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Abstract

The knowledge of the modal capacitance and electro-mechanical coupling factor

is essential for a proper design of systems with embedded piezoelectric trans-

ducers and materials. In light of this, this paper presents two indirect methods

for measuring the piezoelectric modal capacitance and a method to estimate the

modal electro-mechanical coupling factor. All methods rely on simple vibration

measurements of the structure with the piezoelectric transducer connected to

a proper shunt impedance, thus avoiding measurements of piezoelectric current

and voltage by expensive equipment. For the modal electro-mechanical coupling

factor, the proposed method guarantees reduced uncertainty compared to tradi-

tional experimental estimation procedures. Upon introduction of the underlying

theory, the paper experimentally demonstrates the reliability and effectiveness

of the methods by comparison with well-established procedures.
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1. Introduction1

Vibration control of structures is a fundamental issue for their durability2

and performances. This aspect has become even more important in the last3

decades since many applications rely on lightweight structures subject to a4

harsh dynamic environment. In these cases, the high vibration level could cause5

material fatigue, shortening the operating life of the system due to possible6

damages, and also increase of maintenance costs. Consequently, the reduction7

of the undesirable vibrations becomes a fundamental issue. In this scenario,8

piezoelectric materials play an important role because their use does not cause9

much additional weight, which is a key point for the majority of light structures,10

they allow to achieve wide control bandwidths and significant forces, they are11

characterised by low power consumption and can be used both as sensors and12

actuators and therefore they show attractive features for both active and passive13

control strategies. Piezoelectric materials have been successfully used for active14

control in several applications [1], such as in truss structures [2], helicopters [3],15

spacecrafts [4], satellites [5] and also in civil engineering [6]. A detailed review of16

recent developments in the field of active vibration control through piezoelectric17

actuators has been published by Shivashankar and Gopalakrishnan [7].18

Particular attention has been paid to the optimisation of the control strategy,19

by e.g. fuzzy-logic algorithms [8], optimal control [9], multi-objective optimiza-20

tion algorithms [10] or other types of controller [11, 12], the geometrical and ma-21

terial parameters [13, 14, 15] and the location on the structure to maximise the22

control effect, while keeping the control effort as low as possible [16]. Different23

algorithms have been employed for the optimisation of the actuator/sensor posi-24

tion on complex structures, such as genetic algorithms [17], model-based linear25

quadratic regulators [18] or other criteria [19, 20]. Optimal configurations have26

been proposed for different applications, such as the rear wing of a racing car27

[21] or adaptive trusses [22], and various frequency ranges [23]. The reason why28

great attention has been paid to these aspects is that the actuation capability29
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depends on the coupling between the strain field and the electrical field [24, 25],30

represented by the electro-mechanical coupling factor [26] that is a function of31

the electrical, mechanical and geometrical characteristics of the piezoelectric32

transducer on the structure [27]. This parameter constitutes the foundation of33

piezoelectric structural control and its estimation is thus important for a proper34

control design. This is verified by studies that specifically develop methods for35

the estimation of the coupling coefficient, such as in Chesne et al. [28] where36

an approach especially effective for small parameter values is presented. The37

knowledge of the electro-mechanical coupling factor is as well important in other38

piezoelectric-based applications, for example in energy harvesting, where an ac-39

curate estimation of the coupling factor allows for a proper prediction of the40

effectiveness of the electro-mechanical conversion [29], as further evidenced in41

e.g. [30, 31].42

The key role of the coupling factor becomes even more important when pas-43

sive or semi-passive control is considered, for example in piezoelectric shunt44

damping [32] or synchronized switch damping [33]. In these cases, the mechan-45

ical energy, converted into electrical energy, is reused to properly control the46

structure. Thus, the performances of these strategies strongly depend on the47

coupling factor, making its estimation essential for effective tuning of the con-48

trol parameters to maximize the achievable attenuation. Several studies on this49

topic have been carried out in the field of piezoelectric shunt damping, where the50

control action is obtained through the connection of a proper electric impedance51

(shunt) across the piezoelectric transducer electrodes [34, 35], thereby effectively52

attenuating vibrations in e.g. beams [36] or plates [37]. The control action can53

be designed for different targets, depending on the type of impedance. The54

simplest shunt impedances can be composed of a pure resistance [26] or its se-55

ries/parallel connection with an inductance [38, 39]. The tuning of the shunt56

impedance can rely on different principles, such as pole placement techniques57

[40, 41] or minimisation of the system Frequency Response Function (FRF)58

[42, 43]. Furthermore, multi-branch impedances can be used for multi-mode59

vibration control, by the current blocking method of Wu [44] or the subsequent60
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current flowing technique proposed by Behrens et al. [45]. Modified versions61

of these solutions have since been analysed and proposed to improve the pre-62

vious techniques [46, 47]. More complex networks can be used for broadband63

[48, 49], non-linear [50, 51] or noise control [52], for control with multiple trans-64

ducers [53, 54], and in different applications for cable damping [55] and vibration65

isolation [56]. Moreover, synchronized switch damping aims at enhancing the66

control performance by adding switches to the shunt circuit, based on active ele-67

ments [57], inductors [58], voltage sources [33], or even periodic impedances [59].68

However, in all the above cases, regardless the impedance used and the tuning69

strategy applied, the accurate estimation of the piezoelectric transducer capaci-70

tance and coupling factor is required to effectively tune the control system. Up71

to few years ago, most of the literature relied on models where the value used72

for the piezoelectric capacitance was the blocked capacitance, associated with73

the transducer linked to a blocked structure. However, since a thin structure74

is usually flexible and exhibits significant dynamic behaviour, this piezoelectric75

capacitance value coincides with the value at infinite frequency, where the dy-76

namic response of the flexible structure vanishes [60, 61]. Therefore, this value77

of the capacitance will be referred to as C∞.78

Few years ago, it was observed that the use of C∞ in reduced order models of79

the electro-mechanical system is not able to provide accurate tuning of the shunt80

impedance, resulting in non-optimised attenuation performances. Indeed, to81

achieve an optimal tuning, a modified value of the piezoelectric capacitance must82

be used, which accounts for the contribution from the neglected modes to the83

electrical behaviour of the system. Supposing that the control action is focused84

on the s-th mode of the system, the capacitance value to be used is the modal85

capacitance Cs that is obtained by adding a correction term C ′s to C∞. The86

term C ′s allows to take into consideration the influence of the modes higher than87

the s-th [60, 62]. Moreover, the knowledge of the modal capacitance Cs has been88

proved to be important for a proper tuning also in case of multi-mode control89

[63], and not only for single mode control. Despite the importance of the modal90

capacitance was observed in the field of piezoelectric shunt damping, it plays the91
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same significant role when dealing with active control or energy harvesting since92

it allows for a more accurate description of the electro-mechanical structure.93

Since then, different methods have been proposed in the literature to esti-94

mate the modal capacitance. Berardengo et al. [64] proposed to measure the95

trend of the capacitance of the piezoelectric patch as a function of the frequency96

and then to fit the experimental data with a model. Toftekær and Høgsberg [65]97

developed a method based on the measurement of modal charge and voltage.98

The two methods are based on the same model of the system and thus lead to99

similar results. Even if the two methods are effective in estimating Cs, both re-100

quire to measure the current flowing through the piezoelectric transducer. Since101

this current is very low, dedicated hardware is needed to carry out a reliable102

measurement, often with the need of expensive impedance analyzers.103

To overcome this issue, this paper proposes two alternative methods that104

allow for an indirect measurement of the modal capacitance Cs. Both are based105

on the use of simple and inexpensive hardware that is usually present in labs106

where vibration measurements are performed (e.g. low-cost accelerometers),107

common acquisition boards and additional inexpensive electronic devices.108

Furthermore, taking advantage of the theory behind one of the two methods109

proposed for the estimation of the modal capacitance, a new method to derive110

the modal electro-mechanical coupling factor is presented in this paper. As111

mentioned, the importance of this parameter in piezoelectric control is well112

known because it is an index of the energy transfer between the electrical and113

mechanical parts of the system (e.g. [24]) and several studies focused on its114

estimation via analytical (e.g. [27]), numerical (e.g. [66]) and experimental (e.g.115

[24, 25]) methods. In general, and especially for complex structures, the most116

reliable and easy-to-apply experimental procedure is based on the estimation117

of the short- and open-circuit eigenfrequencies (i.e. with the terminals of the118

piezoelectric transducer short- and open-circuited, respectively). However, if119

these two frequencies are really close to each other (i.e. either due to small120

values of the modal electro-mechanical coupling factor or because the considered121

mode is at low frequency), the estimation of this coupling coefficient can be122
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significantly affected by the uncertainty on the estimates of the two mentioned123

eigenfrequencies. The method proposed in this paper is shown to provide an124

estimate of the coupling coefficient with a reduced uncertainty level compared125

to the traditional experimental method and, therefore, to provide more accurate126

results in the most critical situations.127

In order to explain the above-mentioned methods, the paper introduces at128

first the model used for describing the electro-mechanical system in Section 2.129

This also allows to present one of the methods currently used for estimating130

Cs, which will be employed in this paper as reference method in order to show131

the reliability and the effectiveness of the newly proposed techniques. Then,132

these proposed methods are described in Section 3, while Section 4 explains133

the new approach for estimating the modal electro-mechanical coupling factor.134

Finally, Section 5 discusses the experimental campaign carried out to validate135

the proposed techniques and show their results.136

2. System model137

Figure 1: Piezoelectric shunt by means of an impedance Zsh.

The dynamics of a vibrating system with a bonded piezoelectric transducer138

and excited by an external force fe (see Fig. 1) can be described, in modal139

coordinates, by the following equation [26, 41]:140
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(−ω2 + 2iζsωsω + ω2
s)us − θsV = fe,s for s = 1, ..., N (1)

where ω is the angular frequency, ωs is the s-th eigenfrequency (with the piezo-141

electric transducer short-circuited), ζs is the associated non-dimensional damp-142

ing ratio, fe,s is the modal forcing, θs is a coupling coefficient per unit modal143

mass and V is the voltage across the electrodes of the piezoelectric transducer144

(see Fig. 1). Finally, i is the imaginary unit, us is the s-th modal coordinate145

and N is the number of modes (theoretically N is infinite).146

The electric behaviour of the system is governed by the following expression147

[63]:148

C∞V +
V

iωR0
−Q+

N∑
s=1

θsus = 0 (2)

where Q is the charge in one of the electrodes of the piezoelectric transducer (see149

Fig. 1) and R0 is the inherent resistance of the piezoelectric transducer (that is150

often neglected because it is very high). Moreover, Q̇ defines the current flowing151

in the circuit (i.e. the dot represents the derivative with respect to the time,152

see Fig. 1) and, as mentioned, C∞ is the value of the piezoelectric capacitance153

at infinite frequency.154

Assuming absence of external forcing (i.e. fe=0 and thus fe,s=0), Eq. (1)155

allows to derive the expression of the modal coordinate us as a function of the156

voltage V at the piezoelectric terminals:157

us =
θs

−ω2 + 2iζsωsω + ω2
s

V for s = 1, ..., N (3)

Substituting Eq. (3) into Eq. (2), the expression of the admittance Y (iω) of the158

piezoelectric transducer attached to the structure can be obtained, evidencing159

the contribution of the dynamics of the mechanical system:160

Y =
Q̇

V
=

iωQ

V
= iω(C∞ +

1

iωR0
+

N∑
s=1

θ2s
−ω2 + 2iζsωsω + ω2

s

) (4)
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If only the s-th mode is taken into account, thus considering a single-degree-161

of-freedom (SDOF) approximation, the modal sum in Eq (4) can be expressed162

as the sum of three terms: one due to the considered mode and other two163

accounting for the residual contributions of the neglected modes (i.e. higher164

and lower). Therefore, in the frequency range around ωs (i.e. for ω ' ωs), it165

is possible to approximate the capacitance of the piezoelectric transducer as a166

function of the frequency, C(ω), with the following expression:167

C =
B

ω
=

Im{Y }
ω

= Im{i(C∞ +
1

iωR0
+

1

−ω2L′s
+

θ2s
−ω2 + 2iζsωsω + ω2

s

+ C ′s)}

(5)

where Im{} indicates the imaginary part of a complex quantity, B(ω) = Im{Y (iω)}168

is the susceptance of the piezoelectric transducer attached to the structure and169

L′s and C ′s are constants accounting for the contribution of the modes lower and170

higher than the s-th, respectively:171

s−1∑
n=1

θ2n
−ω2 + 2iζnωnω + ω2

n

'
s−1∑
n=1

θ2n
−ω2

=
1

−ω2L′s
(6)

N∑
n=s+1

θ2n
−ω2 + 2iζnωnω + ω2

n

'
N∑

n=s+1

θ2n
ω2
n

= C ′s (7)

The letters used to indicate the contributions from the out-of-band modes are172

related to the equivalent effect of the two terms on the admittance of the piezo-173

electric transducer attached to the structure (see Eq. (4)). Indeed, C ′s has the174

units of a capacitance and translates into an additional contribution to C∞,175

while L′s has the units of an inductance and, thus, shows that the modes lower176

than the s-th provide an inductive contribution to the behaviour of the electrical177

part of the whole system around ωs. It follows that the piezoelectric capacitance178

C(ω) can be expressed as:179
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C = Cs +
1

−ω2L′s
+Re{ θ2s

−ω2+2iζsωsω+ω2
s
} =

Cs +
1

−ω2L′s
+ θ2s(−ω2+ω2

s)
(−ω2+ω2

s)2+(2ζsωsω)2

(8)

where Re{} indicates the real part of a complex quantity.180

The term Cs in Eq. (8) represents the modal capacitance and is the sum of

C∞ and C ′s. In order to estimate Cs, the admittance Y (iω) of the piezoelectric

transducer attached to the structure can be measured as a function of ω by

means of an impedance analyzer. Then, the experimental curve describing C(ω)

can be obtained from the admittance Y (iω) or the susceptance as:

C(ω) =
B

ω
=

Im{Y }
ω

(9)

It is then possible to estimate the unknowns Cs and L′s by fitting the model in181

Eq. (8) to the experimental curve of C(ω) obtained by measuring Y (iω) and182

employing Eq. (9). The values of ωs and ζs are considered known in Eq. (8)183

because they can be estimated by modal analysis. Considering θ2s in Eq. (8),184

in case of low modal superimposition, it can be expressed as a function of the185

modal electro-mechanical coupling factor ks. Indeed, the relation between ks186

and θs is [60]:187

θ2s = k2sω
2
sCs (10)

The modal electro-mechanical coupling factor ks can be approximated by es-188

timating the short- (i.e. ωs) and open-circuit (i.e. ω̂s) eigenfrequencies of the189

system as:190

k2s =
ω̂2
s − ω2

s

ω2
s

(11)

Therefore, θ2s can be approximated as (combine Eqs. (11) and (10)):191

θ2s = Cs(ω̂
2
s − ω2

s) (12)
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Equation (12) shows that θ2s can be approximated as the product of the known192

quantity (ω̂2
s − ω2

s) (indeed, also ω̂s can be estimated by means of a modal193

analysis of the system) and Cs which is, together with L′s, the unknown in194

Eq. (8). However, θ2s can also be considered as an unknown and found by195

means of the minimisation, together with Cs and L′s, in order to improve the196

fit, correcting a possible non-accurate initial estimation of θ2s .197

This procedure employed to estimate the value of Cs and based on the use198

of an impedance analyzer will be the reference method in this paper. Therefore,199

the two new methods for estimating the value of the modal capacitance Cs,200

discussed in Section 3, will then be compared to this reference procedure (in201

Section 5).202

3. Indirect methods for estimating the modal capacitance203

The two methods presented here require to connect a shunt impedance Zsh204

to the piezoelectric transducer (see Fig. 1). The possibility to identify system205

parameters by connecting a known impedance to the piezoelectric transducer206

was sketched in [39]. Here, this approach is applied to the modal capacitance207

and is developed and investigated. The first method requires that Zsh is an208

inductance L (see Section 3.1), while Zsh is a negative capacitance (NC) −Cn209

for the second method (see Section 3.2).210

3.1. Method 1: L-based estimation of the modal capacitance211

When an inductance is shunted to the piezoelectric transducer (i.e. Zsh =212

iωL), the relation between the charge and the voltage at the piezoelectric ter-213

minals can be expressed as:214

Q =
V

Lω2
(13)

By using Eq. (13) in the equations describing the electric behaviour of the215

system (see Eqs. (2), (6) and (7)), exploiting the SDOF approximation and216

neglecting R0, the following equality is obtained:217

10



V =
−θsLω2

CsLω2 − 1
us (14)

To obtain this equation, the term related to L′s has been neglected. Indeed,218

according to the literature (e.g. [60, 65]), 1/L′s is low enough to be neglected in219

case of low modal superimposition.220

When substituting Eq. (14) into Eq. (1) and only considering mode s to221

describe the dynamics of the system in the frequency range around ωs because of222

the low modal superimposition hypothesis, the FRF displacement/force relation223

of the electro-mechanical system can be derived (assuming ζs '0):224

us
fe,s

=
CsLω

2 − 1

(−ω2 + ω2
s)(CsLω2 − 1) + θ2sLω

2
(15)

As expected, since a shunt impedance composed by an inductance L is used,225

the FRF in Eq. (15) governs four poles and, thus, the presence of the shunt226

impedance produces two peaks around ωs, at ωs,1 and ωs,2, in the FRF dis-227

placement/force of the system (e.g. [62, 67]). These two eigenfrequencies can228

be found posing the denominator of the FRF in Eq. (15) equal to zero:229

ω4CsL− ω2[L(θ2s + Csω
2
s) + 1] + ω2

s = 0 (16)

Solving Eq. (16), the analytical expressions of ωs,1 and ωs,2 can be found and230

the following equality can be obtained:231

ω2
s,1ω

2
s,2 =

ω2
s

CsL
(17)

If ωs,1 and ωs,2 are estimated experimentally, Eq. (17) can be used to find232

Cs. The use of Eq. (17) is advantageous compared to the use of a single233

solution of Eq. (16) (i.e. either ωs,1 or ωs,2) because it allows to estimate Cs234

without estimating θs, and thus with a consequent decrease in the uncertainty235

associated to the estimate of Cs. It is also noticed that the basic idea of Eq.236

(17) is to identify some features of a primary structure by observing how the237

coupling to a known system changes its dynamic behaviour. This is an approach238
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successfully adopted in other applications and with different targets (e.g. modal239

mass estimation [68]).240

To summarise, the following steps are necessary to estimate Cs with the241

L-based method:242

• Measure the system FRF with the piezoelectric transducer terminals short-243

circuited and estimate ωs with an experimental modal analysis.244

• Build an inductance L and measure/estimate its value. In theory, it could245

have any value. However, it is good practice to choose a value that allows246

to have two clear peaks for the shunted system FRF us/fe,s. Such a247

behaviour is obtained when the inductance is tuned on the considered248

mode [26] and, thus, when its value is approximately:249

L =
1

Csω2
s

(18)

This would require to have a rough estimation of Cs in advance. However,250

since a fine tuning is not necessary for the procedure (i.e. just the presence251

of two clear peaks in the FRF is required), the first trial for the inductance252

value can be obtained by using Eq. (18) with the capacitance Cpiezo of253

the piezoelectric patch commonly reported on the data-sheet from the254

manufacturer.255

• Connect the inductance to the piezoelectric transducer.256

• Evaluate the system FRF us/fe,s around ωs. If the experimental FRF257

does not show two clear peaks around ωs, the value of L can be changed258

with a trial and error procedure until they are evident. It is important259

to measure/estimate the final value of L used before performing the next260

point on the list.261

• Estimate ωs,1 and ωs,2 by experimental modal analysis on the measured262

FRF.263

• Use Eq. (17) to find Cs.264
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3.2. Method 2: NC-based estimation of the modal capacitance265

Figure 2: A piezoelectric transducer connected to an NC in series (a) and in parallel (b).

The red dashed line indicates the new enhanced transducer composed by the piezoelectric

transducer and the NC.

A shunt impedance composed by an NC, −Cn, is used in this case. The266

use of an NC allows to define a new enhanced transducer composed by the267

piezoelectric transducer and the NC, as evidenced in Fig. 2. The figure also268

shows that there are two possible connection layouts: series (see Fig. 2a) and269

parallel (see Fig. 2b). The capability of the NC to shift either the short- or270

open-circuit eigenfrequencies of the system is exploited here to estimate the271

modal capacitance.272

Consider an electro-mechanical system with short-circuit eigenfrequencies273

equal to ωs and open-circuit eigenfrequencies equal to [60] (see also Eqs. (11)274

and (10)):275

ω̂s =

√
ω2
s +

θ2s
Cs

(19)

When an NC connected in series is used (see Fig. 2a), it shifts the short-276

circuit eigenfrequencies (i.e. short-circuiting the terminals T1 and T2 of the new277

enhanced transducer in Fig. 2a) towards lower frequency values [60]. The new278

values of the short-circuit eigenfrequencies are denoted here as ωsc
s . Conversely,279

NCs connected in parallel (see Fig. 2b) shift the open-circuit eigenfrequencies280

(i.e. with the terminals T1 and T2 of the new enhanced transducer in Fig. 2b281

open-circuited) towards higher frequency values [60]. The new values of the282

13



open-circuit eigenfrequencies are denoted here as ωoc
s . It is also noticed that the283

two types of connection (series/parallel) require different values of the NC, as284

explained below.285

According to [60], for an NC in series, the value of Cn must be set higher286

than the value of the piezoelectric capacitance at the null frequency C0 to assure287

system stability (thus, the following inequalities hold Cn > C0 > Cs). In this288

case, for low modal superimposition, the value of ωsc
s can be expressed as:289

ωsc
s = ωs

√
1− θ2s

ω2
s(Cn − Cs)

(20)

If the value of the NC used is known, as well as the short- and open-circuit290

eigenfrequencies (i.e. ωs, ω̂s and ωsc
s ), it is possible to estimate the modal291

capacitance Cs combining Eqs. (20) and (19), without the need of estimating292

θs:293

Cs =
ω2
s − (ωsc

s )2

ω̂2
s − (ωsc

s )2
Cn (21)

For an NC in parallel, the value of Cn must be set lower than C∞ to assure294

system stability (thus, the following inequalities hold Cn < C∞ < Cs), and the295

value of ωoc
s is described by the following relation [60]:296

ωoc
s = ωs

√
1 +

θ2s
ω2
s(Cs − Cn)

(22)

The estimate of Cs in this case can be obtained by combining Eqs. (22) and297

(19):298

Cs =
(ωoc

s )2 − ω2
s

(ωoc
s )2 − ω̂2

s

Cn (23)

Therefore, the following procedure can be employed in order to estimate Cs:299

• Measure the system FRF with the piezoelectric terminals short- and open-300

circuited and estimate ωs and ω̂s, respectively, with an experimental modal301

analysis.302
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• Build an NC −Cn and measure/estimate its value. The NC must assure303

the stability of the system and, thus, a rough estimation of either C0 or304

C∞ is needed in advance. Such an estimation can be obtained by using the305

capacitance of the piezoelectric patch reported on the data-sheet of the306

manufacturer, Cpiezo. Then, in case the system in unstable connecting the307

NC to the piezoelectric transducer, the value of the NC must be adjusted308

until stability is reached. It is important to measure/estimate the final309

value of Cn used before performing the next point on the list.310

• Connect the NC to the piezoelectric transducer and evaluate the system311

FRF.312

• Estimate either ωsc
s or ωoc

s , according to the type of connection of the NC313

used, by experimental modal analysis.314

• Use either Eq. (21) or Eq. (23) to find Cs.315

An advantage of this procedure is that it allows to estimate Cs for different316

modes at the same time, with a single value of the NC (i.e. the NC affects all317

the modes of the electro-mechanical system), while the L-based method allows318

to estimate Cs only for the mode on which L is tuned on.319

The two methods for estimating the value of Cs described in this subsection320

and in Section 3.1 will be compared to the traditional fitting procedure (see321

Section 2) in Section 5. The next section shows how it is possible to estimate322

also θs and ks from the L-based method used for estimating Cs.323

4. Indirect methods for estimating the coupling coefficients324

When the value of θs needs to be estimated, usually, Eq. (12) is used (which325

requires to have estimated Cs in advance) or θs is added among the unknowns326

in the fitting procedure described in Section 2. However, when a double check327

on the estimated θs value is recommended, the two methods presented in Sec-328

tions 3.1 and 3.2 to estimate Cs can be employed since they provide different329
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approaches for estimating θs, as explained in Section 4.1. Furthermore, the L-330

based method (Section 3.1) also allows for a further estimation of ks (which is331

usually estimated with Eq. (11)). This additional method allows to decrease332

the uncertainty associated to the traditional estimation as shown in Section 4.2.333

4.1. Indirect methods for estimating θs334

When the piezoelectric transducer is shunted with an inductance L (see335

Section 3.1), the following relation between ωs,1 and ωs,2 can be derived from336

Eq. (16):337

ω2
s,1 + ω2

s,2 = ω2
s +

θ2s
Cs

+
1

CsL
(24)

If the L-based method is used to estimate Cs, the only unknown in Eq. (24) is θs338

that can be, then, easily estimated. This θs estimate can be used, if needed, to339

check and verify the value coming from different estimation techniques. Indeed,340

it is noticed that the estimate of θs through Eq. (24) relies on the knowledge of341

parameters different from those on which Eq. (12) (or the fitting procedure) is342

based. Therefore, the procedures lead to different estimates of θs that can be,343

thus, compared.344

Considering the NC-based method, the value of θs can be estimated using345

the expression of either ωsc
s (Eq. (20)) or ωoc

s (Eq. (22)), depending on the346

NC layout employed. Indeed, if Cs is estimated with the method described in347

Section 3.2, θs is the only unknown in Eqs. (20) and (22). Also in this case,348

the estimate of θs is obtained using parameters and expressions different from349

those traditionally employed (e.g. Eq. (12)). Therefore, the obtained θs values350

can be compared.351

4.2. Indirect method for estimating ks352

This subsection shows a new method to estimate ks relying on the connection353

between the piezoelectric transducer and an inductance L. Indeed, by substitu-354

tion of Eqs. (17) and (10) into Eq. (24), the modal electro-mechanical coupling355

factor can be expressed as a function of ωs,1, ωs,2 and ωs [67]:356
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Figure 3: The trend of vL/vcl as a function of the |ks| value for different L values (a) and

as a function of the ratio L/Lref for different |ks| values. Here, ζs = 5 × 10−4 and Cs=39

nF (this value was chosen in order to stay close to the Cs values of the system used for the

experiments in Section 5).

k2s =
ω2
s,1 + ω2

s,2

ω2
s

−
ω2
s,1ω

2
s,2

ω4
s

− 1 (25)

This formulation reduces to k2s = [(ω2
s,1 + ω2

s,2)/ω2
s ]− 2 in case L = Lref , where357

Lref denotes the value of the inductance in Eq. (18) (see Eqs. (17) and (18)). A358

first advantage of the formulation of Eq. (25) is that the estimate of ks depends359

on ωs and on the eigenfrequencies generated by the inductive shunt. Indeed,360

ωs,1 and ωs,2 are well separated and their distance is greater than that between361

ωs and ω̂s on which the traditional estimation of ks is based (see Eq. (11)).362

Therefore, in the case short- and open-circuit eigenfrequencies are really close363

each other and difficult to be identified with a good accuracy (e.g. low coupling364
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factor, low frequency), this new method allows to overcome the problem since it365

is based on the identification of eigenfrequencies more distant from each other.366

Another advantage is related to the uncertainty associated to the coupling367

factor estimate. Indeed, estimating ks with Eq. (25) provides a result with a368

reduced uncertainty compared to the case of using Eq. (11).369

The standard uncertainty v of k2s can be described by means of the com-370

bined uncertainty formulation [69], which is based on a Taylor expansion. This371

formulation requires an estimation of the uncertainty related to the estimation372

of the eigenfrequencies involved in the definition of k2s (either Eq. (25) or Eq.373

(11)). Here, the estimations of the input quantities ωs, ω̂s, ωs,1 and ωs,2 are as-374

sumed as independent and the standard uncertainty associated to the estimates375

(evaluated by means of modal analysis) is assumed equal and here referred to376

as r. Assuming that the Taylor expansion can be truncated to the first order377

terms for the sake of simplicity, v assumes the following expression when k2s is378

estimated with Eq. (11):379

v =

√(
∂k2s
∂ωs

r

)2

+

(
∂k2s
∂ω̂s

r

)2

= 2r
ω̂s

ω2
s

√
1 +

ω̂2
s

ω2
s

(26)

Conversely, when k2s is estimated with Eq. (25), v is:380

v =

√(
∂k2s
∂ωs

r

)2

+

(
∂k2s
∂ωs,1

r

)2

+

(
∂k2s
∂ωs,2

r

)2

=

2r
1

ω5
s

√
4ω4

s,1ω
4
s,2 + ω2

s(ω2
s,1 + ω2

s,2)(ω4
s − 3ω2

s,1ω
2
s,2) + ω4

s(ω2
s,1 − ω2

s,2)2 (27)

From here on, v is denoted as vcl for the classical estimation method (see381

Eq. 26) and as vL for the newly proposed method (see Eq. 27). The two382

uncertainties can be compared by calculating the ratio vL/vcl as a function of383

two parameters: ks, which governs the distance between ωs and ω̂s, and L which384

affects the distance between ωs,1 and ωs,2. This analysis is shown in Fig. 3a385

where the different curves are related to different L values. The values of L are386

expressed as referenced to the L value of Eq. (18), denoted as Lref in the figure.387

Looking at Fig. 3a, it can be seen that the influence of the L value is to modify388
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Table 1: Values of the components of the circuits in Fig. 5.

RA

[kΩ]

RB

[kΩ]

RC

[kΩ]

CL

[µF]
Rp2 R1

R2

[kΩ]
R̂

Rcomp

[MΩ]

Ĉ

[nF]

1.98 0.99 0.99 4.84 variable variable 11.47 variable 2.91 69.23

the value of vL because of the change of the values and relative distances of the389

eigenfrequencies ωs,1 and ωs,2. However, regardless the value of the inductance390

used, and despite that the ratio vL/vcl increases with ks, it is evident that vL is391

always significantly lower than vcl.392

In order to clarify the influence of the value of L on vL, it is noticed that393

this relationship is not straightforward to be analysed because vL depends on394

both the distance between ωs,1 and ωs,2 and on their absolute values (see Eq.395

(27)). Therefore, when L is changed, there are two effects to be considered and396

they can have an opposite influence on the resulting value of vL. However, Fig.397

3b allows to achieve a clear conclusion about which L value is the one allowing398

to reduce vL as much as possible. In this figure, the trend of vL/vcl is depicted399

as a function of the ratio L/Lref for systems with different |ks| values. In all the400

cases, the value of L equal to Lref is always able to reduce as much as possible401

vL.402

The next section describes the experimental tests carried out to validate the403

methods presented in this subsection and in Section 3.404

5. Experimental validation of the methods405

This section presents the tests carried out to validate the L-based and NC-406

based methods for estimating the modal capacitance and also the method pre-407

sented in Section 4.2 for the estimation of |ks|. At first, the set-up is described408

in Section 5.1 and then the results of the tests are presented in Section 5.2.409
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Figure 4: The set-up.

Figure 5: The electrical schematics used to build the shunt inductance for the L-based method

(a) and the NC shunt for the NC-based method (b).

5.1. The experimental set-up410

The set-up used was a stainless steel cantilever beam (length of about 18 cm,411

width of approximately 3 cm and thickness of about 1 mm) with two piezoelec-412

tric patches (length 70 mm, width 30.0 mm, thickness 0.55 mm, material PIC413

151) bonded at the clamped end (one per side) and electrically connected in se-414

ries (see Fig 4). The beam was forced by using a contactless actuator composed415

of a coil and a magnet bonded close to the tip (the force exerted to the beam was416

assumed as proportional to the measured current flowing through the coil [70]),417

while the structural response was measured by means of a laser velocimeter. The418
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measured FRFs velocity/force allowed to find the FRFs displacement/force just419

by diving them with iω.420

Considering the L-based method for the estimation of Cs and |ks|, the tests421

were carried out on the first bending mode of the beam. The main reason422

for choosing the first mode of the beam was to have an eigenfrequency with423

a low value (approximately 32 Hz) and thus a high value for L (e.g. see Eq.424

(18)). In this way, it was possible to demonstrate the practical feasibility of the425

L-based method also in a disadvantageous situation. Indeed, since the value426

required for L was high, a synthetic inductor was built by using the Antoniou’s427

circuit [26, 71] based on operational amplifiers. The circuit is shown in Fig.428

5a. Here, the variable resistance Rp1 was used in order to produce a negative429

resistance in series with L. This negative resistance was needed to eliminate430

parasitic resistances that can be present when using operational amplifiers to431

simulate inductances. The total residual resistance was estimated to 500 Ω,432

that was considered a value low enough not to affect the experimental tests433

(also according to simulations).434

For the NC-based method, the NC was connected in series in order to work435

on the first bending modes of the beam [60]. The circuit used was that of436

Fig. 5b. It can be modelled as the parallel connection of an NC and a negative437

resistance. The value of Rcomp was chosen in order to make the resistance highly438

negative (i.e. -75 MΩ). This allows the circuit of Fig. 5b to behave like a pure439

NC. More details about this circuit can be found in [60].440

The values used for the components of the circuits of Fig. 5 are provided441

in Table 1. All the operational amplifiers used were of type OPA445 and were442

supplied with a voltage of ±30 V.443

Considering the tests with the reference method for estimating Cs described444

in Section 2 (i.e. the fitting procedure), they were performed with an impedance445

analyzer.446

Finally, the modal parameters (e.g. eigenfrequencies) which are needed for447

using the methods proposed in this paper were identified via modal analysis by448

means of a least-squares complex-frequency domain method (e.g. [72]).449
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Table 2: Values of ωs, ζs and ω̂s for one of the tests.

bending mode ωs/(2π) [Hz] ζs ω̂s/(2π) [Hz]

1 32.48 4.2 ×10−3 33.40

2 154.09 7.2 ×10−3 154.53

3 437.67 1.7 ×10−3 440.05

Table 3: Values of L and Cn used in the tests.

test 1 test 2 test 3 test 4 test 5 test 6 test 7

L [H] 607.9 ' Lref 589.7 571.4 553.2 534.9 516.7 -

Cn [nF] 112.9 87.8 79.0 71.9 65.9 60.8 56.5

5.2. Tests450

At first, the tests related to the estimation of Cs are discussed here. These451

tests lasted an entire day. The measurement with the impedance analyzer was452

repeated three times during the day (before the tests with the L-based method,453

between the tests with L-based and NC-based methods, and after all tests had454

been conducted). Therefore, the effect of the temperature change, that inher-455

ently occurred during the day in the lab, on the value of the modal capacitance456

is present in the results of the reference method. This was unavoidable because457

the tests for both the L-based and NC-based methods lasted some hours and458

could not be performed at the same nominal temperature (the temperature in459

the room of the tests can change of few degrees during the day). Together with460

the tests using the impedance analyzer, also tests forcing the structure were461

performed continuously in order to estimate each time the values of ωs, ζs and462

ω̂s. Their values for one of these tests are reported in Table 2.463

The tests with the L-based approach were carried out with six different464

values of L (gathered in Table 3). This allowed to check the dispersion of the465

results of the method. Seven tests were carried out for the NC-based method,466

with seven different values of the NC (see Table 3). Since the aim of the new467

proposed methods is to have an inexpensive approach for estimating Cs, the468

values of L and Cn were not measured (this would require a device able to469
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Figure 6: Fit of the capacitance of the piezoelectric patch at the third mode for one of

the tests with the impedance analyzer (a), magnitude of the measured FRFs of the system

(displacement/force) at the first mode showing the effect of the addition of L in method 1 (b),

and magnitude of the measured FRFs of the system (displacement/force) at the first mode

showing the shift of the short-circuit eigenfrequency due to the NC in method 2 (c).

characterise an active element), but theoretical formulas were instead employed470

directly to estimate the L and Cn values. This allows to test both the methods471

without the use of any additional device. More precisely, L was estimated as472

(refer to the elements in Fig. 5a):473

L =
CLRARCRp2

RB
(28)

and Cn was estimated as (refer to the elements in Fig. 5b):474

Cn =
R2

R1
Ĉ (29)

The resistances and capacitances in Eqs. (28) and (29) were measured with an475

inexpensive basic multimeter.476

Figures 6a, b and c show the fit of the capacitance of the piezoelectric477
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Figure 7: Results of the L-based and NC-based methods compared to the reference method

for the first three modes of the beam.

patch with the model of Eq. (8) (setting Cs, L
′
s and θs as the unknowns to478

be found) around the third bending mode of the beam for one of the tests with479

the impedance analyzer (a), the system FRF showing the influence of the addi-480

tional L in method 1 (b), and the system FRF with the shift of the short-circuit481

eigenfrequency due to the NC in series in method 2 (c), respectively.482

Figure 7 shows the Cs results of the different methods for the first three483

bending modes of the beam (obviously, the results for the L-based method are484

absent for the second and third mode). There is a good superimposition among485

the different results for the first mode and the reproducibility of the different486

methods is comparable (see the magnification in Fig. 8a). In the case of the487

third mode, again, the results are more than satisfactory (see the magnification488

in Fig. 8b). Conversely, for the second mode, there is a bias between the results489

of the reference method and of the NC-based method (although, the order of490

magnitude of the results of the two methods is the same). The reason for this491

discrepancy is that the first mode peak is much higher than for the second492
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Figure 8: Results of different methods for the first (a), third (b) and second (c) bending mode.

mode in the displacement/force FRF of the system (due to higher eigenmode493

components). This makes the hypothesis of low modal coupling (which is at the494

foundation of the method) not valid for ω ' ω2 with a non-negligible influence495

from the first mode. Therefore, to face situations like these, in which the modal496

superimposition is too large, a modified approach is needed. The solution is to497

adopt a multi-degree-of-freedom (MDOF) model to take into account the first498

two modes of the beam (those interesting for the problem) and the effect of the499

NC. Such a model, developed in [63], is briefly described in Appendix A, while500

in this section only the results are discussed (represented with yellow crosses501

in Fig. 7). The use of the MDOF model allows to improve the estimation of502

Cs, eliminating the previously evidenced bias. Finally, Fig. 8c shows, for the503

second mode, the results of the reference method superimposed to the mean504

value of the results of the NC-based method with the SDOF (black square)505

and MDOF (yellow cross) models. The solid lines show the spans between506

the largest and smallest results for the two types of NC-based method. This507

allows to stress the benefits provided in this case by the MDOF approach and508

to evidence the reliability of the proposed method even in case of significant509
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Figure 9: The estimation of |k1| with the classical experimental approach (see Eq. (11)) and

the newly proposed one related to the connection of the piezoelectric patch to an inductance

(see Eq. (25)).

modal superimposition. Obviously, in a real application, one should analyse510

the system FRF in order to evaluate whether the MDOF approach is needed or511

the SDOF one can be employed. It is also important to notice that the same512

MDOF approach can be used with the L-based method with similar results as513

those obtained for the NC-based method. Therefore, even if the L-based and514

NC-based methods have been initially presented under the hypothesis of low515

modal superimposition, the results shown above enable to evidence that they516

can provide reliable estimations of Cs also when this hypothesis is not fulfilled,517

by using the MDOF model.518

As a concluding remark, it is possible to suggest to always carry out more519

than one measurement of Cs when using either the L-based or the NC-based520

method. Indeed, the mean value of the results is expected to be a reliable521

estimator of the modal capacitance.522

Finally, the newly proposed method to estimate |ks| (see Section 4.2) was523

tested on the first bending mode of the beam. To this purpose, a modal analysis524

was repeated five times with the piezoelectric patch in both short- and open-525

circuit. This allowed to estimate five values of |k1| with Eq. (11). Furthermore,526
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also a modal analysis with the piezoelectric patch connected to an inductance527

like that of test 2 in Table 3 was repeated five times, allowing to obtain five values528

of |k1| estimated through Eq. (25). The results are shown in Fig. 9. A slight529

bias (i.e. different mean values) can be evidenced between the results of the two530

methods. This is mainly due to thermal changes during the test session of the531

two methods. However, this bias is so small that it can be considered negligible532

for practical applications. The interesting outcome of this figure is that the533

result dispersion related to the new method is much lower compared to the534

classical method, therefore implying a lower uncertainty. This is in accordance535

with the uncertainty analysis performed in Section 4.2 (particularly, see Fig. 3).536

6. Conclusion537

This paper has described two indirect methods for estimating the value of the538

modal capacitance for piezoelectric transducers using vibration measurements539

and low-cost electronic devices, thus avoiding the measurement of electrical540

voltage and current. This results in an inexpensive experimental set-up. One541

method requires to connect the piezoelectric transducer to an inductance L,542

while the other to an NC. Furthermore, the L-based method also allows for543

an estimation of the modal electro-mechanical coupling factor affected by less544

uncertainty compared to what occurs for the usual experimental estimation545

approach.546

Considering the estimation of the modal capacitance, both methods have547

been validated against one of the reference methods available in the literature,548

showing satisfactory performances. Indeed, the results have been in accordance549

with those provided by the reference method and also the result dispersion was550

comparable. The paper has also shown that it is possible to successfully esti-551

mate the modal capacitance even when the modal superimposition is significant.552

This is possible by using an MDOF model for the NC-based method (a similar553

approach is possible also for the L-based method).554

Considering the estimation of the modal electro-mechanical coupling factor,555
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the experimental results proved the capability of the L-based method to pro-556

vide estimations of |ks| with lower uncertainty than the classical experimental557

method commonly used to estimate it.558

Appendix A. The MDOF model559

This appendix briefly recalls the basics of the MDOF model presented in [63].560

The system with the open-circuited piezoelectric transducer is represented by561

means of a state space model. The matrices of this model depend on the modal562

parameters of the structure (i.e. eigenfrequencies and eigenvector components563

scaled to the unit modal mass with the short-circuited piezoelectric transducer564

and associated non-dimensional damping ratios for the first two bending modes565

of the system, i.e. s=1,2) that can be estimated by means of modal analysis.566

In this specific case, the matrices depend on three further variables:567

1. θ1: it can be estimated finding C1 with the NC-based method (see Section568

3.2) and then inserting this C1 value into Eq. (12). It is recalled that569

C1 can be directly estimated with the method of Section 3.2 because the570

corresponding mode is not severely influenced by the surrounding modes.571

2. C2: it is the unknown of the problem.572

3. θ2: it can be expressed as a function of the unknown C2 by using Eq. (12).573

The expressions of the matrices are as follows:574

A =



−2ω1ζ1 −ω2
1 [1 + θ21/(ω

2
1C2)] 0 −(θ1θ2)/C2 −θ1/(R0C2

√
C2)

1 0 0 0 0

0 −(θ1θ2)/C2 −2ω2ζ2 −ω2
2 [1 + θ22/(ω

2
2C2)] −θ2/(R0C2

√
C2)

0 0 1 0 0

0 −θ1/
√
C2 0 −θ2/

√
C2 −1/(R0C2)


(A.1)

BT
f =

[
φ1(xf) 0 φ2(xf) 0 0

]
(A.2)

28



BT
w =

[
θ1/
√
C2 0 θ2/

√
C2 0 1

]
(A.3)

Cz =
[
0 φ1(xm) 0 φ2(xm) 0

]
(A.4)

Cy =
[
0 0 0 0 −1

]
(A.5)

in which φs(xf) and φs(xm) are the eigenvector components (scaled to the unit575

modal mass and with the piezoelectric transducer short-circuited) of mode s at576

locations xf (i.e. where the disturbance fe is applied) and xm (i.e. where the577

system response is collected), respectively, with the superscript T indicating the578

matrix transpose.579

These matrices form the following state space description of the electro-580

mechanical system:581


ġ = Ag + BwQ̄+ Bffe

w(xm) = Czg

y = Cyg

(A.6)

where w(xm) is the displacement of the system in xm, y is the output of the582

system, Q̄ = Q/
√
C2 and g is the vector containing the state variables:583

gT =
[
u̇1 u1 u̇2 u2

∫
V̄
]

(A.7)

where the symbol
∫
V̄ is used to indicate the integral with respect to the time584

of V̄ , with V̄ = V
√
C2.585

The effect of the shunt impedance in this model is that of a controller which586

acts via a feedback loop. Therefore, in this case where the shunt impedance is587

an NC, the system results controlled by means of a controller which depends588

on the values of Cn and C2. The transfer function Knc of the controller in the589

Laplace domain (the Laplace operator is defined here as S) is:590

Knc =
Q̄

y
(S) =

−CnS

C2
(A.8)
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Using the previously defined matrices and controller transfer function, the trans-591

fer function Twf of the shunted system between fe and w(xm) can be written592

as:593

Twf(S) = Cz(SI− [A + BwKncCy])−1Bf (A.9)

where I is the identity matrix.594

From this transfer function displacement/force, the corresponding FRF can595

be easily obtained. If this FRF with the shunted NC is experimentally measured,596

it can be used for fitting the model of the controlled system with C2 as the only597

unknown to be tuned.598

In case of doubt about the accuracy of the estimation of θ1 because of closed599

modes (suppose to consider a system different from that tested), its initial value600

can be estimated by using the approach described in the first point in the601

previous numbered list and then it can be included in the model as a variable602

to be tuned through the minimisation, together with C2.603

Finally, it is noticed that the tests used to estimate θ1 (see the first point in604

the previous numbered list) are the same employed to find C2 with the fitting605

procedure, using the MDOF model, and no repetition of the tests is therefore606

needed.607

A similar MDOF model can be used also when employing an inductance L608

to shunt the piezoelectric transducer.609
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