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Abstract 

Extensive research has been conducted on advanced 

control techniques for buildings in recent years. However, 

even though in theory and in few experimental studies, the 

benefit of advanced Building Energy Management 

Systems was shown in most newly built or renovated 

buildings a traditional approach is still preferred, due to 

the higher cost and complexity of more advanced 

approaches despite the benefits. This paper presents a 

Python-Modelica grey-box modelling and adaptive 

optimal control of a hybrid heating system coupled with a 

thermal storage, that aims to reduce costs and improve the 

performance by better exploiting the hybrid heating 

system and the thermal storage, within the project 

TEPORE. The results show that for the chosen case study 

there are not enough degrees of freedom for the hybrid 

heating system to be optimized. However, interesting 

results emerged from changing the heating capacity of the 

generators showing on average 50% reduction in running 

costs. 

 

Introduction 

Reducing the carbon footprint is one of EU main 

objectives. Residential buildings impact heavily on the 

final energy consumption in the EU zone, accounting for 

25% of the total final energy consumption, 64% of which 

goes to the heating system (Eurostat, 2016). Therefore, 

reducing their consumption has been one of the primary 

goals of H2020 initiatives and EU policies.  

Thanks to these funds a lot of research has been carried 

out on advanced control techniques for buildings in recent 

years (Thieblemont et al., 2017). However, even though 

in theory (Afram and Janabi-Sharifi, 2014) and in few 

experimental studies (De Coninck and Helsen, 2016), the 

benefit of advanced Building Energy Management 

Systems (BEMS) was shown, a lot of newly built and 

renovated buildings still lack the implementation of these 

advanced control strategies (Aste, Manfren, and Marenzi, 

2017). The reasons are several, from the high cost of 

design and deploy (Sturzenegger et al., 2016) to the lack 

of know how transfer between HVAC designers and the 

academia developing these techniques. 

Building IoT related hardware and cloud services are 

getting cheaper, faster and more reliable, allowing to 

gather the necessary data to run intelligent BEMS. 

Furthermore, several open source libraries coupled with 

optimization packages (Wetter et al., 2014; Jorissen et al., 

2018; Jorissen, Boydens, and Helsen, 2018; Blum and 

Wetter, 2017) have been developed to improve the 

knowledge gap between industry and academia. The 

bottleneck remains the person time required to model and 

setup a BEMS for a specific building and heating system. 

This work, carried out within project TEPORE, has the 

goal to reduce the BEMS setup time by giving to the 

heating system provider the possibility to remotely update 

the parameters after the first monitoring phase. TEPORE 

is the Italian acronym for TErmoregolazione Partecipata 

e Organizzata per il Residenziale Evoluto; in English: 

human centric cloud-based heating system control for 

cutting-edge residential building. It is a project founded 

by Regione Lombardia in the framework of Smart Living 

call. 

 The showcase for this approach is a multi-family 

residential building located in Milan, North Italy, where 

the Space Heating (SH) and Domestic Hot Water (DHW) 

are provided by centralized natural gas boiler (GB) and 

electric vapour compression heat pump (HP). The 

problem is divided between estimation of the energy 

needs and the optimal control of the generation system. 

To estimate the building thermal load the Modelica 

Buildings library thermal zone model (Wetter et al., 2014) 

was coupled with a Model Predictive Control (MPC) 

algorithm  to regulate the thermal zone and achieve 

thermal comfort.  In this work the thermal comfort 

verification included in the MPC cost function is 

simplified and intended as matching the room temperature 

with the thermostat set-point temperature. Then, a model 

of each component of the heating system was derived 

starting from datasheets and physical models, designing a 

Nonlinear MPC (NMPC). The resulting problem was 

converted into a Constrained Nonlinear Programming 

(CNLP) optimization problem using the Python library 

Pyomo (Hart, Watson, and Woodruff, 2011), which 

optimizes to  the required thermal load by shifting 

between using the HP and the GB. To evaluate the NMPC 

performance a reference Rule Based Controller (RBC) 

properly tuned was developed.   
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Methodology 

The simulation and optimal control problem were split 

between estimation of the energy needs and the optimal 

control of the generation system. Thus, the problem can 

be divided between a large linear or quadratic 

optimization problem for the estimation and a smaller 

Constrained Nonlinear Programming (CNLP) problem 

for the generation system. The drawback of this approach 

is that the building envelope thermal inertia cannot be 

exploited by the optimization as energy storage. 

In Figure 1 a simplified scheme of the centralized heating 

system for the case study is shown.

 

Figure 1: Hybrid heating system layout. 

It has a centralized HP with a heating nominal capacity of 

24 kWth connected to a 500 l water thermal storage, which 

is in series with a GB with a heating nominal capacity of 

114 kWth connected to the floor heating system of each 

apartment. 

 

Building energy needs assessment 

The assessment of the building energy needs was done by 

simulating a single thermal zone. Afterwards, the entire 

building energy needs were derived in a simplified way. 

However, this simplification does not invalidate the 

results obtained on the generation system, since they are 

mainly influenced by the fact that the energy need profile 

is given, rather than slight variations in its shape. The 

climate data used for the simulations are taken from the 

typical year built for the Linate weather station in Milano 

(Energy Plus Weather data).  

The model of the thermal zone is developed in Modelica 

using the “buildings” library (Wetter et al., 2014). The 

model reproduces a room with mixed air. The boundaries 

are either connected to the outside or simulate 

neighbouring thermal zones.  

The heating in the room is provided by floor heating. They 

are connected to a hydraulic circuit composed of a three-

way valve to allow recirculation and a pump with constant 

speed. A constant source with fixed fluid temperature and 

pressure is located upstream. The opening of the valve and 

the activation of the pump are both controlled by a PID 

with a hysteresis cycle to track an optimized set-point for 

room air temperature. 

A trajectory of desired set-point is fed into an MPC 

optimizer. Once per hour, the optimization anticipates the 

system evolution of the thermal needs in function of the 

weather forecasts and the set point profile over the next 6 

hours and adjusts the set-point sent to the PID. The 

evolution forecast is based on a simplified Resistance-

Capacity (RC) model of the room. It features the 

autoregressive dynamics of temperature evolution of the 

room interiors and of the effective thermal capacity of the 

floor heating and the effects of the external temperature 

and heating source. 

An open-loop adaptive strategy is designed to deploy the 

MPC optimizer in different thermal zones. First, a cloud-

based solution gathers the input and output of the MPC 

optimization. Then, the system manager evaluates the 

distance between MPC predictions and actual 

temperatures, and finally, can repeat the model calibration 

and overwrite the parameters used on field, in Figure 2 a 

simple schematic of the communication protocol is 

shown. 

 

Figure 2: Simple schematic of the communication 

protocol. 

The overall model is run for 120 days from January to 

April, which are representative of the complete heating 

season. There are similarities between the cold months 

December and January, as well as between the average 

cold months November and February and the beginning 

and end of the heating season (October against March, 

April).  Starting from the typical year hourly data these 

were spline interpolated to a time step of 1 minute to catch 

the useful dynamics for the HVAC and to obtain the 

heating energy need of a single apartment under realistic 

use conditions. The interpolation of weather data to such 

a small time step is reasonable for the external 

temperature, which tends to have a gradual variation 

during the day, while radiation is usually recorded as an 

integral value over the hour and it may not have a gradual 

variation during the day, but thanks to the relative high 

capacity of the building it would not impact significantly 

on the building heat transfers dynamics. 

 

Hybrid heating system modelling 

The first step for the control optimization of the 

centralized heating system is the modelling of each 

component (Figure 1), which was done starting from the 

case study technical schemes and manufacturer’s 

datasheets. 
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Storage model 

The thermal storage was modelled using a multi-node 

stratified approach (Kleinbach, 1990), where each node 

represents a control volume of water. Since the mass flow 

rates as inlet and outlet are relatively high, nominal HP 

flow rate is between 4 000 to 8 000 (l/h) and nominal 

outlet flow rate can be up to 8 000 (l/h), while the storage 

volume is 500 (l); the storage can be considered almost 

well mixed and three nodes were chosen as representative 

of the real temperature profile. In Figure 3  a scheme of 

the storage is presented.  

 

Figure 3: Thermal storage scheme. 

TH, TM and TC (°C), CH, CM and CC (kJ) are respectively, 

the temperature and capacity of the hot, medium. cold 

nodes node, while ṁi-j (kg/s) are the water mass flow rate 

between the nodes to account for flow inversion switching 

from charge to discharge. ṁHP (kg/s) is the heat pump 

flow rate in the thermal storage, while T𝐻𝑃 (°C) is 

calculated using 𝑄̇HP,nom (kW) and fHP (−), which are the 

respective inlet power and load factor according to THP =

𝑓𝐻𝑃𝑄̇HP,nom/ṁHP𝑐𝑤 − 𝑇𝐶 . 

ṁth (kg/s) is the mass flow rate from the thermal storage 

to the building, while T𝑟𝑏 (°C) is the return temperature 

from the building floor heating systems.  

Q̇
loss

 (kW) (1) is the heat rate loss towards the 

environment. It is calculated as a global heat transfer 

coefficient U (kW/m2/K) multiplied by the external area 

Ax (m2) of each node and the temperature difference 

between the node and the external temperature considered 

as constant at 15 °C. Q̇
cond

 (kW) (2) is the conductive heat 

transfer between the nodes, which is the temperature 

difference between the nodes divided by the distance 

between the nodes ∆x (m) and multiplied by the cross-

sectional As (m2) and water thermal conductivity k 

(kW/m/K). The resulting dynamic equations for the nodes 

energy balances are reported in (3-5). 

 𝑄̇𝑙𝑜𝑠𝑠 = 𝑈𝐴𝑥(𝑇𝑒𝑥𝑡 − 𝑇𝑖) (1) 

 𝑄̇
𝑐𝑜𝑛𝑑

=
𝑘

∆𝑥
𝐴𝑠(𝑇𝑖 − 𝑇𝑗) (2) 

𝐶𝐻
𝑑𝑇𝐻

𝑑𝑡
= 𝑓ℎ𝑝𝑄̇ℎ𝑝 − 𝑚̇𝑡ℎ𝑐𝑊𝑇ℎ𝑝 + 𝑄̇𝑐𝑜𝑛𝑑 +

             𝑄̇𝑙𝑜𝑠𝑠  −𝑚̇𝐻−𝑀𝑐𝑊(𝑇𝐻(1 − 𝑓𝑡ℎ 
) + 𝑇𝑀𝑓𝑡h)  (3) 

 

𝐶𝑀
𝑑𝑇𝑀

𝑑𝑡
= 𝑚̇𝑀−𝐻𝑐𝑊(𝑇𝑀𝑓𝑡h + 𝑇𝐻(1 − 𝑓𝑡h)) −

𝑚̇𝑀−𝐶𝑐𝑊(𝑇𝑀(1 − 𝑓𝑡h) + 𝑇𝐶𝑓𝑡ℎ) +  𝑄̇𝑐𝑜𝑛𝑑 + 𝑄̇𝑙𝑜𝑠𝑠   (4) 

  

𝐶𝐶

𝑑𝑇𝐶

𝑑𝑡
= 𝑚̇𝑡ℎ𝑐𝑊𝑇𝑟𝑏 − 𝑚̇ℎ𝑝𝑐𝑊𝑇𝐶 + 𝑄̇

𝑐𝑜𝑛𝑑
+ 𝑄̇

𝑙𝑜𝑠𝑠
+

            𝑚̇𝐶−𝑀𝑐𝑊(𝑇𝐶(1 − 𝑓
𝑡ℎ

) + 𝑇𝑀𝑓
𝑡ℎ

)   (5) 

 

The last parameter to consider in the nodes equations is 

fth,described by (6), that determines the direction of the 

water flow depending on the mass flow rate balance in the 

water tank. To describe this behavior without using a 

bilinear function a hyperbolic tangent shape function has 

been adopted. 

 𝑓
𝑡ℎ =

1+𝑡𝑎𝑛ℎ(L 𝑚̇𝑖−𝑗)

2
 (6) 

L (s/kg) is a constant to emulate a step function and in this 

way 𝑓𝑡ℎ (-) is 1 when the storage is discharging, flow 

going up, and 0 when the storage is discharging, flow 

going down. 

 

Air source heat pump and boiler models 

Starting from data available in the datasheet, a model 

based on performance maps was developed for the air-to-

water 24 kWth HP. The maps contain the values of rated 

heating power 𝑄̇
𝐻𝑃

 (kW) transferred to the fluid and 

coefficient of performance COP in function of the fluid 

outlet temperature THP,out (°C), external air temperature 

and partial load. However, the dependencies of 𝑄̇
𝐻𝑃

 and 

COP from outlet temperature and load factor were 

neglected under the assumption that the temperature 

working range for the HP is restricted between 30 and 40 

°C and the load factor rarely goes below 50% during the 

simulations. Therefore, the worst-case scenario was 

assumed for the interpolating polynomials, namely 40 °C 

THP,out and full load operation. The equations are reported 

below: 

 

 𝑄̇
𝐻𝑃

= 𝑎1𝑇𝑒𝑥𝑡 + 𝑎0 (7) 

 𝐶𝑂𝑃𝐻𝑃 = 𝑎3𝑇𝑒𝑥𝑡
3 + 𝑎2𝑇𝑒𝑥𝑡

2 + 𝑎1𝑇𝑒𝑥𝑡 + 𝑎0 (8) 

The coefficients values are listed in Table 1. 

 

Table 1: HP coefficients. 

Coefficients 𝐐̇𝐇𝐏 𝐂𝐎𝐏𝐇𝐏 

𝑎0 6.66E-01 -3.51E-04 

𝑎1 2.10E+01 4.96E-03 

𝑎2 / 1.36E-01 

𝑎3 / 3.37E+00 

TH 

TM 

TC 

ṁHPTHP 

 

ṁthThot 

ṁthTrb 

∆x 

As 

x 

ṁHPT𝐶  

𝑄̇𝑙𝑜𝑠𝑠 

ṁH−M 

ṁM−H 

ṁM−C 

ṁC−M 

𝑄̇𝑐𝑜𝑛𝑑 
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The boiler model was also simplified for the optimization 

problem assuming a constant efficiency eta on the gross 

heating factor (GHV) of 90%. 

Furthermore, piping losses were neglected considering 

that the temperature set-point and flow rates are the same 

between the MPC and RBC. 

 

Generation system control 

To best evaluate the performance of the NMPC a 

reference control system is needed. Unfortunately, the 

monitored results of the case-study are underwhelming, 

due to mismanagement of the hybrid heating system. 

Therefore, to have a fair comparison the optimized results 

were compared against an ideal RBC, which tries to keep 

the storage at constant temperature of 40 °C and the GB 

that instantly compensates for the temperature difference 

between the top node of the storage and the set-point 

allowing a perfect tracking of the set-point. The same 

demand profiles and external conditions as for the 

optimization problem were used. In Figure 4 a high-level 

schematic of the MPC and RBC control systems 

workflow is presented. The workflow goes from left to 

right, starting from the forecasts of the weather, the 

estimated energy needs and the energy prices, which are 

used as inputs in the dynamic equations in the plant model 

and then the plant is controlled by the NMPC or the RBC. 

 

 

Figure 4: Simulation and optimization scheme for the 

heating system. 

 

Optimal control problem formulation 

the optimal control problem can be formulated as a cost 

function that has to be minimized changing the 

manipulated variables u(t) constrained by the dynamic 

state and algebraic equations governing the system. The 

summary of states x(t), controls u(t), disturbances w(t), 

which are time dependant non manipulated variables, 

cost, time horizon and algebraic constraints present in the 

control problem are presented in Table 2. 

Table 2: CLNP formulation. 

Cost 
Energy consumption (€) 

Temperature mismatch (K2h) 

Stage 

Three (days) per month from Jan 

to April. 6,12 and 72 (h) as time 

horizon. 

Control (u) 
fHP (kg/s):[0,1] 

∆TGB (°C):[0,∆TGBmax
] 

Sate (x) 

TH (°C):[-inf,45] 

TM (°C) :[-inf,45]  
TC (°C) :[-inf,45] 

Disturbances (w) 
Text (°C); 𝑄̇HPn   (kW); COP (-); 

𝑄̇need   (kW);  ṁth (kg/s) 

Subject to  ṁthcw (
𝑘𝐽

𝑘𝑔𝐾
) ∆TGB  ≤ 114 𝑘𝑊 

 

As shown in Table 2  the objective is to minimize the 

economic cost of energy provided to the heating system, 

while guaranteeing the set-point temperature required. A 

detailed discussion on how to properly formulate the cost 

function is provided in (Verhelst et al., 2012). The 

resulting cost function for this case is reported in (9). 

  
𝑚𝑖𝑛 𝐽𝑡𝑜𝑡 (𝑡) = ∫ (kJ𝑒𝑛(𝑡) + (1 − 𝑘)𝐽𝑚𝑖𝑠(𝑡))𝑑𝑡

𝑡𝑓

𝑡0
 (9) 

 

Jtot(t) has two contributions, the cost function accounting 

for energy consumption Jen(t) explained in (10) and the 

cost function accounting for set-point mismatching 

Jmis(t) explained in (11). Jen(t) and Jmis(t) are multiplied 

by k, which is a dimensionless parameter that expresses 

the relative importance between the energy and mismatch 

cost functions. Thus, for 𝑘=1, the objective function 

becomes trivial reducing consumption to zero, while for 

𝑘 = 0 only the mismatch would be minimized. 

 𝐽𝑒𝑛(𝑡) =
𝑝𝑒𝑙𝑓𝐻𝑃𝑄̇𝐻𝑃𝑛(𝑡)

𝐶𝑂𝑃(𝑇𝑒𝑥𝑡)
+

𝑝𝑛𝑔⋅𝑚̇𝑡ℎ(𝑡)𝑐𝑤⋅𝛥𝑇𝐺𝐵(𝑡)

𝜂𝑏
 (10) 

The first term represents the cost of electricity to run the 

HP, where the ratio between the nominal heating 

capacity of the HP 𝑄̇
𝐻𝑃,𝑛𝑜𝑚

,  the load factor (𝑓𝐻𝑃) and the 

𝐶𝑂𝑃 gives the electrical consumption of the HP 

multiplied by the  price of electricity (𝑝𝑒𝑙). The second 

term is the gas consumption of the GB multiplied by the 

average price of natural gas. The reference of both prices 

is the Italian grid manager GSE (GSE 2017). 

 𝐽𝑚𝑖𝑠(𝑡) = 𝑊𝜑on(𝑡) (𝑇𝑠𝑢𝑝𝑝𝑙𝑦(𝑡) − 𝑇𝑟𝑒𝑓)
2
 (11) 

Tsupply is the supply temperature calculated as the top 

node temperature of the storage plus the GB 𝛥𝑇𝐺𝐵  (°C), 

Tref = 40 °C is the set-point temperature of the heating 

system, φon(𝑡) is 1 when there is demand from the 

building and 0 otherwise. W is a constant weight that 

converts the units of the mismatch K2 in price units €. 
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Numerical approach for optimal control problem 

To solve optimal control problem, it was converted 

through direct collocation method into a CNLP, which 

was solved using Interior Point OPTimizer (IPOPT) 

(Wächter and Biegler 2004) with the help of a Python 

interface called Pyomo (Hart, Watson, and Woodruff 

2011). Different time steps namely 1 min, 2 min and 5 

min and the resulting in 2 min being minimum time-step 

required to catch the storage dynamics.  

In Table 3 the values of 𝐽𝑒𝑛 and 𝐽𝑚𝑖𝑠 for one value of k and 

all the prediction horizons are shown. 

Table 3: CLNP solution for different time horizons. 

prediction 

horizon 
6 h 12 h 72 h 

months 

Jen 

€ 

Jmis 

K2 

Jen 

€ 

Jmis 

K2 

Jen 

€ 

Jmis 

K2 

Jan 225 0.274 220 0.274 214 0.274 

Feb 206 0.273 202 0.273 201 0.273 

Mar 203 0.255 197 0.254 192 0.254 

Apr 120 0.185 108 0.184 108 0.184 

 

The results reported on the table show that increasing the 

prediction horizon of the MPC even if considered perfect 

and deterministic, does not bring significant benefit. In 

fact, J𝑒𝑛  changes by 5% switching from 6 h to 72 h, while 

J𝑚𝑖𝑠 does not have significant variation. This comes from 

the fact that the thermal storage has a very small capacity 

compared to the thermal load and the building thermal 

inertia is not taken into consideration during the 

optimization process. Therefore, all the following results 

will be based on the 6 h prediction horizon. 

Results 

Overview on economic and energetic performance 

In this section, the results for the typical days of the 

simulated months are reported in terms of energy bills and 

energetic performance comparing the results of the MPC 

and the RBC. 

In Figure 5 the solutions from January to April of the RBC 

(grey dots) are compared to the NMPC solutions (colored 

dots) varying the parameter k (the considered value is near 

the corresponding dot on the figure). The energy cost is 

plotted on the x-axis against 𝛥𝑇𝑚𝑖𝑠. The latter is the 

cumulative difference between the supply temperature 

and its reference Tref = 40 °C evaluated only during the 

operating hours as shown in (12). 

 𝛥𝑇𝑚𝑖𝑠 =
√∫

𝐽𝑚𝑖𝑠(𝑡)

𝑊

𝑡𝑓
𝑡0

ℎ𝑜𝑝
     °C (12) 

Thus, ΔTmis is the hourly average difference between 

Tsupply and Tref during operating hours. When this value is 

between zero and one, 0 ≤ ΔTmis≤1, the supply 

temperature will be, 39 ≤ Tsupply ≤ 41 °C. 

   

Figure 5: monthly results NMPC vs RBC in terms of 

energy cost and set-point mismatch for different k values 

(dots). 

Increasing the value of k, increases the economic weight 

while reducing the mismatch weight in the cost function. 

Since k’s trend is hyperbolic as for Pareto optimization 

problems, after a certain threshold reducing its value will 

only increase the temperature mismatch without reducing 

the energy cost. Taking 𝛥𝑇𝑚𝑖𝑠 = 0.04 °C as the limit 

value for mismatch the corresponding k value solution has 

been considered as the optimum of the CLNP. However, 

it can be noted that solutions with k higher than 0 are all 

aligned, meaning that by changing the value of k, the 

economic cost will remain similar, while the mismatch 

error will increase. This is the first hint that there might 

be much room for the optimization of this problem, in fact 

looking at Figure 6, where the economic results, in terms 

of energy bills, achieved by the best solution of the MPC 

and RBC are plot against each other 
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Figure 6: monthly energy cost for space heating: 

NMPCs vs RBC. 

The resulting economic savings from the NMPC are 

underwhelming due to the current heating system setup, 

the NMPC does not have enough degrees of freedom to 

significantly improve the operation of the hybrid heating 

system. In particular, the HP heating capacity is too small 

and almost always works already at full load in both cases, 

and the storage is not big enough to guarantee more than 

few minutes at nominal flow rate required by the building. 

To further prove this point in Figure 7 is shown the total 

distribution of heat provided respectively by HP and GB 

for all the months comparing the MPC best solution and 

RBC simulations. 

 

 

Figure 7 thermal energy generated by HP (black) and 

GB (grey), beside the Qneed required (blue). 

This chart shows how the relative percentage of thermal 

energy generated is similar for the NMPC and the RBC.  

The second interesting thing to notice is that the heat 

contribution from the NMPC is slightly lower with 

respect to the RBC, this is due to the fact that at the 

beginning of the simulation the storage was initialized at 

40 °C and at the end of the simulation the NMPC leaves 

it at a temperature on average below 30 °C, while the RBC 

is tuned to always charge it back. However, this was 

accounted for in the previously presented in Figure 6. 

 

HP and GB profiles comparison for typical day in 

January and April 

Another way to check that the NMPC and the RBC have 

a similar behaviour is to compare the HP power and GB 

thermal heat rate. January (Figure 8) and April (Figure 9) 

were chosen as example 

 

Figure 8: a typical day of January. On the x-axis the 

date and time. On the left y-axis the electrical power of 

HP and on the right y-axis the heat rate of the GB. 

NMPC results (solid lines) vs RBC results (dashed 

lines). 

 

 

Figure 9: a typical day of April. On the x-axis the date 

and time. On the left y-axis the electrical power of HP 

and on the right y-axis the heat rate of the GB. NMPC 

results (solid lines) vs RBC results (dashed lines). 

 

Both in the January and April case, the NMPC and RBC 

have a very similar behaviour, the only notable difference 

is that the NMPC tries to use the HP at partial load to 

recharge the storage while there is no Qneed, because those 

are the central hours of the day with a higher Text and 

therefore a higher COP of the HP. Furthermore, the 

average temperature of the thermal storage is lower 

reducing its heat losses. 
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Simplified design analysis of the HP and GB 

In this study was proven that the benefit of a NMPC with 

respect to a well-tuned RBC is not significant (2-3%) for 

this specific case study, due to the small thermal capacity 

of the HP and the storage, and the incapability to exploit 

the inertia of the building since the CNLP just tracks the 

given Qneed profile. 

The same optimization framework was also used to 

investigate how the capacity of the heat pump affects the 

performance of the NMPC by doubling the capacity of the 

HP to 48 kWth (+100%) and reducing the GB capacity to 

90 kWth (-21%), the storage size was not increased 

because the authors did not want to increase the degree of 

freedom for the CNLP. Comparing the performance of the 

new NMPC called NMPChp+ and the ideal RBChp+ with 

the same change in HP and GB capacities, there was no 

significant difference with respect to the previous case, 

for the same reasons mentioned above. 

However, an interesting insight was obtained by the 

comparison of the simulation with the baseline HP and 

GB (NMPC) capacity and the new one with the increased 

capacity of the HP (NMPChp+). The energy bills for 

NMPChp+ decrease by almost 50% with respect to the 

NMPC case as shown in Figure 10. 

 

 Figure 10 Monthly energy cost NMPChp+ (black) vs 

NMPC (grey) 

 

The reason behind this improvement on the energy bills 

cost, on average higher than 50% is due to the increase in 

share of heat produced by the HP as it can be seen in 

Figure 11 meaning that the decrease in cost of the energy 

bills is linear with respect to the heat pump size. However, 

this holds true until the HP size is small enough to work 

almost always between 60 and 100 % of its nominal 

capacity. If the heat pump starts working outside this 

range the COP will drastically drop and the HP will 

undergo a series of on-off cycle which will harm the HP 

efficiency and durability.  

 

Figure 11 Cumulative heat provided divided between HP 

(black) and GB (grey) comparing the NMPChp+ vs 

NMPC  

Obviously, these results are biased towards the specific 

HP and GB chosen, the climatic condition, especially 

because the HP defrosting cycle was neglected, the energy 

prices of electricity and natural gas, and the higher 

investment cost of the HP. However, they stress the 

importance of coupling the optimization in the design 

phase with optimal control to achieve the best economic 

and energetic performance. 

 

Conclusions 

This study presented a North Italian case study within the 

project TEPORE. The main insights from this work are: 

 

i) The improvement of comfort performance, intended as 

the average room temperature reaching the thermostat set-

point temperature, when using an MPC algorithm with 

respect to a traditional approach. 

ii) The underwhelming improvement in reducing the 

hybrid heating system running costs when using a NMPC 

compared to an ideal RBC, due to the small size of the HP 

and the storage, and the incapability to exploit the inertia 

of the building since the CNLP just tracks the given Qneed 

profile. This demonstrates that using an MPC to achieve 

comfort and a properly tuned RBC are more than enough 

to have a good performance of this simple system. This is 

especially true for new buildings where the energy 

consumption is already low and achieving comfort with a 

traditional approach may be tricky, because of the long 

building fabric inertia. 

iii) When considering the variation on the size of the HP 

and the GB, more specifically by doubling the HP 

capacity from 24 to 48 kWth (+100%) and reducing the 

capacity of the boiler from 114 to 90 kWth(-21%) , the 

running costs reduce on average by around 50%. Even 

though these results are biased towards the specific HP 

and GB chosen, the climatic condition, the energy prices 

of electricity and natural gas, and the higher investment 

cost, they stress the importance of coupling the 

optimization in the design phase with optimal control to 
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achieve the best economic and energetic performance. 

This is especially true when considering the EU goal of 

reducing building energy footprint, that can be achieved 

only by introducing more complex solutions that includes 

large storages and the introduction of renewable energies. 

Therefore, future studies will be carried out in developing 

a combined system design and control optimization tool. 
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