
Network modeling and analysis of
normal and cancer gene expression data

Gaia Ceddia[0000−0001−9512−7781], Sara Pidò[0000−0003−1425−1719], and
Marco Masseroli[0000−0003−2574−1174]

Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria,
Piazza Leonardo da Vinci 32, Milan, Italy

first.last@polimi.it

Abstract. Network modelling is an important approach to understand
cell behaviour. It has proven its effectiveness in understanding biolog-
ical processes and finding novel biomarkers for severe diseases. In this
study, using gene expression data and complex network techniques, we
propose a computational framework for inferring relationships between
RNA molecules. We focus on gene expression data of kidney renal clear
cell carcinoma (KIRC) from the TCGA project, and we build RNA rela-
tionship networks for either normal or cancer condition using three dif-
ferent similarity measures (Pearson’s correlation, Euclidean distance and
inverse Covariance matrix). We analyze the networks individually and in
comparison to each other, highlighting their differences. The analysis
identified known cancer genes/miRNAs and other RNAs with interest-
ing features in the networks, which may play an important role in kidney
renal clear cell carcinoma.

Keywords: Gene networks, microRNA, gene expression profiles, com-
plex networks, similarity networks, co-expression.

1 Scientific Background

Network biology covers a wide range of scales, from molecular interactions in
the cell to intercellular communications and connections between organisms. At
the cell level, high-throughput next-generation sequencing technology is gener-
ating an enormous amount of genomic data from which qualitative and quan-
titative relationships between RNA molecules can be inferred [1]. In particular,
gene expression data provide information about the synthesis of functional gene
products, either proteins or not. Using mathematical and statistical techniques,
from gene expression data we can generate biological networks, where genes are
the network nodes and interactions between gene products are the edges in the
network graph [1]. This process, named network inference or reverse engineering,
has given important insights on complex biological processes and disease mech-
anisms within the cell [2]. Network inference has the advantage of being efficient
and inexpensive compared to experimental lab validation; thus, complex net-
work techniques and algorithms have been increasingly deployed to understand
inferred biological networks [1].
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A complex network is a graph with non-trivial topological features [3], i.e., the
patterns of connection between its elements are neither purely regular nor purely
random. All biological processes can be modeled as networks, since they occur
thanks to interactions among molecules. In biology, the most studied complex
networks are gene networks, where typically genes encode for proteins; their
interrelated activity determines protein abundance and related processes [3].

Most of the approaches used for inferring edges in gene networks are based
on similarity (co-expression) measures. Co-expression measurement is based on
the “guilt by association" definition, where genes with similar expression profiles
are functionally associated due to their presumable co-regulation [2]. Thus, sev-
eral different measures have been considered to assess co-expression, including
Pearson’s correlation and Euclidean distance. Pearson’s correlation is the most
common co-expression measure in the literature [2]. It has the benefit of being
scalable, i.e., it can be efficiently computed for large numbers of genes, and it is
not sensitive to linear transformations or different normalizations. However, its
limitation lies on the fact that causality and direction of the gene interactions
are ignored in the computation [4]. Zhang et al. [5] performed a Weighted Gene
Co-expression Network Analysis (WGCNA) providing interesting communities
of genes; nonetheless they carry several false positives. Some methods tried to
handle the over-connectivity of co-expression networks by comparing the net-
work structures among cancer types [6]. Other methods for the construction of
gene networks include Bayesian network approaches, as well as regression and
differential equation based models [1]. Bayesian networks are applied to repre-
sent conditional dependencies between genes given their expression levels, using
a directed acyclic graph structure [1]. However, this procedure is applicable only
to small networks, i.e., only a modest number of genes must be involved. Instead,
regression and differential equation models are used for inferring gene regulatory
networks, i.e., they assume that a particular subset of gene expression profiles is
the most informing subset of all to predict expression profiles of target genes [1].

Here, we consider three different similarity measures for the construction of
gene co-expression networks and we innovatively deal with the over-connectivity
of similarity gene networks by using three statistical thresholding steps. In par-
ticular, we focus on co-expression networks built by computing Pearson’s cor-
relation, Euclidean distance and inverse Covariance metrics. The first similar-
ity measure is calculated to capture the scale-free similarity of gene expression
profiles, the second one to take into account the scale of different gene expres-
sion profiles, and the third one as a multivariate analysis representing condi-
tional independence between variables. Using expression data from the TGCA
project [7], we build two different gene co-expression networks for normal or
cancer cells, respectively; normal and cancer gene networks are computed for
each similarity measure, and comparison analyses are performed among them.
To our knowledge, this study is a novel approach for comparing different simi-
larity co-expression networks using human datasets; other attempts were done
on S. cerevisiae and S. pombe organisms [8]. In addition, we integrate long RNA
and miRNA expression data as done in Pian et al. [9], although we innovatively
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take advantage of three similarity measures to compare the overall differences
of the gene networks in normal and cancer data by using the strength analysis.
The novel use of strength comparisons lead us to find some relevant miRNAs
by clearly displaying their dysregulation between normal and cancer Euclidean
distance and the Pearson’s correlation networks.

For the considered datasets, we integrate messenger RNA (mRNA), mi-
croRNA (miRNA) and long non-coding RNA (lncRNA) expression profiles, and
we computed the co-expression networks among them; thus, our study is not lim-
ited to protein coding RNAs. MicroRNAs are small non-coding RNA molecules
containing between 19 and 25 nucleotides, which work for RNA silencing and
post-transcriptional regulation of gene expression [10]. The predominant func-
tion of miRNAs is to regulate protein translation by binding to complementary
sequences in the 3’ untranslated region (UTR) of target messenger RNAs, and
thereby to negatively regulate mRNA translation [10]. A single miRNA can
target hundreds of mRNAs, using base-pairing with complementary sequences
within mRNA, and influence the expression of many genes often involved in
a functional interaction pathway. However, miRNAs can also target lncRNAs,
which are made of more than 200 nucleotides and are not translated into pro-
teins. In this case, lncRNAs act as decoys for miRNAs silencing, allowing the
translation of target mRNAs [11].

By focusing on whole gene co-expression networks in normal and cancer con-
ditions we decide not to only select differentially expressed (DE) genes. DE genes
are the ones showing statistically significant changes in read counts, or expres-
sion levels, between two experimental conditions. However, not significant DE
genes, or genes with small changes in their expression levels, may play an impor-
tant role due to the interaction of their products with other proteins and gene
products; thus, our method is purely based on network comparison without any
prior biological assumption on DE genes.

2 Materials and Methods

In this section, we explain our extraction and pre-processing pipeline for TCGA
gene expression data and how we build pair networks for normal and cancer con-
ditions, respectively, using three different similarity measures for each condition,
resulting in a total of six networks. The whole process is represented in Figure 1.

2.1 Data Extraction and Pre-processing

We consider both RNA-Seq and miRNA-Seq public data for the human GRCh38
assembly from the TCGA repository. GRCh38 miRNA-Seq data contains miRNA
quantification (i.e., the calculated expression for all reads aligning to a particular
miRNA) and is derived from the sequencing of microRNAs, whereas GRCh38
RNA-Seq data contains all gene expression quantification. For each miRNA-Seq
and RNA-Seq dataset of each tumor type in TCGA, we compute the number of
normal and cancer condition samples from patients. In our datasets, each patient
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Fig. 1. Defined workflow that starts with the extraction and the pre-processing of
TCGA data in order to build the gene co-expression networks.

corresponds to one sample, thus, in this study, the term patient and sample have
the same meaning. Figure 2 shows the number of normal samples and the ratio
between the number of normal and cancer samples for all tumor types in the
TCGA repository. KIRC results as one of the tumor types with the highest ratio
and number of normal samples, providing balanced normal and cancer datasets.
Thus, we choose KIRC because it has the highest number of normal samples

Fig. 2. Number of normal samples (blue bars) and ratio between the number of normal
and cancer samples (red bars) for all tumor types in TCGA data.
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after BRCA, but BRCA has low ratio of normal/cancer samples. As shown in
Table 1, KIRC RNA-Seq dataset resulted to have 72 and 534 samples for normal
and cancer conditions, respectively, and KIRC miRNA-Seq dataset 71 and 541
samples for normal and cancer conditions, respectively. Thus, we use these KIRC
data for our analysis. After the selection and extraction of KIRC RNA-Seq and
miRNA-Seq datasets performed with GMQL [12], we have 60,483 RNAs and
1,881 miRNAs for each sample, as shown in Table 2.

Table 1. Number of samples in TCGA KIRC data.

Normal Cancer Total
RNA-Seq 72 534 606
miRNA-Seq 71 541 612
Common samples 71 487 558

Table 2. Number of RNA molecules in each sample during the filtering steps.

RNAs miRNAs Total
Extraction with GMQL 60,483 1,881 62,364
Removal of RNAs of short genes 27,144 1,881 29,025
Removal of RNAs with zero mean 26,706 1,397 28,103
Removal of RNAs with zFPKM< -3 12,792 1,397 14,189

Since RNA-Seq is designed for long gene sequencing, expression quantifica-
tions of short genes (i.e., shorter than 200 bp) can be considered as measure
errors indeed. Thus, we remove them from the RNA-Seq dataset, and we se-
lect only data of protein coding and long non-coding genes (as reported in the
second row of Table 2), which we integrate with the miRNA-Seq dataset ones,
considering only common samples (as reported in the last row of Table 1).

We arrange these public gene expression data from the TCGA repository in
the form of matrices; we assemble two RNA-Seq and two miRNA-Seq matrices
(two for normal and two for cancer data) in which rows represent genes/miRNAs,
columns represent samples and each matrix element represents an expression
level. TCGA miRNA-Seq expression levels are available as reads per million miR-
NAs mapped (RPM); conversely, the expression levels in the TCGA RNA-Seq
data are provided as fragments per kilobase per million mapped reads (FPKM).
To integrate the two miRNA-Seq and RNA-Seq datasets, we transform miRNA
expression data to be homogeneous with the RNA expression data; we convert
RPM expression levels into FPKM ones by multiplying each element of the
miRNA-Seq matrices by 1000 and dividing it by the double of the length of the
corresponding miRNA [13].

After selecting the RNA molecules of interest for each dataset, i.e., pro-
tein coding, long non-coding genes and miRNAs, we delete miRNAs and RNAs
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with null expression in all normal and cancer samples, as reported in the third
row of Table 2. Furthermore, to separate biologically relevant genes from low-
expression noisy ones, on the RNA-Seq data we apply the zFPKM normaliza-
tion method [14]. For normal and tumoral cases separately, we compute the mean
and the standard deviation of the log-transformed expression distribution of each
gene across all KIRC samples, and we normalize each logarithmic FPKM value of
a gene by subtracting the gene computed mean and dividing the obtained value
by the gene standard deviation (i.e., zFPKMs are Z-scores of log(FPKMs)).
Then, we remove those genes with mean of their zFPKM distribution smaller
than -3.0 in both normal and cancer conditions; this threshold separates expres-
sion levels of active genes from background genes as shown in [14].

Thus, we obtain two matrices, one for normal and one for cancer data, each
with 12,792 long RNAs (either coding or non-coding) and 1,397 miRNAs, and
regarding 71 normal and 487 samples with KIRC tumor, respectively (Table 2).
These two matrices contain all the relevant FPKM values needed to build then
the desired networks.

2.2 Building the Networks

To build adjacency matrices describing gene networks, we consider three differ-
ent similarity measures: Euclidean distance, Pearson’s correlation and inverse
Covariance. As mentioned in Section 1, we use these three different similarity
measures to find scale-free, scale-dependent and multivariate similarities, respec-
tively.

The Euclidean distance between two points is the length of the path con-
necting them. If p = (p1, p2, ..., pn) and q = (q1, q2, ..., qn) are two points in an
Euclidean n-space, then their distance d is given by the Pythagorean formula [15]:

d =

√√√√ n∑
i=1

(qi − pi)2 (1)

We apply the Euclidean distance on each pair of genes/miRNAs in the datasets,
considering the n samples in the datasets as the Euclidean n-dimensional space.

In statistics, the Pearson’s correlation coefficient is a measure of the linear
correlation between two variables X and Y (Eq. 2) [1]. Its values range between
−1 and +1, where −1 indicates total negative linear correlation, 0 no linear
correlation, and +1 total positive linear correlation. The Pearson’s correlation
between variable X and Y is defined as:

ρX,Y =
cov(X,Y)

σXσY
=

E[(X− µX)(Y − µY)]

σXσY
(2)

where cov(X,Y ) is the covariance of the two variables X and Y, i.e., the joint
variability of X and Y, σX and σY are the standard deviations of X and Y,
respectively, and cov(X,Y ) can be expressed as the expected product of X and
Y deviations from their individual expected values (i.e., their means µX and
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µY , respectively). In our study we compute pairwise Pearson’s correlation on
each pair of genes/miRNAs in the datasets, and use the Pearson’s coefficients to
represent the weights of the edges connecting two nodes (i.e., genes/miRNAs)
in the networks.

The inverse Covariance matrix, commonly referred to as precision matrix,
displays information about the partial correlations of variables [16]. In the Co-
variance matrix, the (i,j)-th element represents the unconditional correlation
between a variable i and a variable j [16]. The inverse Covariance matrix in-
stead represents conditional dependence, such that its (i,j)-th element is equal
to zero if i and j are conditionally independent [16]. In other words, it gives the
co-variation of two variables while conditioning on the potential influence of the
other variables involved in the analysis, i.e., it removes the effect of other vari-
ables. Thus, the precision matrix allows obtaining direct co-variation between
two variables by capturing partial correlations. If X is the data matrix contain-
ing k variables and n observations, the Covariance matrix can be expressed as
follows:

C =
1

n− 1

n∑
i=1

(Xi − µ)(Xi − µ)> (3)

where C ∈ IRk×k, µ is the mean value of the variables, and > represents matrix
transposition. In this study we consider genes/miRNAs as variables and samples
as observations to compute the inverse of C, i.e., the precision matrix C−1.

We build six different networks, three for the cancer and three for the normal
conditions, based on the three similarity measures described. Networks are first
built as fully connected graphs for all gene/miRNA pairs, where similarity coeffi-
cients are used as weights of the network node associations. Then, we randomize
the expression data and compute again the similarity measures to obtain a ref-
erence null distribution [1]; we do so by computing the average null distribution
on 10 permuted repetitions of the gene/miRNA expression dataset. From the
comparison between real and average permuted distributions of each similarity
measure, we derive relevant associations in the networks [1]. In other words, we
identify the limit values of each permuted distribution and use them as thresh-
olds in the correspondent real distribution. Table 3 shows how the number of
edges changes after each filtering step. E.g., Figure 3 (a) shows that the average
permuted distribution for the normal Pearson’s correlation has values ranging
from -0.2 to 0.4; thus, values of the real normal distribution greater than 0.4 and
smaller than -0.2 are considered as representing the only relevant associations,
and links whose values range from -0.2 to 0.4 are deleted.

Furthermore, since the networks created with Pearson’s correlation are very
dense, we use the computed p-value of the Pearson’s statistic to further threshold
them. We sort the computed Pearson’s p-values and we only consider the network
edges associated with the 99th percentile of the first ten percent of these p-values
(i.e., the 0.1% of the edges of the fully-connected network). The third column of
Table 3 shows the number of edges after the p-value threshold.
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Table 3. Number of edges in the networks. Step 1 represents the creation of networks
phase, Step 2 is the filtering phase by the permutation method and Step 3 filters
non-relevant edges from Pearson’s networks by p-value analysis.

Step 1 Step 2 Step 3
Normal Pearson 194,140,866 39,392,104 3,959,308
Cancer Pearson 200,789,224 22,728,618 2,249,150
Normal Euclidean 201,247,218 141,846 141,846
Cancer Euclidean 201,313,190 113,492 113,492
Normal Inverse Covariance 194,073,019 14,300 14,300
Cancer Inverse Covariance 200,788,919 14,230 14,230
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Fig. 3. (a) Red dashed line represents the distribution of Pearson’s correlation co-
efficients for the gene/miRNA expression dataset in normal condition. Dotted green
line represents the distribution of the average Pearson’s correlation coefficients on 10
permuted repetitions of the gene/miRNA expression dataset in normal condition; (b)-
(d) Strength distributions in normal and cancer networks are shown in blue full line
and red dashed line, respectively, for the networks built with each of the similarity
measures considered, i.e., Pearson’s correlation (b), Euclidean distance (c) and inverse
Covariance (d), respectively. Density is the proportion of network nodes having certain
strengths.

3 Results

The six constructed networks have same nodes and different edges/weights, de-
pending on the similarity measure used for each network construction (as shown
in the fourth row of Table 2 and in the third column of Table 3). We focused



Network modeling and analysis of normal and cancer gene expression data 9

our unsupervised analysis on the computation of each node strength, i.e., the
sum of the total weighted connections of each gene/miRNA, in each of the six
networks.

3.1 Pearson’s Correlation Networks

Strength distributions of Pearson’s correlation networks for normal and cancer
condition are shown in Figure 3 (b), where the x-axis represents the strength
values and the y-axis is the proportion of network nodes having certain strengths.
Interestingly, the proportion of nodes with strength around 0 gets higher in
cancer condition (red dashed line), meaning that in cancer many genes/miRNAs
have lost, or relevantly lowered, their correlation with other genes/miRNAs.
We perform a gene set enrichment analysis on the set of genes whose strength
changes from high/low in the normal network to almost 0 in the cancer network
(180 genes out of 12,792). We find this gene set significantly enriched for several
KEGG pathways related to cancer, particularly for metabolic pathways, as shown
in Table 4; indeed, KIRC is known as a metabolic disease [17].

Table 4. Results of KEGG gene set enrichment analysis: first column contains the
term name of KEGG pathways, second column reports the term ID, and the third
column contains the adjusted p-values, which is the correction of p-values performed
by [18]

KEGG pathway ID Adj. p-value
Metabolic pathways 01100 5.697× 10−27

Gastric cancer 05226 1.128× 10−5

Pathways in cancer 05200 7.181× 10−5

Proteoglycans in cancer 05205 3.244× 10−4

Transcriptional misregulation in cancer 05202 7.710× 10−4

Hepatocellular carcinoma 05225 1.743× 10−3

MiRNAs having high/low strength in normal condition and almost 0 strength
in cancer are 9 (out of 1,397), including hsa-mir-192, hsa-mir-194-1 and hsa-
mir-194-2, which are well known miRNAs involved in cancer [19]. Out of the
other 6, hsa-mir-1266 is associated with epithelial tissue diseases, hsa-mir-210,
hsa-mir-218-1 and hsa-mir-218-2 are known to be involved in breast cancer,
hsa-mir-934 is up-regulated in papillary renal cell carcinoma, and hsa-mir-22
acts as an oncogenic mirna in renal cell carcinoma [20–24].

3.2 Euclidean Networks

Figure 3 (c) shows the strength distribution for the nodes of the Euclidean net-
works, i.e., the networks built using the Euclidean distance as similarity measure
between each pair of genes/miRNAs in cancer (red dashed line) or normal (blue
full line) condition, respectively. Figure 3 (c) shows higher values of strength in
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cancer compared to the strengths in the normal network, i.e., [4.0×103, 2.65×107]
vs. [1.5×103, 1.0×107], respectively. The y-axis scale permits the identification of
a set of outlier nodes having high values of strength in both normal and cancer
conditions, i.e., hsa-mir-10b, hsa-mir-30a, hsa-mir-22 and hsa-mir-143 ; these
miRNAs maintain high Euclidean distances with all the other genes/miRNAs
in the dataset from normal to cancer condition. In the literature hsa-mir-10b
is known to be associated with Non-Alcoholic Fatty Liver Disease and Bladder
Cancer [19]. Also hsa-mir-30a has been studied for its involvement in cancer de-
velopment, in particular for its potential role as a diagnostic or prognostic marker
of gliomas [25]. Hsa-mir-143 has been associated with Burkitt Lymphoma and
Diffuse Large B-Cell Lymphoma [19]. All three miRNAs are related to MicroR-
NAs in cancer pathway [19]. Moreover, as mentioned in Section 3.1, hsa-mir-22
has been studied for its ability to repress cancer progression in clear cell renal
cell carcinoma [24]. Instead, hsa-mir-10a has one of the highest strength in the
normal network and low strength in cancer, with FPKM values over-expressed
but not significantly in normal condition compared to cancer, where its regu-
latory activity could be disrupted. Biologically, hsa-mir-10a is associated with
several diseases, including renal cell carcinoma [26]. Moreover, it is involved in
two relevant pathways: Proteoglycans in cancer and MicroRNAs in cancer [19].

3.3 Inverse Covariance Networks

The inverse Covariance networks show different strength distributions in normal
and cancer conditions, as presented in Figure 3 (d). The dependencies between
pairs of genes/miRNAs conditioned for all the other genes/miRNAs, here used
as edge weights of the inverse Covariance networks, are lower in cancer than in
normal network. However, Figure 3 (d) shows that inverse Covariance values in
both normal and cancer networks are very close to 0; this means that, even if
inverse Covariance coefficients have greater values in normal than in cancer, they
do not represent a real dependency between genes/miRNAs in either condition.

3.4 Network Comparison

The strength analysis performed allows us to identify relevant RNAs to be further
investigated. For example, hsa-mir-22 has an interesting behaviour in both Pear-
son’s correlation networks and Euclidean distance networks. It has high values
of Pearson’s correlation coefficients with all the other genes/miRNAs in normal
condition, however it does not maintain these high correlations in cancer. It also
has one of the highest value of strength in both Euclidean distance networks,
i.e., it has very distant FPKM expression values from any other gene/miRNA in
the network, both in cancer and normal condition; furthermore, these Euclidean
distances get wider in cancer, where hsa-mir-22 doubles its strength compared to
the one in the normal network, with its FPKM mean value increasing in cancer
(to 396,490 from 332,072 in the normal condition). Gong et al. [24] found that
hsa-mir-22 targets directly PTEN in renal cell carcinoma; thus, the increase of
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expression levels in hsa-mir-22 leads to the downregulation of the PTEN pro-
tein, indicating an oncogenic effect of the miRNA. However, this miRNA has 15
targets out of 250 significantly related to the KEGG Pathways in cancer ; thus,
its loss of correlations in the Pearson’s correlation cancer network may cause a
cascade of dysregulation in cancer. These features together make hsa-mir-22 a
miRNA of interest for the analysis of gene/miRNA interactions in KIRC.

Another interesting miRNA is hsa-mir-10a; it is one of the outliers with high
value of strength in the normal Euclidean distance network, and it has very low
strength in the cancer Euclidean distance network. Moreover, its strength val-
ues in Pearson’s correlation networks are very different from normal to cancer
condition (1,128 vs. 380, respectively). Thus, in normal condition this miRNA
has FPKM expression values distant from those of the other genes/miRNAs,
but highly correlated with them, whereas in cancer they get closer to the ones of
the other genes/miRNAs and their correlation to them decreases. Hsa-mir-10a
has 290,026 and 140,536 mean FPKM values in normal and cancer condition,
respectively; thus, it is over-expressed in normal condition, but not statistically
significant. The antitumor role of hsa-mir-10a has been studied in Arai et al. [26]
for its interaction with the SKA1 oncogene, explaining the computed downreg-
ulation in normal condition. Moreover, 21 targets out of 463 of hsa-mir-10a
are significantly involved in the KEGG Pathways in cancer ; thus, the reported
change in correlations between normal and cancer condition may represent ab-
normal co-regulations of the miRNA-RNAs interaction network.

4 Conclusions

In this study we propose an unsupervised data-driven framework based on com-
plex networks to better represent and understand gene/miRNA relationships and
interactions based on gene expression data. We implement a novel pipeline to
compute the gene co-expression networks that comprises the pre-processing and
the construction phases1. Normally, these steps are taken for granted; indeed, it
is very difficult to find a complete and efficient workflow.

To this aim, we preprocess the public gene expression data of kidney renal
clear cell carcinoma from the TCGA project, and we compute three different
similarity measures between genes/miRNAs to get different normal and cancer
network representations. Comparative analysis of the six networks obtained lead
us to identify two interesting miRNAs: hsa-mir-22 and hsa-mir-10a. They are not
differentially expressed; yet, they display important features in both Euclidean
and Pearson’s correlation networks. According to Euclidean distance networks,
hsa-mir-22 has highly different expression from other genes/miRNAs in both nor-
mal and cancer conditions, and hsa-mir-10a only in normal condition; however,
based on Pearson’s correlation networks, from normal to cancer condition both
miRNAs lose many correlations with other genes/miRNAs, i.e., they co-regulate
with a lower number of genes/miRNAs. Interestingly, in miRNet2 hsa-mir-10a
1 https://github.com/DEIB-GECO/GeneNetFusion/blob/master/preprocessing.py
2 https://www.mirnet.ca/miRNet
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and hsa-mir-22 share an interaction network of 12 genes enriched in a particu-
lar KEGG pathway called Pathways in cancer. Among them ERBB2, PIK3CG,
PTEN and XIAP are known in the literature to have a relevant role in KIRC
development [27–30]. Dysregulated miRNAs play an important role in cancer ini-
tiation and progression involving their targets [31]; they have also shown great
potential as novel diagnostic/prognostic biomarkers of cancer [32]. Our findings
support this assumption and stress the importance of understanding the func-
tion of miRNAs as gene suppressors. Future work will further explore the created
networks with ad hoc network algorithms, and will deeper investigate the role
of miRNAs in the networks.

Acknowledgments

This research is funded by the ERC Advanced Grant project 693174 ”GeCo”
(Data-Driven Genomic Computing), 2016-2021.

References

1. M. Banf and S. Y. Rhee: Computational inference of gene regulatory networks:
approaches, limitations and opportunities. Biochim Biophys Acta Gene Regul Mech
1860(1), 41–52 (2017)

2. Y. R. Wang and H. Huang: Review on statistical methods for gene network recon-
struction using expression data. J Theor Biol 362, 53–61 (2014)

3. E. de Silva and M. P. Stumpf: Complex networks and simple models in biology. J
R Soc Interface 2(5), 419–430 (2005)

4. M. M. Saint-Antoine and A. Singh: Network inference in systems biology: recent
developments, challenges, and applications. Curr Opin Biotechnol 63, 89–98 (2020)

5. B. Zhang and S. Horvath: A general framework for weighted gene co-expression
network analysis. Stat Appl Genet Mol Biol 4(1), Article17 (2005)

6. M. A. Care, D. R. Westhead and R. M. Tooze: Parsimonious Gene Correlation
Network Analysis (PGCNA): a tool to define modular gene co-expression for refined
molecular stratification in cancer. NPJ Syst Biol Appl 5(1), 1–17 (2019)

7. J. N. Weinstein, E. A. Collisson, G. B. Mills et al.: The Cancer Genome Atlas
pan-cancer analysis project. Nat Genet 45(10), 1113–1120 (2013)

8. R. Deshpande, B. VanderSluis and C. L. Myers: Comparison of profile similarity
measures for genetic interaction networks. PloS One 8(7), e68664 (2013)

9. C. Pian, G. Zhang, S. Wu et al.: Discovering the ‘Dark matters’ in expression
data of miRNA based on the miRNA-mRNA and miRNA-lncRNA networks. BMC
bioinformatics 19(1), 379 (2018)

10. D. P. Bartel: MicroRNAs: target recognition and regulatory functions. Cell 136(2),
215–233 (2009)

11. J. M. Perkel: Visiting “noncodarnia” (2013)
12. M. Masseroli, A. Canakoglu, P. Pinoli et al.: Processing of big heterogeneous ge-

nomic datasets for tertiary analysis of next generation sequencing data. Bioinfor-
matics 35(5), 729–736 (2019)

13. G. P. Wagner, K. Kin and V. J. Lynch: Measurement of mRNA abundance us-
ing RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci
131(4), 281–285 (2012)



Network modeling and analysis of normal and cancer gene expression data 13

14. T. Hart, H. K. Komori, S. LaMere et al.: Finding the active genes in deep RNA-seq
gene expression studies. BMC Genomics 14(1), 778 (2013)

15. H. Anton and C. Rorres: Elementary linear algebra. John Wiley & Sons (1994)
16. N. G. Van Kampen: Stochastic processes in physics and chemistry, vol. 1. Elsevier

(1992)
17. W. M. Linehan, R. Srinivasan and L. S. Schmidt: The genetic basis of kidney

cancer: a metabolic disease. Nat Rev Urol 7(5), 277–285 (2010)
18. J. Reimand, M. Kull, H. Peterson et al.: g:profiler — a web-based toolset for

functional profiling of gene lists from large-scale experiments. Nucleic Acids Res
35(suppl_2), W193–W200 (2007)

19. G. Stelzer, N. Rosen, I. Plaschkes et al.: The GeneCards suite: from gene data
mining to disease genome sequence analyses. Curr Protoc Bioinformatics 54(1),
1–30 (2016)

20. N. S. Seifeldin, S. B. El Sayed and M. K. Asaad: Increased Micro RNA-1266 levels
as a biomarker for disease activity in psoriasis vulgaris. Int J Dermatol 55(11),
1242–1247 (2016)

21. B. Pasculli, R. Barbano, M. Rendina et al.: Hsa-miR-210-3p expression in breast
cancer and its putative association with worse outcome in patients treated with
Docetaxel. Sci Rep 9(14913), 1–9 (2019)

22. W. Luo, L. Wang, M.-H. Luo et al.: hsa-mir-3199-2 and hsa-mir-1293 as novel
prognostic biomarkers of papillary renal cell carcinoma by Cox ratio risk regression
model screening. J Cell Biochem 118(10), 3488–3494 (2017)

23. Q. Li, F. Zhu and P. Chen: miR-7 and miR-218 epigenetically control tumor
suppressor genes RASSF1A and Claudin-6 by targeting HoxB3 in breast cancer.
Biochem Biophys Res Commun 424(1), 28–33 (2012)

24. X. Gong, H. Zhao, M. Saar et al.: mir-22 regulates invasion, gene expression and
predicts overall survival in patients with clear cell renal cell carcinoma. Kidney
cancer 3(2), 119–132 (2019)

25. K. Wang, Z. Jia, J. Zou et al.: Analysis of hsa-mir-30a-5p expression in human
gliomas. Pathol Oncol Res 19(3), 405–411 (2013)

26. T. Arai, A. Okato, S. Kojima et al.: Regulation of spindle and kinetochore-
associated protein 1 by antitumor mir-10a-5p in renal cell carcinoma. Cancer Sci
108(10), 2088–2101 (2017)

27. H. Kędzierska, P. Popławski, G. Hoser et al.: Decreased expression of SRSF2 splic-
ing factor inhibits apoptotic pathways in renal cancer. Int J Mol Sci 17(10), 1598
(2016)

28. M. Liontos, E.-A. Trigka, P. Korkolopoulou et al.: Expression and prognostic signifi-
cance of VEGF and mTOR pathway proteins in metastatic renal cell carcinoma pa-
tients: a prognostic immunohistochemical profile for kidney cancer patients. World
J Urol 35(3), 411–419 (2017)

29. W.-c. Que, H.-q. Qiu, Y. Cheng et al.: PTEN in kidney cancer: A review and
meta-analysis. Clin Chim Acta 480, 92–98 (2018)

30. S. Reuter, S. Prasad, K. Phromnoi et al.: Thiocolchicoside exhibits anticancer
effects through downregulation of NF-κB pathway and its regulated gene products
linked to inflammation and cancer. Cancer Prev Res 3(11), 1462–1472 (2010)

31. G. Sharma, P. Dua and S. Mohan Agarwal: A comprehensive review of dysregulated
miRNAs involved in cervical cancer. Curr Genomics 15(4), 310–323 (2014)

32. H. Lan, H. Lu, X. Wang et al.: MicroRNAs as potential biomarkers in cancer:
opportunities and challenges. Biomed Res Int 2015, 15–31 (2015)


