii. Form and solve the Helmholtz problem for the latest pressure field

Π(k+1);
iv. Backsubstitute to obtain updated estimates F (k+1);

(d) Repeat inner loop as required;

4. Repeat outer loop as required.

5. Set Fn+1 = F (k+1); xn
D = x

n(k+1)
D .

The Helmholtz problem obtained through the nonlinear procedure
H(Π(k+1)) = R is solved with a BiCGstab method iterated until ε reduces
below a specified tolerance, where:

(12) ε =
RMS

{

DIAG(H)−1
[

H(Π(k+1))−R
]}

RMS
[

DIAG(H)−1H(Π(k+1))
] ,

where RMS denotes the root-mean-squared value and DIAG denotes the
diagonal part of the Helmholtz operator H. In the operational setting, the
tolerance is set to ε = 10−4. Further details are given in [23].

3. An ENDGame vertical column model

In this section we describe the results of ENDGame simulations in a
simplified setting. As a full analysis of the operational model performance
lies outside the scope of this work, we consider a one-dimensional vertical
column implementation of the model, and focus on the test case of acoustic
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normal modes of a compressible atmosphere. We refer the reader to the cited
work [23] for a complete description of the grid arrangement and features
of the numerical scheme.

3.1. Governing equations

The momentum, thermodynamic, continuity and trajectory equations
in a one-dimensional vertical column of dry air read:

Dw

Dt
= −cpθ

∂Π

∂z
− g,(13)

Dθ

Dt
= 0,(14)

Dρ

Dt
+ ρ

∂w

∂z
= 0,(15)

Dz

Dt
= w,(16)

to be solved in the spatio-temporal domain [0, zH ] × [0, T ] ∋ (z, t). In
(13)-(16), w and ρ denote fluid velocity and dry density, respectively, with
the material derivative defined here by D

Dt(·) = ∂
∂t(·) + w ∂

∂z (·), and g the
acceleration due to gravity.

The system is closed by the equation of state for a perfect gas:

(17) ρ =
(p0
R

) Π(1−κ)/κ

θ
.

3.2. Linear analytical solutions

Equations (13)-(16) are linearized around a motionless isothermal profile
in hydrostatic balance with potential temperature:

(18) θS = TS exp

(

g

cpTS
z

)

where T ≡ TS , and ΠS is obtained from the hydrostatic balance equation
∂ΠS/∂z = −g/(cpθS). Analytical solutions for the resulting linear pertur-
bations can then be found. (We refer to [34] for a full derivation.)
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The solutions for the linear perturbations are [34]:

w(z, t) = −αıω
(1− κ)

κ
exp(ıωt) sin

(

mπ

zH
z

)

exp
( z

2H

)

,

θ(z, t) = α
TS(1− κ)

H
exp(ıωt) sin

(

mπ

zH
z

)

exp

(

1 + 2κ

2H
z

)

,

Π(z, t) = α exp(ıωt)

[

mπ

zH
cos

(

mπ

zH
z

)

−
1− 2κ

2H
sin

(

mπ

zH
z

)]

exp

(

1− 2κ

2H
z

)

,

ρ(z, t) = α
(1− κ)p0
κ2cpTS

exp(ıωt)

[

mπ

zH
cos

(

mπ

zH
z

)

−
1

2H
sin

(

mπ

zH
z

)]

exp
(

−
z

2H

)

,

(19)

where zH is the top of the domain, m is the internal mode index, and

(20) ω = ±cs

√

(

mπ

zH

)2

+
1

4H2
, c2s =

RTS

1− κ
, H =

RTS

g

denote the temporal frequency, the speed of sound, and the scale height,
respectively. p0 = 1.0E5 Pa denotes the pressure at sea level, and κ = R/cp.
To obtain the results shown below, unless otherwise stated the constant of
proportionality α, which determines the amplitude of the perturbation, is
set to unity, in agreement with [34].

Because of their easy setup, normal modes allow the implementation and
investigation of a number of configurations and choices, and the evaluation
of the respective accuracy and stability properties, prior to introducing
them in fully-fledged NWP models [35]. In addition, normal mode analyses
have been employed in assessing the impact of approximations to the fully
compressible, deep atmosphere equations in [36–39].

Here we follow in the steps of the analysis in [33,34] and report numerical
results of ENDGame runs, evaluating the impact of different modelling
choices. A standard direct method (Thomas’s algorithm) was used for the
solution of the tridiagonal solve in the simplified one-dimensional setting.

3.3. Numerical experiments

Simulations of the ENDGame vertical column model are initialized us-
ing the expressions (19) evaluated at t = 0 and sampled spatially where
required.

We consider a basic configuration with model top zH = 40000 m, final
time T = 100 s, grid spacing ∆z = 200 m, time step ∆t = 1 s, two outer
and two inner loop iterations, iterative procedure for the trajectory calcula-
tion, isothermal physical background state with TS = 290 K, semi-implicit
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reference state chosen as the atmospheric state at the previous time level,
as discussed in section 2.3, and for simplicity we use a uniformly spaced
grid. Additionally, cubic Lagrange interpolation is used for evaluation of
quantities at the departure points.

Numerical results for two different wave indices confirm the accuracy of
the model as compared with the linear analytical solutions (Figures 1 and
2). For reference, we have ω∆t ≈ 0.109 for index m = 4, ω∆t ≈ 0.242 for
index m = 9.
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Figure 1. Perturbations of w, θ, ρ, and Π over a 40 km-deep isothermal atmosphere at
final time T = 100 s computed by the ENDGame vertical column model. The solution
is obtained evolving the initial data of the internal normal mode with index m = 4 with
uniform grid spacing ∆z = 200 m, time step ∆t = 1 s, two outer and two inner loop
iterations, iterative procedure for the trajectory calculation, and TS = 290 K. Numerical
solution (pluses) and linear analytical solution (solid line). For the numerical solution,
one in seven markers is plotted for readability.

Moreover, the discretization error with respect to the linear analytical
solution decreases with decreasing time step (Figure 3). Numerical experi-
ments display temporal and spatial second-order accuracy, with the spatial
error asymptotically dominating in the temporal convergence studies (Fig-
ures 4, 5, and 6).

Experiments were also carried out with a time step ten times larger than
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Figure 2. As in Figure 1, but
with index m = 9.
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the standard one (not shown). A slowing of the phase was observed because
of the poor temporal resolution of the wave frequency. However, with the
operational 2-by-2 outer-inner loop configuration an unexpected damping
effect was found. This was discovered to be due to the updating of some
terms in the outer loop which is done to enhance the stability (see [23] for
details). Increasing the outer loop count to 4 was sufficient to recover an
undamped result but still with the expected slowing of the phase.

A note of caution is in order regarding the comparison of these results
with the results in [33]. The model in [33] solves the linearized discrete
equations, whereas the results here refer to the direct solution of the non-
linear model (13). As such, an error is inherent by taking expressions (19)
as analytical solutions for the non-linear model. However, as is apparent
in Figure 1, we have θ′/θS , Π′/ΠS ∼ O(10−3), whilst w/cs ∼ O(10−2).
It is therefore expected that errors due to the nonlinear terms will be at
least two orders of magnitude smaller than the linear terms. This effect is
therefore negligible in terms of the convergence plots of Figures 4-6.

3.4. Impact of the trajectory calculation strategy

As seen in Section 2.4 above, ENDGame features an iterative procedure
for the trajectory calculation. In the context of the vertical column model,
the trajectory equation is

(21) z
n(K)
D = zn+1 −

∆t

2

{

wn+1 + wn
[

z
n(K−1)
D

]}

K = 1, 2, . . . .
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Figure 3. As in Figure 1, but
with time step ∆t = 0.25 s.

The iteration (21) is initialized with the value at the previous time step,

z
n(0)
D = zn−1

D , and solved separately from the outer-inner loop iteration for
the full non-linear problem described in section 2.5. Therefore, the iteration
count K in (21) is distinct from the k index used in section 2. In contrast
to the cubic interpolation used elsewhere in model, the value of wn at the
departure point in (21) is found by linear interpolation.

The ENDGame strategy is compared with a two-term extrapolation
strategy for the velocity as in the operational setting of the New Dynamics
dynamical core [16,33], whereby the curly bracket in (21) is replaced by

w
n+1/2
M computed as:

(22) w
n+1/2
M ≡

3

2
wn
M −

1

2
wn−1
M ,

where the subscript M denotes the midpoint of the trajectory from zD to
zA to which the value of the velocity is linearly interpolated in space.

The solution obtained using extrapolation is more diffusive and less
accurate than the one obtained with the interpolation strategy employed
in ENDGame (Figure 7).

3.5. Impact of the loop number in the iterating procedure

The semi-implicit model used in ENDGame features a pressure problem
constructed iteratively at each time step with a double loop structure. If
iterated to convergence, the target discretization (4) is obtained. However,
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Figure 4. Convergence study for the ENDGame vertical column model in the basic
setting, see Figure 1. Relative L2 errors of the computed w, θ, ρ, and Π at time T = 75 s
with respect to the linear analytical solution are displayed. In the initial data (19), the
constant α has been divided by a factor of 100 to mitigate the impact of non-linear effects,
and a fixed reference state is used. For this simulation, the acoustic Courant number is
held fixed at 0.64, which corresponds to a spatial resolution ∆z = 800 m for ∆t = 1.5 s.
The dashed lines denote first and second order convergence.

the operational configuration of two outer and two inner loops constitutes
a trade-off between accuracy and constraints on execution time. Figures 8
and 9 show differences between the operational configuration and one using
eight outer and eight inner loops. For the current test case, it is seen that
there is very little sensitivity to increasing the number of outer and inner
loops. This suggests that in this setup the model is close to convergence
with only two outer and two inner loops.

4. Conclusion

In this paper, an overview of the semi-implicit semi-Lagrangian method
in an NWP context has been given, drawing on the legacy of the dynamical
cores in use at the Met Office. Different aspects and modelling choices in
the framework of the currently operational ENDGame dynamical core have
been considered. Numerical results in a simplified vertical column model
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Figure 5. As in Figure
4, but for fixed time step
∆t = 0.046875 s and
varying grid size ∆z.
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Figure 6. As in Figure
4, but for fixed grid size
∆z = 50 m and varying
time step ∆t.

have demonstrated the model performance on test cases with normal mode
initial data.
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Figure 7. As in Figure 3, using different methods for the trajectory calculation: iterative
interpolation (pluses), two-term extrapolation (circles), linear analytical solution (solid
line).

For the sake of conciseness this paper has not reported in detail all the
modelling choices in ENDGame that have enabled enhanced performance
over the New Dynamics dynamical core. Further details can be found in [23],
but two examples are: the Lagrangian treatment of the continuity equation
and the choice of how to stagger variables with respect to the Poles in the
latitude-longitude grid. These features, together with the discussed iterative
procedure for handling the non-linearity and the interpolation strategy for
the trajectory computation, have allowed for a discretization with reduced
temporal damping and reduced polar filtering. As a result, the model is
more robust, stable and scalable (see [40] for further details).
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Figure 8. As in Figure 2, using different number of outer and inner loop: 2-by-2 (pluses),
8-by-8 (dashed-dotted line), linear analytical solution (solid line).
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Figure 9. Close-up of
the uppermost crests of
Π and θ modes in Figure
8.
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and A. Staniforth, The CMC-MRB Global Environmental Multiscale
(GEM) model. Part III: Nonhydrostatic formulation, Monthly Weather

Review, vol. 130, pp. 339–356, 2002.

25. M. J. P. Cullen, Alternative implementations of the semi-Lagrangian
semi-implicit schemes in the ECMWF model, Quarterly Journal of the

Royal Meteorological Society, vol. 127, pp. 2787–2802, 2001.

26. M. Diamantakis, T. Davies, and N. Wood, An iterative time-
stepping scheme for the Met Office’s semi-implicit semi-Lagrangian non-
hydrostatic model, Quarterly Journal of the Royal Meteorological Soci-

ety, vol. 133, pp. 997–1011, 2007.

27. A. J. Simmons, B. J. Hoskins, and D. M. Burridge, Stability of the semi-
implicit method of time integration, Monthly Weather Review, vol. 106,
pp. 405–412, 1978.

28. A. J. Simmons and C. Temperton, Stability of a two-time-level semi-
implicit integration scheme for gravity wave motion, Monthly Weather

Review, vol. 125, pp. 600–615, 1997.

29. J. Thuburn, Vertical discretizations giving optimal representation
of normal modes: Sensitivity to the form of the pressure-gradient
term, Quarterly Journal of the Royal Meteorological Society, vol. 132,
pp. 2809–2825, 2006.

30. J. Thuburn, M. Zerroukat, N. Wood, and A. Staniforth, Coupling a
mass-conserving semi-Lagrangian scheme (SLICE) to a semi-implicit
discretisation of the shallow-water equations: minimizing the depen-
dence on a reference atmosphere, Quarterly Journal of the Royal Mete-

orological Society, vol. 136, pp. 146–154, 2010.

31. A. Staniforth, A. White, and N. Wood, Analysis of semi-Lagrangian
trajectory computations, Quarterly Journal of the Royal Meteorological

Society, vol. 129, pp. 2065–2085, 2003.

32. N. Wood, A. A. White, and A. Staniforth, Treatment of vector equations
in deep-atmosphere, semi-Lagrangian models. II: Kinematic equation,
Quarterly Journal of the Royal Meteorological Society, vol. 136, pp. 507–

24



SISL modelling: a Met Office perspective

516, 2010.

33. E. Cordero, N. Wood, and A. Staniforth, Impact of semi-Lagrangian
trajectories on the discrete normal modes of a non-hydrostatic vertical-
column model, Quarterly Journal of the Royal Meteorological Society,
vol. 131, pp. 93–108, 2005.

34. E. Cordero, A. Staniforth, and N. Wood, Normal mode analy-
sis of the New Dynamics, tech. rep., FR Technical Report No.
393, 2002. Available at: http://www.metoffice.gov.uk/media/pdf/c/9/
FRTR393-wontconvert.pdf (Last access 13 May 2015).

35. J. Thuburn, N. Wood, and A. Staniforth, Normal modes of deep atmo-
spheres. I: Spherical geometry, Quarterly Journal of the Royal Meteo-

rological Society, vol. 128, pp. 1771–1792, 2002.

36. T. Davies, A. Staniforth, N. Wood, and J. Thuburn, Validity of anelastic
and other equation sets as inferred from normal-mode analysis, Quar-

terly Journal of the Royal Meteorological Society, vol. 129, pp. 2761–
2775, 2003.

37. A. Arakawa and C. S. Konor, Unification of the anelastic and quasi-
hydrostatic systems of equations, Monthly Weather Review, vol. 137,
pp. 710–726, 2009.

38. J. K. Dukowicz, Evaluation of various approximations in ocean and
atmospheric modeling based on an exact treatment of gravity wave dis-
persion, Monthly Weather Review, vol. 141, pp. 4487–4506, 2013.

39. T. Dubos and F. Voitus, A semihydrostatic theory of gravity-dominated
compressible flow, Journal of the Atmospheric Sciences, vol. 71,
pp. 4621–4638, 2014.

40. D. Walters, N. Wood, S. Vosper, and S. Milton, ENDGame: A new
dynamical core for seamless atmospheric prediction, tech. rep., Met Of-
fice, 2014. Available at: http://www.metoffice.gov.uk/media/pdf/s/h/
ENDGameGOVSci v2.0.pdf (Last access: 13 May 2015).

25


