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Abstract. Understanding the roles and interplays of histone marks and
transcription factors in the regulation of gene expression is of great in-
terest in the development of non-invasive and personalized therapies.
Computational studies at genome-wide scale represent a powerful ex-
plorative framework, allowing to draw general conclusions. However, a
genome-wide approach only idientifies generic regulative motifs, and pos-
sible multi-functional or co-regulative interactions may remain concealed.
In this work, we hypothesize the presence of a number of distinct sub-
populations of transcriptional regulative patterns within the set of pro-
tein coding genes that explain the statistical redundancy observed at
a genome-wide level. We propose the application of a K-Plane Regres-
sion algorithm to partition the set of protein coding genes into clusters
with specific shared regulative mechanisms. Our approach is completely
data-driven and computes clusters of genes significantly better fitted by
specific linear models, in contrast to single regressions. These clusters
are characterized by distinct and sharper histonic input patterns, and
different mean expression values.

Keywords: Gene expression · Epigenetic transcriptional regulation ·
K-Plane Regression

1 Background

In both complex and simple organisms, the regulation of gene expression is
crucial in allowing cellular differentiation and response to environmental stimuli.
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puting (GeCo)” project (2016-2021), funded by the European Research Council.
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Among the many layers of gene regulation, those occurring at the stage of the
initiation of transcription are considered to be the most flexible and effective [10].
Transcriptional regulation typically act at the epigenetic level, i.e., without any
modification of the underlying sequence, rather with a combination of binding
of regulating molecules (transcription factors, or TF) to the DNA, and changing
the structure of chromatin through the addition or removal of chemical residues
on histone molecules (histone marks, HM).

Many studies have revealed the implications of epigenetic regulations: for
example, their oncogenic role played in cancer etiology by gene expression al-
terations [12]. At the same time, epigenetic interactions can be targeted by
non-invasive, promising therapeutic possibilities, leveraging on their intrinsic
reversibility [2]. These premises have contributed to the birth of the field of tar-
geted cancer therapy, where epigenetic approaches could be used to treat cancer
in a personalized manner, by kick-starting specific immune responses, or bring-
ing back gene expression to physiological levels. Understanding the fundamental
mechanisms by which histone marks and transcription factors operate to reg-
ulate the expression of specific genes is then of paramount interest as it is the
necessary prerequisite in order to design effective and precise “epigenetic” drugs.

Next-generation sequencing (NGS) technologies nowadays routinely allow
genome-wide measurements of gene expression and epigenetic signals in the cell
lines or tissues of interest [8]. Large datasets are publicly available in reposito-
ries generated by multinational projects, such as ENCODE [6] and Roadmap
Epigenomics [7]. One can now leverage on these large collections of data to
quantatively model the processes of interests and understand the specific roles,
interplays and effects of epigenetic transcriptional regulators.

In particular, several statistical models have been conceived to study the
association between gene-related epigenetic signals and messenger RNA (mRNA)
abundance at a genome-wide scale [5]. Within this context, the problem is usually
framed as a regression or classification task, where all the protein-coding genes
are samples, signals from HMs and/or binding of TFs are input features and the
aim is to predict the response value, i.e., either mRNA levels (regression), or
activities of genes (binary classification).

The relevance of genome-wide modeling resides in its omnicomprensive, ex-
plorative, as general conclusions can be drawn about the role and interplay of
TFs and HMs. Interestingly, if at this level of resolution such features have been
shown to be predictive for mRNA abundance [5], they have also been observed to
exhibit certain statistical redundancy within themselves. In [4], the genome-wide
resolution level itself has been addressed as the main cause for such observed re-
dundancy in the regression task, as variations in the relative predictive power of
TFs and HMs are observed at the finer resolution of groups of ontology-classified
biological processes.

However, the work in [4] resorts to manually curated external sources of in-
formation; in contrast, in the case of investigative analyses it is useful to let
conclusions directly arise from data, including the least possible prior knowl-
edge. This is, for instance, the case of targeted cancer therapy and personalized
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medicine, where the main objects of research are the possibly unknown alter-
ations in epigenetic patterns and anomalies in their regulative effects: here, it is
essential for statistical modeling to be data-driven.

So far, only few attempts have tried overcome the observed statistical redun-
dancy observed in [4] in a data-driven manner: in [11] a mixture of Bayesian linear
elastic nets revealed to better fit transcriptional regulation w.r.t. a single regres-
sion model and assign a distinct predictive relevance to epigenetic features. With
this modeling approach, the statistical redundancy addressed in [4] is further
specified in terms of feature multi-functionality : the epigenetic-transcriptional
association is better modeled with an ensemble of models where HMs and TFs
may assume different roles. However, even though in [11] the models account-
ing to the mixture are distinctly defined, genes in the dataset are only softly
clustered, as the expression for a gene is the weighted sum of the outputs of all
models.

As the ‘soft’ approach hinders the interpretation of the results, in this work we
hypothesize the presence of a number of distinct, heterogeneous subpopulations
within the set of protein coding genes, with different transcriptional regulative
behaviors. Accordingly, we perform a hard partitioning of the whole gene set
in a data-driven manner, defining clusters where specific linear regression mod-
els are fitted to learn the regulative dynamics of each gene sub-group. In this
setting, our aim is not just the enhancement of the fitting of a global model,
but rather the definition of a completely data-driven and fully interpretable pro-
cedure to overcome the aforementioned statistical redundancy [4] and feature
multi-functionality [11], yielding well-defined, hard clusters of protein coding
genes sharing specific dynamics of epigenetic transcriptional regulation. With
our approach, a one-to-one association between linear models and gene clusters
follows, and interpretative analyses are supported at best: regulative patterns
can be investigated both at a gene-specific level and, statistically, at a gene-
cluster level, and the regulative behavior can be a posteriori matched with the
most-represented biological processes within a group.

Our problem is therefore similar to a piecewise linear affine model fitting,
usually approached with hinging hyperplane [3] or bounded error [1] methods.
However, our main goal is not to fit a supposed non-linear dynamic with piece-
wise linear functions, but rather learning different linear models in a scenario
where dynamics are likely to be overlapped, discontinuous, and partially lying
on sub-dimensional manifolds.

A more suited approach is then represented by K-Plane Regression [9], firstly
introduced in the general context of fitting possibly discontinuous functions with
an ensemble of linear models. The method is based on a clustering approach:
it finds a fixed number (K) of hyperplanes such that each point in the train-
ing set is close to one of the hyperplanes, and all points in a partition are as
close as possible in the input feature space. Resulting hyperplanes are found by
minimizing the following objective function with an Expectation-Maximization
(EM) algorithm:
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E(Θ) =

K−1∑
k=0

∑
i∈Θ(k)

(ti − w̃T
k x̃i)

2 + γ‖xi − µk‖22, (1)

where K is the pre-defined number of clusters, Θ defines the partitioning over
the dataset – with Θ(k) the set of samples in cluster k, x̃i and ti are, respectively,
the input feature and the target value for sample i ∈ Θ(k), wk is the weight
vector of the least square solution for those points, µ terms refer to centroids in
the feature space and γ is a user-defined parameter deciding the relative weight
of the two additive terms in the objective function. The ‘tilde’ notation is used
to indicate the inclusion of the bias term in the regression.

Given the capability of K-Plane Regression to fit discontinuous functions
and the increased flexibility offered by a clustering approach, we built upon this
last piece of work to solve our problem of modeling epigenetic transcriptional
regulation with a hard ensemble of linear regression models.

The remainder of this paper is organized as follows. In Section 2, we discuss
the data used and the techniques applied: we describe the epigenetic features,
data sources and pre-processing we considered, and the specific versions of K-
Plane Regression algorithm we employ in our pipelines. In section 3 we present
the results, specifically focusing on the models obtained: we illustrate their pre-
dictive accuracy and we describe the regulative patterns. The conclusions are
addressed in Section 4.

2 Materials and Methods

This work aims at modeling epigenetic transcriptional regulation with a hard
ensemble of linear regression models, each one explaining mRNA levels as a
function of epigenetic signals for a specific gene sub-group, i.e., a cluster of
genes.

2.1 Biological Setting and Data

All considered measurements are over the chronic myeloid leukemia K562 im-
mortalized cell line (human blood tissue), and only involve protein coding genes.
GENCODE v10 reference annotation for the hg19 assembly was used to retrieve
their transcription start sites (TSSs). The Roadmap Epigenomics Mapping Con-
sortium’s (REMC) [7] repository was chosen as the only data source in this work.

Genes are epigenetically characterized by data in the form of processed ChIP-
Seq peaks for all the m = 12 histone modifications measured in K562 cell line
within the REMC proejct (no TF was accounted for). Peaks for the considered
HMs were retrieved in the formats of ‘bed narrowPeak’ or ‘bed broadPeak’,
according to the nature of the considered mark, i.e., TF-like (sharp) marks or
broad marks. These choices are summarized in Table 1. The epigenetic status of
the generic gene g is represented as an m-dimensional input vector xg, whose
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Table 1: HMs and their chosen data format.

Marks Format

H3K4me1, H3K4me2, H3K4me3, H3K9ac,
H3K9me1, H3K27ac, H2A.Z

narrowPeak

H3K9me3, H3K27me3, H3K36me3,
H3K79me2, H4K20me1

broadPeak

elements contain the maximum peak enrichment value attained within a sym-
metric window region of 10 kbases centered on g’s TSS, thus summarizing the
g-related status of a specific monitored HM. In accordance to [5], signals closer
to the genes’ TSSs (roughly, within promoters) are the most informative to pre-
dict gene expression. These vectors, considered together for all our n = 19, 794
genes, form an input matrix X, with dimensions n×m.

For the transcriptional characterization of genes, we consider mRNA quan-
tifications, measured with RNA-sequencing. The transcriptional status of gene
g is encoded by tg =

√
log(1 + τg), where τg is the original mRNA quantifica-

tion, log represents the natural logarithm and the application of two sub-linear,
monotonically increasing functions aims at reducing the heteroskedasticity in re-
gression residuals. Finally, consider tg as the (g+1)-th element in n-dimensional
target vector T collecting the transcriptional statuses of all the genes.

Together, X and T form our dataset D = 〈X,T 〉, which is going to be
partitioned by K-Plane Regression algorithm.

2.2 K-Plane Regression

The K-plane algorithm we used in our work is designed to minimize the following
objective function:

E(Θ) =

K−1∑
k=0

∑
i∈Θ(k)

(ti − w̃T
k x̃i)

2, (2)

where we dropped the second additive term γ‖xi − µk‖22 originally present in
Equation 1, which enforces points belonging to the same partition to be close
to each other. Such a ‘closeness’ term was explicitly introduced in [9] to avoid
EM finding sub-optimal solutions, and to force the obtained partitions not to
contain points from disjoint regions of the input feature space. In our application,
where the objective is the disambiguation of overlapped expression dynamics
from heterogeneous gene subpopulations, not only the l2-distance measure might
not be suitable over histonic inputs, but also partitions spanning disjoint feature
space regions are not necessarily to be avoided. Concerning the issue of possible
sub-optimality, we just resorted to a simple multiple re-initialization technique.

The K-Plane Regression procedure is run R times; each time it starts by a
random partition and optimizes Equation 2 as described in [9], i.e., by iteratively
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alternating a Maximization step – hyperplanes to clusters fitting – and an Ex-
pectation step – gene-cluster reassignments. A tolerance parameter τ is used to
verify numerical convergence of the optimization procedure. Initializations are
designed to construct a completely random partitioning made up of equally-sized
clusters. In the end, among the R solutions obtained, the one attaining the best
objective value is returned.

A draft of our K-Plane Regression pipeline is reported below.

procedure ClusterHyperplanes(D,K, τ, R)
S ← empty solution dictionary

O ← array of R elements

for r = 0, 1, . . . , R− 1 . perform R runs

Θ0 ← RandomInit(|D|,K) . randomly initialize

s, o← K-PlaneRegression(D,K,Θ0, τ) . run K-Plane

S[r]← s
Or ← o

best← arg maxrOr . choose best

return S[best]

procedure K-PlaneRegression(D,K,Θ, τ)
X , T ← input matrix and target vector from D
oprev ←∞
ocurr ← E(Θ)
while (oprev − ocurr > τ) . loop EM until convergence

M← empty model dictionary

for (k = 0, 1, . . . ,K − 1) . Maximization

M[k]← OLS solution over 〈X [Θ(k)], T [Θ(k)]〉
Θ ← empty cluster assignment

for (i = 0, 1, . . . , |D| − 1}) . Expectation

Θ[i]← arg mink |M[k](Xi)− Ti|
oprev ← ocurr

ocurr ← E(Θ)
return Θ, ocurr

procedure RandomInit(n,K)

σ ← random permutation of [0, 1, . . . , n− 1]
Θ ← empty cluster assignment

for (k = 0, 1, . . . ,K − 1)
Θ[k]← kth subpart of σ

return Θ
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3 Results

In our experimentsm,the procedure ClusterHyperplanes has been run with the
following parameters: D = D,K ∈ [2 . . . 6], τ = 0.1, R = 30. The parameter
K ranges in [2 . . . 6] as the best value is hardly guessable a priori and might
depend on the nature of the specific problem. Better solutions, in terms of cost
functions, have been observed for larger values of K: Figure 1 depicts the trend of
the convergence objective value as a function of this parameter. In the following,
results for the value K = 4 are discussed: this choice is less prone to overfit
spurious correlations, still yielding a good value of the objective function. In
other words, it represents a convenient trade-off between goodness of fit and
biological interpretability, given the current knowledge about HM (co-)activity,
.

Fig. 1: Values of best solutions (objective) from re-initialized K-Plane Regression
as a function of number of clusters (K).

Let Θ = {ϑ0, . . . , ϑK−1} be our obtained solution, with K = 4 and ϑk
representing the (k+1)-th cluster of genes computed by the algorithm. In corre-
spondence with this partitioning, an ensemble of cluster-wise linear models can
be considered as M = {µ0, . . . , µK−1}, where µk represents the hyperplane be-
ing the least square solution over genes in ϑk. Our solution Θ is compared with
Θgw = {ϑgw}, ϑgw = {0, 1, . . . , n − 1}, the degenerate partitioning made of a
single cluster indexing the whole dataset D. This solution corresponds to setting
K = 1, i.e., to the use of a single linear model fitted over the entire dataset D.
In the following, we call this model the genome-wide model, labeled as µgw.

3.1 Enhanced (Cluster-wise) Fitting

Our K-Plane Regression managed to cluster genes with common regulative be-
haviors, as the obtained model ensemble effectively enhanced data fitting.

Not only the objective value associated with Θgw is much larger than that
associated with our solution Θ (3892.08 vs. 339.83), but also fitting is better at
the level of all the computed clusters. The regression scores computed specifically
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Table 2: Cluster specific figures of merit. For cluster k, RSScw and RSSgw are
the residual sum of squares of µk, µgw over ϑk, while R2

cw and R2
gw refer to the

coefficients of determination of µk, µgw over ϑk.

cluster (cardinality) RSScw RSSgw R2
cw R2

gw

0(2, 717) 79.22 1393.00 0.80 −2.50

1(7, 547) 82.05 1514.44 0.54 −7.57

2(5, 045) 85.64 714.70 0.84 −0.37

3(4, 485) 92.90 269.92 0.92 0.76

over clusters in Θ, for both cluster-wise and genome-wide models, are reported
in Table 2, in terms of residual sum of squares (RSS) and coefficients of deter-
mination (R2). The i-th row of the table contains scores for models µi and µgw
over Cluster ϑi – subscripts ‘cw’ and ‘gw’, respectively.

In Table 2, the effectiveness of our approach is confirmed by the fact that
clusters are always better fitted by cluster-wise models than by µgw. Moreover,
the specific linear models are very good in explaining the epigenetic transcrip-
tional regulation of a large part of the genes (see to column “R2

cw”). In three
clusters out of four, the R2 scores from µgw are negative, implying that the
fitting over the genes of the clusters is worse than the constant mean model.

The intuition that µgw is likely to only capture the regulative mechanisms
of genes with “intermediate” regulative behaviour, such as those in Cluster 3,
is supported by what observed in Figure 2, where cluster-specific residuals (y-
axis) from cluster-wise and genome-wide models are plotted against target values
(x-axis).

Residuals from the genome-wide model are generally more disperse and het-
eroskedastic, except for Cluster 3 – the only one where µgw attains positive R2

– where they are similar to those from the cluster-wise model µ3, fitting genes
very well. The overall R2 of 0.66 attained by µgw on the whole dataset D is, con-
sequently, an intermediate value resulting from putting together mildly-modeled
genes (Cluster 3) with the remaining ones, where the genome-wide model seems
to be rather inadequate.

Hard hyperplanes clustering has revealed the criticality of single genome-wide
regression by exposing subsets of genes under-fitted by µgw. Clearly, in a realistic
setting, such as targeted cancer therapy, it would be completely unacceptable to
fit only 23% of protein coding genes (Cluster 3), as conceptually wrong conclu-
sions might be drawn about the epigenetic regulative behaviors of the remaining
genes.

3.2 Cluster Characterization

The effectiveness of hyperplanes clustering also emerges by observing how the
obtained clusters are distinct in terms of the input patterns and mean expres-
sion value for the genes they contain. In this sub-section we leverage on the
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Fig. 2: Cluster specific residuals from cluster-wise (orange) and genome-wide
(blue) models.

enhanced interpretability coming from a hard gene partitioning to characterize
the computed clusters.

For the generic cluster-wise model µi, let w̃i be its weight vector, made of
the learnt intercept and regression coefficients (m+1 elements). For gene g in ϑi,
let ψg be its weighted input vector, obtained by an element-wise multiplication
between its input vector x̃g and w̃i – the input vector is 1-edged to account
for bias. The weighted input vectors are an effective means to quickly assess
the importance of single features in determining the predicted response value,
as yg =

∑m
j=0(ψgj). The weighted input vectors for all the genes in a cluster

generate feature-wise boxplots which illustrate the frequency distributions of
cluster-specific histone contributions and their associated dispersion.

Figure 3 depicts the patterns obtained by considering the feature-wise me-
dians of the weighted input vectors, specifically for each cluster, along with the
25th and 75th percentiles of their distributions. In the patterns, intercepts are
in orange, whilst HMs are green if associated with positive regression weight
(computed activators) and red otherwise (computed repressors), with semi-
transparent rendering for weights not passing a statistical F -test with signif-
icance α = 0.01. In this way, fictitious correlations are pruned, resulting in
simpler and more robust patterns.

Cluster 1 is the most populated one and comprises genes with a negligible
histonic activity and usually null expression: these genes are likely to never be
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Fig. 3: Cluster specific input patterns; in green computed activators (positive
weight), in red computed repressors (negative weight).

activated, being instead repressed at a chromatin level, like for example devel-
opmental genes. The flat input and the low intercept are consistent with the
related expression distribution (0.0 RPKM median value). In such a scenario, a
lower signal-to-noise-ratio is the probable cause of the mild attained R2 score in
this cluster (see Table 2).

Clusters 2 and 0 are made, respectively, of low and high expressed genes
(RPKM medians 12.73 and 32.23). This characterization is confirmed by the
intercepts and the predominant roles assumed by activator H3K79me2, and
H3K36me3 specifically in Cluster 2, with their large variations explaining higher
expression levels. The two clusters show different relative regulative relevance
from repressors H2A.Z and H3K9me3, and activators H3K27ac and H3K9ac.

Cluster 3 embraces null to low transcriptional activity (RPKM median 2.32)
and is characterized by a more complex input pattern: more relevant than in
other clusters are H3K27me3, H3K4me2 and H3K4me3. The simultaneous pres-
ence of activating and repressive marks (H2A.Z and H3K27ac, respectively) re-
capitulate the characteristic of bivalent promoters, whose genes could be poised
for fast activation when needed. Moreover, single HMs might counterbalance one
another and/or co-work to induce particular effects.
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Fig. 4: Genome-wide input pattern (left) vs. Cluster 3 input pattern (right).

Fig. 5: Cluster target distributions (base-10 log of RPKMs).

It is interesting to notice the similarity between the pattern of Cluster 3
with that of the genome-wide one, as shown side-by-side in Figure 4. This is a
further confirmation the algorithm has managed to expose the sub-group of genes
possessing the largest leverage in bending one single regression hyperplane. As
emerging from the cluster characterization above, the remaining population has
instead been set apart in a well differentiated manner: genes lacking the single
genome-wide fit have been naturally stratified according to their expression value
in groups with distinct characteristic input patterns.

Such discussed stratification for transcriptional activity is finally recapitu-
lated in Figure 5, which reports, for each cluster, the distribution of the expres-
sion response value in base-10 logarithm of RPKM.
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4 Conclusion

We proposed the application of a randomly re-initialized version of K-Plane
Regression to expose subpopulations of protein coding genes commonly regulated
at an epigenetic-histonic level. The proposed approach has revealed how a single
regression model only captures the fit of a sub-group of genes with null to low
expression and how poor scores from µgw on the remaining genes are due to
unfitting rather than linear under-fitting. The hard gene partitioning produced
by our method allowed instead a statistical characterization of the computed
clusters in terms of input contribution patterns, revealing how clusters stratify
for higher and higher expression levels, with histone marks assuming specific
roles of different relevance.

Future developments will involve the biological characterization of the found
gene clusters: grouped genes will be analyzed to find possibly enriched biologi-
cal processes they are involved into. Also, further investigations will target the
optimal choice of the pre-determined number of clusters, i.e., K: we will analyze
cluster-specific target distributions and patterns as a function of parameter K
to understand the partitioning dynamic behavior of the algorithm.
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