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ABSTRACT: Metabolomics and lipidomics studies are becoming increasingly popular but available tools for automated data 
analysis are still limited. The major issue in untargeted metabolomics is linked to the lack of efficient ranking methods allowing 
accurate identification of metabolites. Herein, we provide a user friendly open-source software, named SMfinder, for the robust 
identification and quantification of small molecules. The software introduces a MS2 false discovery rate approach, which is based on 
single spectral permutation and increases identification accuracy. SMfinder can be efficiently applied to shotgun and targeted analysis 
in metabolomics and lipidomics without requiring extensive in-house acquisition of standards as it can provide accurate identification 
by using available MS2 libraries in instrument independent manner. The software, downloadable at www.ifom.eu/SMfinder, is 
suitable for untargeted, targeted and flux analysis. 

Metabolomics and lipidomics are increasingly being applied in 
various fields from microbial research to clinical studies and are 
now emerging as high-throughput diagnostic tools1,2. Mass 
spectrometry based approaches in metabolomics are the golden 
standard in the discipline due to the high sensitivity and 
specificity that this approach offers. However, the biggest 
challenge when using mass spectrometry, is the possibility to 
robustly identify large numbers of compounds3. This issue 
largely restricts the use of metabolomics to targeted analyses, 
where only a defined subset of metabolites is explored in the 
specimen of interest. Meanwhile untargeted experiments are 
often limited to features analysis, thus losing the biological 
information that this application could provide. In order to 
overcome these problems, mass spectrometry based data-
dependent acquisition (DDA), originally used and optimized to 
maximize peptide identification in proteomics analysis4,5, is 
now consolidating as a method of choice also in metabolomics 
and lipidomics6,7. DDA is suitable for large-scale discovery 
experiments, but needs bioinformatics tools to mine the large 
amount of data generated. Existing analysis software for 
metabolomics data are either commercial or require moderate 
to high knowledge of computer programming and an advanced 
analytical background, thus rendering them not easily 
accessible to the broad scientific community. Differently from 
proteomics, where few software are widely used and validated 
by the scientific community, in metabolomics several ad-hoc 
tools have been developed, but there is not an accepted 
consensus on which software would be preferable and most 
reliable.  Small molecules identification relies heavily on the 
comparison with a database containing fragmentation spectra 
(MS2) of known compounds. One of the main limitations in 
metabolomics analysis  is the lack of public and comprehensive 
MS2 libraries, as they are usually instrument based8, home-
made or in silico derived9–11. This is due to the type of 

computation, which is performed to match the empirical spectra 
with those contained in libraries. The calculation is based on the 
comparison of the spatial distance between empiric MS2 
spectra and MS2 spectral libraries acquired from standards. 
Unfortunately, relying only on spatial distance forces the use of 
instrument based MS2 libraries as different instruments may 
generate different fragmentation spectra both in terms of 
fragments masses and relative intensities. As a result, 
comparing empirical spectra obtained with a specific 
instrument with spectral libraries built on a different instrument 
will return poor scores. A method often used is to compare only 
the masses of the fragments which are generated at a given 
collision energy. Similar to selected reaction monitoring 
(SRM), also in this case, the discrimination efficiency of 
identification relies on the presence of unique mass fragments 
i.e. reporter ions. Different fragments are not always presents 
when multiple isomers are compared. In this case, isomers with 
the same fragment masses have an identical likelihood to be 
identified and cannot be distinguished. These issues represent 
the major obstacle in the generation and efficient use of large 
empiric MS2 libraries. In practice, each metabolomics 
laboratory is forced to generate its own library made through 
acquisition of hundreds of standards with their own 
instrumentation. Moreover, hampered by the lack of a robust 
approach to estimate the false discovery rate (FDR)12, 
compound annotation is particularly challenging for small 
molecules. Compared with a more developed field such as 
proteomics13, working on small molecules does not allow the 
same computation algorithms used to calculate the FDR of 
peptides. Moreover, small molecules include a large variety of 
compounds from carbohydrates to lipids, which do not share 
similar fragmentation rules. These characteristics limit the 
possibility to efficiently predict the fragments that are generated 
by MS2 in a generalized fashion. With the aim to provide a user-
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friendly tool for metabolomics analysis, we developed a 
software named Small Molecules finder (SMfinder), which 
enables confident identification and accurate quantification of 
both metabolites and lipid species, and introduces a FDR 
approach to estimate identification reliability. 

Materials and Methods

Raw data generation for 13C trace analysis using melanoma cells

IGR37 melanoma cell lines were cultured on 12 well plates with 
13 mm glass coverslip for 24h in DMEM with glutamine. After 
24h the media was switched to a fresh media with U-13C 
labelled glucose for 5 minutes before quenching and extraction. 
In control samples, the same procedure was applied by using a 
standard media composition with naturally labelled glucose. 
Sample preparation and chromatographic conditions were set as 
described elsewhere14. Briefly, cells were rapidly washed in 
MilliQ water at 37° and transferred to a new well containing a 
quenching solution. Metabolites quenching was achieved using 
cold solution with acetonitrile methanol and water (2:2:1; v,v,v) 
kept at -20 °C during the quenching procedure. Cells were 
mechanically detached from the coverslips, and the quenching 
solution was collect in 1.5 ml Eppendorf tubes. Lyophilized 
samples were reconstituted in MS grade water and injected for 
LC-MS analysis. Chromatography was performed on an Expert 
nanoLC 400 system (ABSciex) equipped with 1 µl loop, and 
with a chromatographic column prepared in house with 100 µm 
ID, 100 mm length packed with Kinetex C18-evo core shell 
particles with 1.7 µm ID (Phenomenex). The LC was coupled 
online by a nanoESI source with TripleTOF 6600 System 
(ABSciex). 

Raw data generation for lipidomics analysis using melanoma 
cells

WM115 cells were cultured in DMEM+ 10% FBS S.A.+ 2 mM 
L-Glutamine. Cell pellets from 2x106 cells were resuspended in 
200 µl of 150 mM ammonium bicarbonate and passed through 
a 26G syringe needle to prepare cell lysate. Samples were 
centrifuged at 10000 g for 10 minutes at 4 °C to eliminate cell 
debris. An equivalent of 10 µg of proteins was spiked with 
internal standards and lipids were extracted using a 2 steps 
extraction protocol with methanol and chloroform in varying 
proportions15. Organic phase fractions were then dried out and 
resuspended in 50 µL of methanol. The internal standards were 
16 combined as follow:  PC (12:0/13:0) 40 pmol, PE (12:0/13:0) 
52 pmol, PG (12:0/13:0) 7.5 pmol, PS (12:0/13:0) 43 pmol, PI 
(12:0/13:0) 54 pmol, Cer (d18:1/25:0) 100 pmol, CE(19:0) 100 
pmol, GlcCer (d18:1/12:0) 50 pmol, LacCer (d18:1/12:0) 50 
pmol, sphinganine (d17:0) 50 pmol, sphingosine-1-P (d17:1) 
100 pmol, sphingosine (d17:1) 50 pmol, Galactosyl(ß) 
Sphingosine-d5 20 pmol, d5-TG ISTD Mix I 20 pmol, d5-DG 
ISTD Mix I 20 pmol, cholesterol (d7) 800 pmol. 95% phase A 
(CH3CN:H2O 40:60; 5 mM NH4COOCH3; 0.1% FA) plus 5% 
phase B (IPA:H2O 90:10; 5 mM NH4COOCH3; 0.1% FA) for 
subsequent analysis. Lipid extracts were diluted 1:5 in 95% 
phase A (CH3CN:H2O, 40:60; 5 mM NH4COOCH3; 0.1% FA) 
plus 5% phase B (IPA:H2O 90:10; 5 mM NH4COOCH3; 0.1% 
FA) and 1 µL injected on nLC Ekspert nanoLC400 (Eksigent, 
5033460C; Singapore) coupled with a Triple TOF 6600 (AB 

Sciex). Chromatography was a 45 min gradient and MS 
Acquisition was performed in positive mode (Matafora et al., 
manuscript in preparation). Proteins were extracted from 20 µL 
of ammonium bicarbonate resuspended fractions by adding 5 
µL of lysis buffer (10% NP40, 2% SDS in PBS) and quantified 
by BCA protein assay kit (ThermoFisher Scientific, 23225). For 
untargeted lipidomics analysis in SMfinder the following 
parameters were used: resolution 15000 with deisotoping 
option for peak picking; 60 seconds retention time tolerance for 
“Unique ID”; 50 ppm error with the exclusion of halogenated 
formulas; blind library with forced association and filter 
hierarchy based on FDR and isotopic similarity, and minimum 
count of 3 for filler function.

RESULTS

Overview of Design

The SMfinder primary function is to integrate different analysis 
pipelines, provide visualization of raw chromatographic data 
and perform computational analysis depending on the 
experimental needs. SMfinder is provided with an intuitive 
graphic interface and installation.exe file, which will 
automatically install the required dependencies and create the 
desktop shortcuts. SMfinder source code is not encrypted and 
can be modified by proficient Python users and also executed 
directly in the Python environment from the command prompt 
by using the path stored in the software folder 
(%AppData%\SMfinder\_path.txt).

Framework, Availability and System Requirements

SMfinder is written in Python 2.716 using R17 in the Python 
environment, eMZed218 for interactive data objects 
visualization, and PyQt4 graphic user interface (GUI) to 
minimize the user effort and capitalize on robust statistical 
analysis routines. The R connection provides the essential 
functions to convert raw chromatographic data into Python 
usable data object (pyObj) which are stored as metafiles. pyObj 
can then be visualized and analyzed. SMfinder is freely 
available at www.ifom.eu/SMfinder in the Download page. On 
the SMfinder tutorial webpage, example files are provided 
together with a detailed tutorial, and under the library tab the 
user can download available MS2 libraries e.g. HMDB library19 
with LC/MS spectra, and the MS2 IFOM curated library. On 
the same webpage, there is also the possibility to freely upload 
user libraries which will be released online following quality 
checks. SMfinder operates on Windows 7 or higher version. 
The minimal requirements are 4 cpu and 4 GB of RAM. 

SMfinder Workflows

Three different workflows are available and are designed to 
perform untargeted, targeted, or 13C-dynamic tracing profiles 
with minimal users input beside raw data (Fig. 1). Untargeted 
analysis is usually performed when there is not prior knowledge 
on a group of metabolites of interest, and it is a powerful tool 
for metabotype classification. In this type of analysis, features 
are extrapolated from raw data based on their spatial 
characteristics i.e. Gaussian like distribution over time within a 
mass window. After features detection, identification at MS and 
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MS2 level is obtained and a chemical formula and compound 
final annotation is assigned. 

Figure 1 SMfinder workflow for untargeted, targeted and 13C 
tracing analysis. The arrows’ direction represents the input-output 
of each function, e.g. “Data filtering”, the process that returns the 
best match for each detected feature (Results), requires metadata 
from indexing and MS2 analysis. The color of each box shows if the 
process is performed on a single file or on the entire dataset 
selected by the user. For MS analysis, SMfinder indicates the sum 
of events in which a molecular formula is assigned to features in 
untargeted analysis, or superimposed on extracted ion 
chromatograms in targeted analysis, and then ppm errors and 
isotopic similarity are calculated. In MS2 analysis, found 
molecular formulas are matched with the MS2 library, and MS2 
score and FDR are computed. Actions performed on batch, e.g. the 
indexing homogenization (Unique ID in SMfinder) in the dataset, 
are dependent on the size of the batch selected. When the size of 
batch is modified by the user, the on-batch functions need to be 
recomputed while “on single file” functions are not influenced by 
the batch size.

Raw data preparation

Before using SMfinder, chromatographic raw data, acquired in 
centroid mode, have to be converted e.g. using MSConvert20, in 
mzXML or mzML format (Fig. 1). Chromatograms need to be 
acquired in a single polarity mode, either negative or positive, 
and can contain MS and MS2 or MS spectra only. However, if 
chromatograms do not contain MS2 spectra, compound name 
annotation can be achieved only on targeted or flux analysis 
experiments, but not for untargeted analysis. After conversion, 
raw files can be uploaded into SMfinder by selecting “Open raw 
files” under the File tab in the Menu. To illustrate the 
computational workflow and performance, we used two 
datasets from literature, one from a metabolic21 profile analysis 
and the other from a lipidomics analysis22, and chromatograms 
of lipidomics and metabolomics experiments of melanoma 
samples  acquired in-house  (Table S1). 

Untargeted analysis

Parameters required for this type of analysis need to be 
specified by the user by typing or selecting the relative values 
on the GUI under the tab Untargeted. The first parameter is the 
instrumental resolution. This value varies depending on the 
used mass spectrometer and it is either imposed by the 

instrumental limits or selected by the users. The given 
resolution will be used to extract the peaks from raw data 
(Figure 2A-B, Supplementary Figure S1A-B). Peak picking is 
based on the matchFilter algorithm from XCMS for initial peak 
selection23. The choice of a correct resolution value, 
corresponding to the real instrument resolution, affects the 
entire analysis; since a fraction of the parameters for feeding the 
algorithm are extrapolated from the given resolution. For 
instance, lowering the resolution compared with the real value 
will result in a loss of spotted peaks (Fig. S1C-D) and it will 
generate mass windows which are larger than the expected 
range for the masses of interest. As a consequence, the 
reconstructed peaks will include larger noise and therefore an 
overestimation of the peak area (Fig. S1E), and increased 
integration errors (Fig. S1F). A similar behavior can also be 
observed if the selected resolution is higher than the real 
resolution. In this case, the reconstructed peak may contain only 
a subset of masses which belong to a compound, and therefore 
the peak area will be underestimated. Peak detection is 
performed on each single file. It is therefore necessary to cluster 
all the spotted peaks within the dataset before proceeding with 
the analysis. In a simplified example, having two raw files and 
only one spotted peak in each file, we need to assign whether 
the two peaks may represent the same compound in both 
samples or not. This process is performed automatically by 
SMfinder in two steps. First, masses are clustered with 
clustering criteria defined by the given instrumental resolution 
which is used to calculate the expected mass accuracy from a 
theoretical mass at 400 Da. Then, in each generated cluster, the 
retention times will be sub- clustered within a tolerance range 
defined by the user. Sub-clusters are enumerated and assigned 
on each peak. The result of this procedure assign a unique index 
for each peak that is found in one or more raw files in the 
dataset. For example, we applied our clustering algorithm to a 
metabolomics dataset21, which showed a majority of detected 
peaks to be shared within the entire dataset (Fig. 2C). Spotted 
peaks can now be identified, and first, possible molecular 
formulas are matched with the detected mass of each peak. 
Possible matches can be pre-filtered by the user by defining the 
maximum ppm error, expected adducts, and the exclusion of 
molecular formulas that contain halogens. In this step, a library 
containing all known chemical formulas from PubChem 
database24 is used for calculating all the possible masses based 
on the chromatographic polarity and the selected adducts 
options.

Database MS2 matching

Following peak extraction, SMfinder will match all the 
available MS2 spectra in the library that matches with the 
empirical formula. In this step SMfinder has a very flexible 
structure. Matches can be assigned by specifying the type of 
instrument, the used collision energy and by giving the number 
of permutations that will be required to compute the FDR. 
However, in most cases, using this type of setup will limit the 
database and therefore may reduce the identification coverage. 
To overcome this issue, two selectable values are included that 
are: “Use blind library”, which will exclude the collision energy 
and instrumental filter, and “Force library association”, which 
will exclude the adduct filter. During this process, four scores 
are generated for each feature matching at least one formula and 
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at least one MS2 spectra in the library, these scores are: ppm 
error, isotopic similarity, MS2 score, and FDR (as letter 
described in the computational operations and statistics 
paragraph). At this stage, a single feature may correspond to 
multiple potential matches. Data filtering can now be applied, 
by defining the hierarchy of filtering from the GUI. For 
example, by selecting FDR plus PPM, SMfinder will search for 
the match of any single feature with a lower FDR value. In the 
case of multiple matches with the same value it will select those 
with higher MS2 score, then with lower PPM error and finally 
with the higher isotopic similarity score until the best matching 
compound will be assigned to the detected feature. As an 
example, we used a raw file from literature 
(3injections_inj1_POS.mzXML) and ran the untargeted 
analysis with SMfinder (Table S2). For each peak, the 
multiplicity of matches was resolved to the best matching in 
order to return only one match per feature (Fig. 2D). The data 
filtering is designed to work on the entire dataset. The 
advantage of using this approach is that MS2 spectra become 
shared within the dataset. Therefore, for compound 
identification, it would be sufficient to find the MS2 spectra in 
only one file in order to identify the compounds also in other 
files where the MS2 for a give compound is missing (Fig. S1G). 
The last value that can be specified is the minimum count for 
the “Filler” function. This function will count the recurrence of 
each compound in the entire dataset, and if the recurrence is 
equal or higher of the given value, but lower than the total 
number of samples, it will search for missing values of those 
compounds. Results from the untargeted analysis can be now 
exported as excel file by clicking on Export Results. 

Figure 2 main SMfinder operations in untargeted analysis. (A) 
Graphic representation of a raw chromatogram from 
metabolomics analysis21. (B) Reconstructed chromatogram 
generated from the spotted peaks after peak picking. (C) Venn 
diagram of the spotted peaks detected in inj1, inj2 and inj3 upon 
clustering. Out of mo 856 peaks detected in each injection, 676 
(79%) are found in all replicates, and 154 on two out of three 
replicates. Clusterization was performed with a retention time 
tolerance of 30 seconds. (D) Nicotinamide identification by 
SMfinder. Among all possible assigned compounds, nicotinamide 
(identified in the original paper by standard comparison) shows the 

lowest FRD score. For this analysis, the HMDB database was used 
as MS2 library, and the maximum number of permutation for FDR 
evaluation was set to 500. For data filtering, the higher hierarchy 
was given to FDR.

Targeted analysis

Another available workflow is designed to perform targeted 
analysis. The first step consists in the generation of a reference 
table listing the compounds of interest. The list can be generated 
directly on SMfinder by using the interacting windows or by 
uploading a CSV file containing all the required information: 
the molecular formula, chemical adducts and expected retention 
time. The retention time can be checked before starting the 
analysis by clicking on the homologous button on the GUI. As 
an example, we chose a list of lipids which were identified in a 
published article22 and imported them as CSV into SMfinder 
(Table S4). Similar to the untargeted workflow, the 
instrumental resolution and peak width must be specified before 
starting the analysis. The resolution will be used to define the 
mass windows for the generation of the extracted ion 
chromatograms (EIC) from raw files (Fig 3A-B). EICs are 
integrated and the area is calculated for each peak. Results of 
the targeted analysis can be exported at this stage or the findings 
can be further validated by calculating MS and MS2 parameters 
similar to untargeted analysis. When this option is selected, the 
ppm error and isotopic similarity will be calculated at MS level, 
while SMfinder will match the formulas from the reference 
table with the library and evaluate the MS2 score and FDR. 
Validated results can be exported as excel file by clicking on 
the “Export Results” in the GUI. 

MS2 data mining from raw data

When performing targeted analysis, compounds of interest are 
commonly acquired as standards prior to analysis of the 
experimental samples. In this case, the MS2 spectra recorded 
from standards can be extracted from the chromatogram and 
exported as a txt file by clicking on “Export txt for library”. In 
our example of lipidomics analysis from literature22, we can use 
the same principle to retrieve MS2 spectra from real samples. 
Indeed, when the targeted validation is performed, MS2 spectra 
from the raw chromatograms are bound to the EICs of each 
precursor ion at MS level within the retention time window of 
each EICs (Fig. 3C). This process can operate on a single file or 
on the entire batch. In batch mode, the generated quality and 
quantity of MS2 spectra is obviously higher as some MS2 
spectra might have been acquired in a subset of chromatograms. 
For compounds which have more than one MS2 spectra within 
the dataset, the spectra with the highest summed intensity of all 
the fragments will be selected (Fig. 3D). 

13C dynamic tracing

This workflow follows the same principle of targeted analysis. 
It can be used in combination with targeted or untargeted 
analysis or used as stand-alone module. The first step consists 
in the generation of a reference table which is suitable for 13C 
dynamic tracing experiment. The reference table contains all the 
possible isotopologues for the compounds of interest. The 
isotopologues are generated from previously acquired 
unlabeled samples analyzed either with the untargeted or 
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targeted workflow. In this case, the information regarding the 
number of metabolites to be analyzed and their retention time 
are retrieved from the previous analysis. However, the reference 
table can be also newly generated starting from a compound 
table suitable for targeted analysis without the need of having a 
reference raw file. Once the reference table has been generated, 
it can be used for the 13C dynamic tracing analysis. The 
analysis can now be performed and the results will indicate the 
number of labelled carbons and the relative intensity of each 
isotopologue (Fig S2). Notably, the analysis of the unlabeled 
samples which is usually the starting point of the analysis will 
return the natural isotopic distribution as isotopologues 
abundance. This value can be used to estimate the starting level 
of labelling as far as no isotopic abundance correction is 
performed by SMfinder.

Integration accuracy

In order to verify the integration accuracy of SMfinder, we 
selected three lipid extracts from the same melanoma cell line, 
each acquired in technical duplicate. We choose this dataset 
because it should be homogenous, containing approximately the 
same number, and the same intensities of lipids while the 
chromatographic noise should partially differ between 
chromatograms i.e. instrumental noise. The samples, analyzed 
with the commercial software LipidView, returned the 
identification 

Figure 3 (A) Scatter plot of the raw file WT_ZL_01_Pos from a 
lipidomics experiment22.  (B) Reconstructed scatter plot using the 
EICs with 464 lipids selected for targeted analysis. (C) 
Reconstruction of the 354 lipids for which MS2 spectra were found. 
(D) Example of MS2 spectra mining and selection from 
WT_ZL_01_Pos, and Palm_ZL_01_Pos files.

181 lipids (Table S3), which were found to be present in all the 
six chromatograms. For each of three biological samples, we 
compared the technical replicates against each other to check 
the reproducibility of the samples (Fig 4A). We used the list of 
detected lipids to build a reference table and ran the targeted 
analysis on the same samples using SMfinder. Results were 
compared by plotting orthogonally the peak area of each lipid 
found in the technical replicates for each of the biological 

samples. All the samples fit into a linear distribution, and the 
observed variation was within the expected instrumental 
reproducibility (Fig. 4B) demonstrating integration 
consistencies for peak area calculation within multiple injection 
of the same sample.

PPM and Isotopic similarity

In order to assign a chemical formula to the detected peaks, 
matches between chemical formulas and m/z values are 
computed. This is done by setting a tolerance range to the 
empiric m/z values that is based on the part per million (ppm) 
error provided by the user. The mass distance between the 
empiric mass value and the theoretical exact mass of each 
formula matching the previous criteria are then reported as ppm 
error values in SMfinder. Similarly, isotopic similarity is 
calculated by generating the exact mass of the natural isotopic 
distribution of each matching chemical formula. The theoretical 
and empiric distribution are then compared by using the 
Kolmogorov goodness of fit. 

MS2 Score and FDR calculation

Depending on the instrument used, chemical formulas for each 
feature can be assigned, based solely upon molecular weight, 
with a reasonable accuracy. However, each chemical formula 
may correspond to a large number of isomers and stereoisomers 
which cannot be discriminated with MS information alone. To 
resolve isomers complexity, features with MS2 spectra that 
match at list one chemical formula, are compared with the MS2 
library. First, features and library spectra are matched by 
chemical formulas. Then, the MS2 score is calculated starting 
from two matrices xm,i and Xm,i, respectively from the empiric 
MS2 spectra and MS2 spectra deposited in the library, with m 
and i that representing the masses and signal intensities 
respectively. 

𝑋𝑚,𝑖 = {𝑋𝑚0 𝑋𝑚1… 𝑋𝑚𝑛

𝑋𝑖0 𝑋𝑖1… 𝑋𝑖𝑛
};  𝑥𝑚,𝑖 =  {𝑥𝑚0 𝑥𝑚1… 𝑥𝑚𝑛

𝑥𝑖0 𝑥𝑖1… 𝑥𝑖𝑛
}

Xm and xm are matched by considering xm a subgroup of Xm, 
and a merged matrix (Mx,y), with the relative intensities of X 
and x, is generated.

𝑋𝑚 ⊆ 𝑥𝑚  → 𝑀𝑥,𝑦 = { 𝑋𝑖0

∑𝑋𝑖

𝑋𝑖1

∑𝑋𝑖
…

𝑋𝑖𝑛

∑𝑋𝑖
𝑥𝑖0

∑𝑥𝑖

𝑥𝑖1

∑𝑥𝑖
…

𝑥𝑖𝑛

∑𝑥𝑖
}

Following, cosine similarity is calculated based on the 
intensities.

𝑀𝑆2 𝑠𝑐𝑜𝑟𝑒 = Cos(θ) =  
𝑀𝑥 ∗ 𝑀𝑦

‖𝑀𝑥‖‖𝑀𝑦‖

Similarly, FDR is calculated by re-computing N times, with N 
equal to the number of selected permutation, Cos(θ)  against a 
generated library entry, where the intensities from the library 
(M_x) have been permuted (ε) 
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 𝐹𝐷𝑅 =  
1 + ∑𝑁

0 𝑝

1 + 𝑁

where  otherwise 𝑝 = 1 𝑖𝑓 
𝑀𝑥 ∗ 𝑀𝑦

‖𝑀𝑥‖‖𝑀𝑦‖ ≥  
𝑀𝛆𝑥 ∗ 𝑀𝑦

‖𝑀𝛆𝑥‖‖𝑀𝑦‖ 𝑝 = 0

We tested the FDR performance by analyzing the identification 
of UDP-glucose from the raw file 3injections_inj1_NEG from 
literature. Identification of compounds with sugar residues, 
such as UDP-glucose, is particularly challenging since MS2 
spectra fragments of carbohydrates isomers are nearly or 
completely identical, with only minor differences in intensities. 
We evaluated UDP-glucose against MS2 spectra generated at -
20 eV of UDP-glucose and UDP-galactose, manually imported 
into the SMfinder library from the Metlin database8. First, the 
MS2 score was computed as described above between MS2 
spectra present in the database and the empiric spectra, and 
resulted to be 0.82 for UDP-glucose and 0.80 for UDP-
galactose (Fig. 4C-D). Then, the FDR was calculated using 
between 50 to 10,000 permutations per test and each test was 
repeated 10 times (Fig. 4E). 

 

 
Figure 4 (A-B) Linear regression of 3 lipidomics samples acquired 
in tech-nical duplicates with integrated area calculated by 
LipidView and SMfinder respectively. Each dot represents the peak 
area of a lipid in the two technical replicates. (C-D) MS2 spectral 
comparison between empiric spectra with molecular formula 
matching for UPD-glucose and UDP-galactose manually imported 
from Metlin10 database. The two spectra are nearly identical with 
a minor difference in fragment peaks intensities. (E) Evaluation of 

FDR values against the number of permutations for the discrimi-
nation between UDP-glucose and UDP-galactose. The graph rep-
resents the distribution of empiric MS2 spectra in black, and of the 
MS2 spectra of UDP-glucose and galactose in red. (F) Distribu-
tion of MS2 score, FDR and peak area of the 1245 compounds 
generated upon data-filtering returning the best match for each 
annotatable feature from lipidomics analysis. The analysis was 
performed by using 500 permutations.

Applying the FDR, we were able to demonstrate that using a 
threshold of at least 1000 permutations per test, we could 
efficiently discriminate between the two compounds, 
supporting the validity of a permutation based FDR strategy to 
discriminate between false and positive identification. Next, we 
evaluated if our FDR method could be used as a stand-alone 
parameter for data annotation or if it is intrinsically mirroring 
the MS2 score. For this test, we ran an untargeted analysis on 
the lipidomics dataset from the melanoma cells and compared 
the correlation between MS2 score and FDR. We found that the 
two distributions are not statistically correlated.

Moreover, by comparing the abundance of the investigated 
compound, we observed that MS2 score tends to be more highly 
influenced by the compound abundance than the FDR, although 
both correlations are not significant (Fig 4F). Distribution of 
MS2 score, FDR and peak area of the 1245 compounds 
generated upon data-filtering returning the best match for each 
annotatable feature from lipidomics analysis. The analysis was 
performed by using 500 permutations.

Gap Filler

Often in untargeted analysis, not all features are detected in all 
samples. Compared with other omics disciplines, missing 
metabolites are less common due to the fact that the majority of 
metabolites are highly conserved within and between 
taxonomies, while major differences are found in metabolite 
concentration within the specimen of interest. Missing values 
can occur for two main reasons: either the compound is missing 
in a particular sample or the instrumental signal is instable, or 
too low, and is not selected for fragmentation, which occurs 
stochastically between different acquisitions (Fig. 5A). 
SMfinder includes a “Filler” function designed to search for 
missing peaks within the experimental dataset. To do so, a 
matrix containing all the compounds identified within the 
sample set is generated. The generated matrix is clustered by 
the index which was previously assigned to peaks during 
clusterization. For each compound, the result will be 3D array 
with masses, retention times and intensities for all the detected 
peaks (Fig. 5B). When the array is constituted by a subgroup of 
files, i.e. when a compound is not detected in the entire dataset, 
the array is used to calculate the mass range and retention time 
windows, and then used as a parameter to search for the missing 
peaks in the files in which those peaks were not detected. The 
parameters used for each peak i.e. m/z and retention time 
windows, will be assigned from their relative composite 3D 
array taking the maximum and minimum values for both 
variables. As example, we used the previous untargeted analysis 
of lipidomics samples, in which 3597 peaks were detected. For 
graphic representation purposes only, the areas of missing 
values were set to 1 (Fig. 5C). We then applied the “Filler” 
function and found that all the missing peaks were reintegrated 
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in the dataset (Fig. 5D). This is reasonable as we are analyzing 
three biological replicates from the same specimen against their 
technical counterparts. Moreover, the recomputed missing 
values could be coherently integrated with the expected 
distribution as observed by comparing the R-square values 
before and after the “filler” application. 

Figure 5 (A) Example of an undetected peak by the peak picker 
(blue) from the sample WM115_2 and the same peak from the 
corresponding technical replicate WM115_2r (gray). The peak was 
identified as triacyl-glycerol (TAG 58:8) in 5 out of 6 samples. (B) 
Graphic art representing how parameters are calculated to search 
missing values within the dataset. The composite matrix is 
constituted by the overlaying peaks with the same index from 
different files. The composite matrix is then used to calculate the 
mass range, i.e. the minimum and maximum mass values, and 
retention time range. (C) Linear regression of discovered features 
from untargeted analysis of 3 lipidomics samples; (D) features 
values recovered by the “Filler” function.

FDR performance on published datasets

To further test the performance of FDR, we downloaded from 
the MetaboLights repository ctwo distinct datasets generated in 
two different laboratories,.  For both datasets, the original 
analysis was carried out in two steps by the respective 
authors25,26. First, the features detection was performed using 
MZmine, followed by compound identification by manual 
comparison of the MS2 spectra generated in house against 
commercial available standards. In our case, the analysis was 
performed using SMfinder and the HMDB as database, which 
contains MS2 spectra derived from more than 40 different mass 
spectrometers, and by selecting 500 permutations for FDR 
evaluation. Compounds without MS2 empiric spectra or 
without MS2 spectra in HMDB were excluded from the 
comparison. Identification performance is summarized in the 
Figure S3, which shows that the majority of   metabolites were 
correctly assigned without the need of analyzing the standards. 
SMfinder also includes the MS2 evaluation also for targeted 
analysis. In this case, once the MS2 spectra of interest have been 
added to the library, the identification of the empiric spectra can 
be easily achieved by computing MS score and FDR for each 
sample in the batch. Those parameters are often missing when 
the comparison is performed manually. We provide here the 

identification of deuterated standards included in the lipidomics 
dataset as an example of this strategy. MS2 spectra, acquired in-
house, were added into the SMfinder library. Identification 
confidence of standards in lipidomics samples, which were 
spiked-in prior to extraction and sample preparation, is reported 
in Table S4 showing an homogeneous MS score and FDR 
values along the entire dataset, indicating that standards were 
found within all the samples as expected. Moreover, this 
indicates that the detected peaks represent the spiked standards 
and not potential isobaric compounds/contaminations, which 
may occur in real samples. 

Discussion

Herein, we demonstrate how SMfinder can be efficiently 
exploited for various types of small molecules analyses, 
including untargeted, targeted, and 13C trace analysis. Due to 
the flexible software architecture, the MS2 library of SMfinder 
is easily scalable by importing one or more available database 
in txt format, and by the possibility to efficiently mine large 
number of MS2 spectra from previously validated 
chromatograms such as those acquired with commercial 
standards or from published datasets. The introduction of the 
false discovery rate score based on single spectra permutation 
provides a novel identification parameter that can be efficiently 
applied for compound identification. FDR is not dependent on 
the size of the selected library, and can also be used for post-
validation of targeted analysis. This is due to the computational 
architecture of the FDR in which, each possible match between 
MS2 spectra empiric or from libraries is computed 
independently. However, it is important to consider that large 
libraries are more accurate. As in the example of the 
characterization of UDP-glucose, both scores are below the 
FDR or 0.05. In this case, only the presence of multiple spectra 
from different isomers allows for the correct annotation of the 
compound of interest while a library without isomers may 
generate annotation errors. The software is fully embedded in 
intuitive GUI and does not require programming knowledge to 
be efficiently used. The GUI parameters are fully customizable 
and the setup can be stored or exported and later imported to 
efficiently trace back SMfinder parameters, for extensive 
automated batch analysis. SMfinder is executed in Python 
environment, and the entire source code, including the GUIs, is 
available without encryption upon installation. This gives 
proficient python users the possibility to fully customize 
SMfinder based on their own needs. SMfinder is capable of 
robustly identifying and quantifying large numbers of 
compounds from raw data, making it suitable for routine 
metabolomics and lipidomics studies.
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