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Abstract

We deal with the dynamical system properties of a Gorini-Kossakowski-Sudarshan-
Lindblad (GKSL) equation with mean-field Hamiltonian that models a simple laser by
applying a mean field approximation to a quantum system describing a single-mode
optical cavity and a set of two level atoms, each coupled to a reservoir. We prove that
the mean field quantum master equation has a unique regular stationary solution. In
case a relevant parameter Cb, i.e., the cavity cooperative parameter, is less than 1, we
prove that any regular solution converges exponentially fast to the equilibrium, and
so the regular stationary state is a globally asymptotically stable equilibrium solution.
We obtain that a locally exponential stable limit cycle is born at the regular stationary
state as Cb passes through the critical value 1. Then, the mean-field laser equation has
a Poincaré-Andronov-Hopf bifurcation at Cb = 1 of supercritical-like type. Namely,
we derive rigorously, at the level of density matrices –for the first time–, the transition
from a global attractor quantum state, where the light is not emitted, to a locally stable
set of coherent quantum states producing coherent light. Moreover, we establish the
local exponential stability of the limit cycle in case a relevant parameter is between
the first and second laser thresholds appearing in the semiclassical laser theory. Thus,
we get that the coherent laser light persists over time under this condition. In order
to prove the exponential convergence of the quantum state, as the time goes to +∞,
we develop a new technique for proving the exponential convergence in open quantum
systems that is based in a new variation of constant formula, which is obtained by
combining probabilistic techniques with classical arguments from the semigroup theory.
Furthermore, applying our main results we find the long-time behavior of the von
Neumann entropy, the photon-number statistics, and the quantum variance of the
quadratures.
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1 Introduction

In this paper we prove rigorously the occurrence of a supercritical Poincaré-Andronov-Hopf
bifurcation (Hopf bifurcation for short), at the level of density operators, in a full quantum
laser model. Thus, we develop the understanding of the dynamical systems properties of
the infinite-dimensional open quantum systems.

We study a laser composed of many identical two-level atoms with transition frequency
ω, as a gain medium, that interact with an electromagnetic field, with resonance frequency
ω, propagating in one direction (see, e.g., [9, 34, 40]). The atoms make spontaneously
downward and upward transitions at rates κ− and κ+, respectively. The photons leave the
resonant mode of the radiation field at rate 2κ due to the light output, together with losses
in the resonator. Under the mean field approximation, as the number of non-interacting
two-level atoms goes to ∞, the laser evolution is described by the following effective Gorini-
Kossakowski-Sudarshan-Lindblad (GKSL for short) equation

d

dt
ρt = −i [H (ρt) , ρt] + κ

(
2 a ρta

† − a†aρt − ρta
†a
)

(1)

+
κ−
2

(
2 σ−ρt σ

+ − σ+σ−ρt − ρt σ
+σ−)+ κ+

2

(
2 σ+ρt σ

− − σ−σ+ρt − ρt σ
−σ+

)

having the mean-field Hamiltonian

H (̺) = ω

(
a†a+

1

2
σ3

)
+ i g

((
tr
(
σ−̺

)
a† − tr

(
σ+̺

)
a
)
+
(
tr
(
a†̺
)
σ− − tr (a ̺)σ+

))

(see, e.g., [9, 39, 32]), where the constant g ∈ R \ {0} characterizes the coupling between
atoms and the field mode. Here, the unknown ρt is a non-negative trace-class operator

on ℓ2 (Z+) ⊗ C
2, ω is a real number, κ, κ+, κ− ∈ ]0,+∞[, σ+ =

(
0 1
0 0

)
, σ− =

(
0 0
1 0

)
,

σ3 =

(
1 0
0 −1

)
, and the closed operators a†, a on ℓ2 (Z+) are defined by a†en =

√
n + 1 en+1

for all n ∈ Z+ and aen =

{√
n en−1 if n ∈ N

0 if n = 0
, where (en)n≥0 denotes the standard basis

of ℓ2(Z+). The non-linear quantum master equation (1) reproduces the Dicke-Haken-Lax
model of the laser, and can be formally obtained from the dissipative Tavis-Cummings
model governing the unidirectional ring-cavity laser with natom atoms by taking the limit as
natom → ∞ of the partial trace with respect to natom − 1 atoms of the full density operator
(see, e.g., Section 3.7.3 of [9], Section V.E of [39], and [32]).
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We are interested in investigating the long-term stable behavior of the solution to (1).
Lasers can show stable or unstable behaviors according to the operating conditions. Nu-
merous investigations on the qualitative properties of the laser dynamics have been devoted
essentially to the application of the linear stability analysis to complex ordinary differential
equations describing the expectation values of some quantum observables like rate equations
and semiclassical laser models (see, e.g., [3, 13, 18, 21, 24, 33, 34, 40]). In the physical sit-
uation under consideration, using (1) we obtain that A (t) = tr (ρt a), S (t) = tr (ρt σ

−) and
D (t) = tr (ρt σ

3) satisfy





d

dt
A (t) = − (κ+ iω)A (t) + g S (t)

d

dt
S (t) = − (γ + iω)S (t) + g A (t)D (t)

d

dt
D (t) = −4g ℜ

(
A (t)S (t)

)
− 2γ (D (t)− d)

, (2)

where d = (κ+ − κ−) / (κ− + κ+) and γ = (κ− + κ+) /2 (see, e.g., [15]). In [3, 21], versions of
(2) are derived by taking limit in many body linear quantum master equations (see, e.g., [6]
for a study of the relation between the models considered in [3] and [21]). In the semiclassical
laser theory, (2) describes the dynamics of the field, polarization and population inversion
(i.e., tr (ρt a), tr (ρt σ

−) and tr (ρt σ
3), respectively) of ring lasers such as far-infrared NH3

lasers (see, e.g., [18, 34, 40]). The Maxwell-Bloch equations (2) develop a stable set of
periodic solutions from the stable fixed point (0, 0, d) as the cavity cooperative parameter

Cb :=
g2 d

κ γ
=

2g2 (κ+ − κ−)

κ (κ− + κ+)
2

crosses 1 (see, e.g., [3, 9, 17, 21, 33]), and so (2) undergoes a supercritical Hopf bifurcation
at Cb = 1.

Unlike semiclassical models, quantum master equations in GKSL form, and their mean-
field approximations, describe the quantum mechanical properties, not only mean values, of
both the atoms and the light fields, and hence they capture very well quantum effects like
coherence, correlations, spontaneous emissions and photon-number statistics (see, e.g., [18]).
This motivates the study of the dynamical properties of the evolution of density operators
representing laser states. In this direction, numerical studies of the bifurcation structure of
the steady state of quantum master equations in GKSL form have been carried out by, e.g.,
[4, 22, 28, 42]. In a different physical context like mirrorless lasers, the superradiance phase
transitions has been studied in depth (see, e.g., [9, 19, 20]).

In this paper, we establish rigorously the qualitative changes in the dynamics of the
solution to the mean field laser equation (1), at the level of density matrices, as the parameter
Cb passes through the critical value 1. We present the first mathematical proof –to the
best of our knowledge– of a supercritical Hopf bifurcation in infinite dimensional GKSL-
like equations, and at the same time we get the transition from a global attractor state
where the light is not emitted to a locally stable set of coherent states producing coherent
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light. Moreover, we prove that the difference between ρt and a certain periodic function
of coherent states converges exponentially fast to 0 as t → +∞ whenever κ2 + 5κγ >
γ (κ− 3γ)Cb and ρ0 is in a neighborhood of certain coherent states. Thus, the coherent laser
light persists over time if Cb is between the first and second laser thresholds. The above
two physical phenomena are explained in the semiclassical laser theory by the Maxwell-
Bloch equations (2), but a full quantum foundation was not yet given. From the dynamical
systems viewpoint, (1) is a model problem for understanding the behavior of the mean-field
GKSL master equations, which generate non-linear quantum dynamical semigroups (see,
e.g., [2, 25, 29]). Indeed, (1) could play a role in open quantum systems similar to the one
played by the Lorenz equations in finite-dimensional dynamical systems.

In our analysis, first we show that

̺∞ := |e0〉 〈e0| ⊗
(
d+ 1

2
|e+〉 〈e+|+

1− d

2
|e−〉 〈e−|

)
(3)

is the unique N -regular stationary state for (1) with ω 6= 0, the physical situation we are
interested in. That is, if ω 6= 0, then (3) is the unique density operator ̺ such that ρt ≡ ̺
satisfies (1) and ̺ is N -regular, which means, roughly speaking, that the trace of a†a ̺ is
well defined (see Section 1.1 for the definition of N -regular density operator). This invariant
solution yields the unique stationary solution of (2). In case Cb < 1 and ω 6= 0, we obtain
that ρt converges in the trace norm exponentially fast to ̺∞ as t → +∞, and hence ̺∞ is
the global attractor for (1). In the state ̺∞ the light is not emitted, and hence we quickly
perceive a faint light output when the normalized pump parameter d is below κ γ/g2.

Second, we consider the free interaction solutions to (1) with ω 6= 0, that is, the solutions
of (1) that also satisfy the Liouville-Von Neumann equation

d

dt
ρt = −iω

[
a†a + σ3/2, ρt

]
,

which describes the evolution of the physical system in absence of interactions between the
laser mode, atoms and the bath. If Cb ≤ 1, then we deduce that ̺∞ is the unique N -regular
free interaction solution to (1). In case the cavity cooperative parameter Cb is greater than
1 and ω 6= 0, we obtain that all the non-constant N -regular free interaction solutions are of
the form t 7→ ̺c (ωt− θ) for any θ ∈ [0, 2π[, where for each ϑ ∈ R we set

̺c (ϑ) = (4)

∣∣∣∣E
(
γ
√
Cb − 1√
2 |g|

e−iϑ

)〉〈
E
(
γ
√
Cb − 1√
2 |g|

e−iϑ

)∣∣∣∣⊗




1
2

(
1 + d

Cb

)
e−iϑ κγ√

2g|g|
√
Cb − 1

eiϑ κγ√
2g|g|

√
Cb − 1 1

2

(
1− d

Cb

)

 ,

the coherent vector E (ζ) associated with ζ ∈ C is defined by

E (ζ) = exp
(
− |ζ |2 /2

) +∞∑

n=0

ζnen/
√
n!, (5)
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and (en)n≥0 stands for the canonical orthonormal basis of ℓ2(Z+). Thus, the laser emits
coherent light when the normalized pump parameter d exceeds the barrier κ γ/g2, and the
periodic solutions t 7→ ̺c (ωt− θ) yield periodic solutions of (2). In the dynamical system
language, the phase path of all non-constant N -regular free interaction solutions of (1) gives
the closed orbit {̺c (ϑ) : ϑ ∈ [0, 2π]}.

We prove that the cycle {̺c (ϑ) : ϑ ∈ [0, 2π]} is locally exponential stable whenever κ ≤
3γ (the cavity is not too lossy), or κ > 3γ with (κ2 + 5κγ) / (γ (κ− 3γ)) > Cb, and so
{̺c (ϑ) : ϑ ∈ [0, 2π]} is an attractive limit cycle in the phase space if Cb > 1 is close to 1.
Hence, (1) has a Hopf bifurcation at Cb = 1 of supercritical-like type. As far as we know,
this is the first time that Hopf bifurcation is rigorously established at the level of (infinite
dimensional) density matrices in the study of nonlinear evolutions of open quantum systems.
The bad-cavity condition κ > 3γ, which is paraphrased as the relaxation time of the atoms
is greater than three times the relaxation time of the field, takes place in lasers of type C
(see, e.g., [24, 34, 40]). In this case, we have proved that the laser beam is stable when the
normalized pump parameter is in the interval

κ γ

g2
< d <

κ3 + 5κ2γ

g2 (κ− 3γ)
.

If Cb is beyond the second threshold (κ2 + 5κγ) / (γ (κ− 3γ)), then the set of known periodic
solutions of (2) loses its stability.

Third, the mean values and quantum fluctuations of unbounded observables like quantum
quadratures provide important information about the laser behavior. We study the long
time behavior of the unbounded operators A that are relatively bounded with respect to the
number operator a†a. If Cb < 1, then we get the exponential convergence of the mean value of
A to the trace of A̺∞ as the time goes to +∞. In case Cb > 1 and κ2+5κγ > γ (κ− 3γ)Cb

we prove that tr (ρtA)− tr (̺c (ωt− θ)A) converges exponentially fast to 0 as t → +∞, for
certain θ ∈ [0, 2π[, whenever ρ0 is close enough to the limit cycle {̺c (ϑ) : ϑ ∈ [0, 2π]}. Thus,
we determine how the full quantum dynamics described by (1) leads to the occurrence of
the supercritical-like Hopf bifurcation in (2) at Cb = 1. In addition, we characterize, for
instance, the long time behavior of the photon-number statistics, the quantum variance of
the quadratures, and the von Neumann entropy.

In [15] we prove that the mean field quantum laser equation (1) has a unique N -regular
solution –in a weak sense–, and we obtain (2) from (1). To this end, in [15] we get the
existence and uniqueness of the N -regular solution to the non-homogeneous GKSL equation

d

dt
ρt = −i

[
ω

(
a†a +

1

2
σ3

)
, ρt

]
+
[
α (t) a† − α (t)a + β (t)σ− − β (t) σ+, ρt

]

+ κ
(
2 a ρta

† − a†aρt − ρta
†a
)
+

κ−
2

(
2 σ−ρt σ

+ − σ+σ−ρt − ρt σ
+σ−)

+
κ+

2

(
2 σ+ρt σ

− − σ−σ+ρt − ρt σ
−σ+

)
,

(6)

where α, β : [0,∞[ → C are continuous and ρt ∈ L+
1 (ℓ2(Z+)⊗ C2), as well as we derive

the equation of motions of the mean values of a, σ− and σ3 with respect to the N -regular
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solution to (6). This study is based on the stochastic Schrödinger equations (see, e.g.,
[7, 8, 9, 31]), which provide probabilistic representations –unravelings– of (6). Thus, in [15]
we deduce that the N -regular solution of (1) coincides with the N -regular solution of (6)
with α (t) = g S (t) and β (t) = g A (t). In the current paper, we obtain dynamical systems
properties of (1) by treating the long-time behavior of (6) coupled to (2) via α (t) = g S (t)
and β (t) = g A (t). For this purpose, we develop a new variation of constant formula for
(6), which is proved by combining classical arguments from the semigroup theory with an
analysis involving the linear stochastic Schrödinger equation (26) given below. Moreover,
we deduce the exponential convergence of the solution of (6) to its equilibrium state in case
α (t) and β (t) are constant functions. To do this, we estimate, loosely speaking, the rate of
decoupling of the atoms and the electromagnetic field, as well as we obtain the exponential
convergence of the atoms and the field to their equilibrium states when we neglect the
interaction between them. Then, we prove the exponential convergence of the solution of
(1) to its invariant sets by means of perturbation techniques applied to (6) coupled to (2),
which is a new way to handle the long-time behavior of open quantum systems. In this
analysis we use a unitary transformation of (1) to treat the limit cycle of (2), which leads
to study the asymptotic behavior of (6) with ω = 0.

We organize the article in three main sections. Section 2 states the main results of this
paper. In Section 3 we address (6). Section 4 presents the proofs of all theorems, where we
use the results given in Section 3 to prove the theorems stated in Section 2.

1.1 Notation

As far as possible, we use the same notation as in [15]. Thus, we consider a separable
complex Hilbert space (h, 〈·, ·〉), whose scalar product 〈·, ·〉 is anti-linear in the first variable
and linear in the second one. The canonical orthonormal basis of ℓ2(Z+) is denoted by

(en)n≥0, as well as e+ =

(
1
0

)
and e− =

(
0
1

)
is the standard basis of C2. We write D (A) for

the domain of A, whenever A is a linear operator in h. As usual, we set [A,B] = AB −BA
in case A,B are linear operators in h, and N = a†a. We write L (X,Z) for the space of all
bounded operators from X to Y, where X and Y are normed spaces. By L (X) we mean
L (X,X). The space of all trace-class operators on h, with the trace norm, is denoted by
L1 (h).

Suppose that the operator C : D (C) ⊂ h → h is positive and self-adjoint. We recall
that ̺ ∈ L1 (h) is a density operator iff ̺ is a non-negative operator with unit trace. A
non-negative operator ̺ ∈ L (h) is called C-regular iff there exists λn ≥ 0 and vn ∈ D (C),
together with a countable set I, such that ̺ =

∑
n∈I λn |vn〉〈vn|,

∑
n∈I (λn)

2 < ∞, and∑
n∈I λn ‖Cun‖2 < ∞ (see, e.g., [12, 15, 30]). We write L+

1,C (h) for the family of all density
operators in h that are C-regular.

Moreover, for any x, y ∈ D (C) we define the graph scalar product 〈x, y〉C = 〈x, y〉 +
〈Cx,Cy〉 and the graph norm ‖x‖C =

√
〈x, x〉C . We use the symbol L2 (P, h) to denote the

space of all square integrable functions X : (Ω,F,P) → (h,B (h)), where B (h) is formed
by all Borel set on h. Moreover, L2

C (P, h) stands for the set of all ξ ∈ L2 (P, h) such that
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ξ ∈ D (C) a.s. and E
(
‖ξ‖2C

)
< ∞. For any x ∈ D (C) we define πC(x) = x, together with

πC(x) = 0 whenever x ∈ h \ D (C).
Recall that ω ∈ R, g ∈ R r {0}, and κ, κ+, κ− > 0. Moreover, in Section 1 we take

γ = (κ+ + κ−) /2, d = (κ+ − κ−) / (κ+ + κ−), and Cb = g2 d/ (κ γ). Then κ− = γ (1− d),
and κ+ = γ (1 + d). Using κ−, κ+ > 0 we deduce that γ > 0 and d ∈ ]−1, 1[. In what
follows, the letters K ≥ 0 and λ > 0 denote generic constants. We will write K (·) for
different non-decreasing non-negative functions on the interval [0,∞[ when no confusion is
possible.

2 Quantum Hopf bifurcation

2.1 Invariant sets

We begin by determining the stationary solutions to (1). We recall that a C-weak solution to
(1) is a collection of C-regular density operators (ρt)t≥0 in ℓ2 (Z+)⊗C2 such that t 7→ tr (aρt)
is continuous and

d

dt
tr (Aρt) = tr

(
A
(
Lh

⋆ ρt + g
[
tr
(
σ−ρt

)
a† − tr

(
σ+ρt

)
a+ tr

(
a†ρt

)
σ− − tr (a ρt) σ

+, ρt
]))

for all t ≥ 0 and A ∈ L (ℓ2 (Z+)⊗ C2), where

Lh
⋆ ̺ = −iω

[(
a†a + σ3/2

)
, ̺
]
+ κ

(
2 a ̺a† − a†a̺− ̺a†a

)
(7)

+
γ (1− d)

2

(
2 σ−̺ σ+ − σ+σ−̺− ̺ σ+σ−)+ γ (1 + d)

2

(
2 σ+̺ σ− − σ−σ+̺− ̺ σ−σ+

)
.

According to [15] we have that (1) has a unique Np-weak solution, as well as that the Maxwe
ll-Bloch equations (2) hold whenever ρ0 ∈ L+

1,Np (ℓ2 (Z+)⊗ C2) with p ∈ N. Next, we show
that (1) has a unique N -regular invariant state whenever ω 6= 0, which yields the stationary
solution of (2), which is tr (aρt) = tr (σ−ρt) = 0 and tr (σ3ρt) = d for all t ≥ 0.

Definition 2.1. Consider a C-regular density operator ̺. We say that ̺ is a stationary
state for (1) iff ρt ≡ ̺ is a constant C-weak solution to (1).

Theorem 2.1. Let the density operator ̺∞ be defined by (3). Then ̺∞ is a stationary state
for (1). Moreover, in case ω 6= 0, ̺∞ is the unique N-regular density operator which is a
stationary state for (1).

Proof. Deferred to Section 4.3.

We turn our attention to the regular solutions of (1) that are also unitary evolutions
generated by the Hamiltonian ω (N + σ3/2), which arises from neglecting the interactions
between the laser mode, atoms and the bath.

Definition 2.2. Assume that (ρt)t≥0 is a C-weak solution to (1). We call (ρt)t≥0 free
interaction solution to (1) if and only if

ρt = exp
(
−iω

(
N + σ3/2

)
t
)
̺0 exp

(
iω
(
N + σ3/2

)
t
)

∀t ≥ 0.

7



Remark 2.1. If (ρt)t≥0 is a N-regular free interaction solution to (1), then (ρt)t≥0 also

satisfies the quantum master equation d
dt
ρt = −iω

2

[
2a†a + σ3, ρt

]
.

Consider (1) with ω 6= 0. Now, we find all non-constant free interaction solutions that
are born at the regular stationary state as Cb passes through the bifurcation value 1. In
case Cb > 1, i.e., g2d > κγ, these free interaction solutions lead to the periodic solutions
of (2), which are given by tr (ρt σ

3) = γκ/ (g2), tr (ρt a) = z exp (−iωt) γ
√
Cb − 1/

(√
2 |g|

)

and tr (ρt σ
−) = z exp (−iωt) γκ

√
Cb − 1/

(√
2 |g| g

)
for any z ∈ C satisfying |z| = 1.

Theorem 2.2. Let ω 6= 0. Take Cb = dg2/ (γκ), and consider ̺c is given by (4). If
Cb ≤ 1, then (1) does not have any non-constant N-regular free interaction solution. In
case Cb > 1, the family {t 7→ ̺c (ωt− θ) : θ ∈ [0, 2π[} is composed by all non-constant N-
regular free interaction solutions to (1).

Proof. Deferred to Section 4.4.

Remark 2.2. Suppose that ω 6= 0. According to the proof of Theorem 2.2 we have that ̺∞,
described by (3, is the unique constant N-regular free interaction solution to (1).

Remark 2.3. The function t 7→ ̺c (ωt− θ) is a periodic N-weak solution to (1). By Theo-
rem 2.2, in the phase space all non-constant N-regular free interaction solutions of (1) have
the same closed (or periodic) orbit, which is {̺c (ϑ) : ϑ ∈ [0, 2π]}.

2.2 Long-time behavior

Suppose that ρ0 ∈ L+
1,N (ℓ2 (Z+)⊗ C2) satisfies tr (ρ0 a) = tr (ρ0 σ

−) = 0. From (2) it follows

that tr (ρt a) = tr (ρt σ
−) = 0 for all t ≥ 0, and so d

dt
(tr (ρt σ

3)− d) = −2γ (tr (ρt σ
3)− d).

Therefore, tr (ρt σ
3) converges exponentially fast to d as t → +∞. Theorem 2.3 below

provides a full quantum explanation for this long time behavior.

Theorem 2.3. Let ̺ be a N-regular density operator in ℓ2 (Z+) ⊗ C2 such that tr (̺ a) =
tr (̺ σ−) = 0. Suppose that (ρt)t≥0 is the N-weak solution to (1) with initial state ̺. Then
tr (ρt a) = tr (ρt σ

−) = 0 for all t ≥ 0, and

tr (|ρt − ̺∞|) ≤ 12 exp (−γt) (1 + |d|) + 4 exp (−κt)
√

tr (̺N) ∀t ≥ 0, (8)

with ̺∞ defined by (3).

Proof. Deferred to Section 4.5.

Let Cb < 1. Then, the equilibrium solution (0, 0, d) of the the Maxwell-Bloch equations
(2) is asymptotically stable (see, e.g., [15]). Hence, limt→+∞ tr (ρt a) = limt→+∞ tr (ρt σ

−) =
0, and limt→+∞ tr (ρt σ

3) = d. Now, we show that ρt converges in the trace norm to the
stationary state (3) with exponential rate, as well as we get the limiting behavior of the
mean values of N -bounded operators like N ⊗ (σ+ + σ−).
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Theorem 2.4. Let (ρt)t≥0 be the N-weak solution to (1) with ω 6= 0 and initial datum

ρ0 ∈ L+
1,N (ℓ2 (Z+)⊗ C2). Suppose that Cb < 1. Then

tr (|ρt − ̺∞|) ≤ Ksys (|g| , tr (ρ0 N)) exp (−δsys t) ∀t ≥ 0, (9)

where ̺∞ is given by (3),

δsys =

{
min {κ, γ} /2 if d < 0

(1− Cb)min {κ, γ} /3 if d ≥ 0
, (10)

and Ksys (·, ·) is a non-decreasing non-negative function of two variables that depends on the

parameters d, κ and γ. Fix K̃ > 0. Then, for all t ≥ 0 we have

∣∣∣∣tr (ρt A)−
d+ 1

2
〈e0 ⊗ e+, A e0 ⊗ e+〉 −

1− d

2
〈e0 ⊗ e−, A e0 ⊗ e−〉

∣∣∣∣

≤ K̃K̂sys (|g| , tr (ρ0N)) exp (−δsys t) ,

(11)

for any A : ℓ2 (Z+)⊗ C2 → ℓ2 (Z+)⊗ C2 satisfying

max {‖Ax‖ , ‖A⋆ x‖} ≤ K̃ ‖x‖N ∀x ∈ D (N) . (12)

Here, K̂sys (·, ·) is a non-decreasing non-negative function depending on d, κ and γ.

Proof. Deferred to Section 4.6.

In case Cb < 1, from Theorem 2.4 we conclude that the radiation field converges very
fast to his ground state |e0〉 〈e0|. Furthermore, using Theorem 2.4 one can obtain at once
the long time behavior of, for instance, the photon-number statistics, the quantum variance
of the quadratures, and the quantum linear entropy, which are relevant physical quantities
that are not given by the Maxwell-Bloch equations (2).

Corollary 2.5. Suppose that Cb < 1 and ω 6= 0. Let δsys be defined by (10). Consider the
N-weak solution (ρt)t≥0 to (1). Then:

• There exists K > 0 such that all t ≥ 0, |tr (ρt |e0〉 〈e0|)− 1| ≤ K exp (−δsys t) and
|tr (ρt |en〉 〈en|)| ≤ K exp (−δsys t) for any n ∈ N.

• For all t ≥ 0,
∣∣tr (ρt Q2)− tr (ρtQ)2 − 1/2

∣∣ ≤ K exp (−δsys t) and

∣∣tr
(
ρt P

2
)
− tr (ρt P )2 − 1/2

∣∣ ≤ K exp (−δsys t) ,

where Q =
(
a† + a

)
/
√
2 and P = i

(
a† − a

)
/
√
2.

• For all t ≥ 0, |(1− tr (ρ2t ))− (1− d2) /2| ≤ K exp (−δsys t).

9



We equip the phase space
(
L+
1,N (ℓ2 (Z+)⊗ C2) , dN

)
with the distance dN defined below.

Applying Theorem 2.4 we obtain that dN (ρt, ̺∞) converges exponentially fast to 0 as t →
+∞ whenever ρ0 ∈ L+

1,N (ℓ2 (Z+)⊗ C
2) and Cb < 1. Therefore, ̺∞ is the globally stable

equilibrium point of the dynamical system on
(
L+
1,N (ℓ2 (Z+)⊗ C2) , dN

)
given by (1) with

ω 6= 0 and Cb < 1.

Definition 2.3. For any ̺, ˜̺ ∈ L+
1,C (h) we define dC (̺, ˜̺) to be the supremum over all

|tr (A (̺− ˜̺))| with A : h → h linear operator satisfying

max
{
‖Ax‖2 , ‖A∗ x‖2

}
≤
(
‖x‖2 + ‖C x‖2

)
/2 ∀x ∈ D (C) .

Remark 2.4. The space L+
1,C (h) equipped with dC, given by Definition 2.3, is a metric space.

Moreover, tr (|̺− ˜̺|) ≤
√
2 dC (̺, ˜̺) for all ̺, ˜̺∈ L+

1,C (h), and dI (̺, ˜̺) = tr (|̺− ˜̺|), where
I is the identity operator in h.

We turn to the case Cb > 1. Next, we deal with the long-time convergence of the solution
of (1) with ω 6= 0 and κ2+5κγ > γ (κ− 3γ)Cb. In this case, the cavity is good (i.e., κ ≤ 3γ)
or Cb is less than the second threshold (κ2 + 5κγ) / (γ (κ− 3γ)). For these parameter values,
one can obtain the local stability of the periodic solutions of the Maxwell-Bloch equations
(2) by using linear stability analysis (see, e.g., Lemma 4.11 and [33]).

Theorem 2.6. Let Cb > 1 and ω 6= 0. Assume that κ ≤ 3γ or that κ > 3γ and κ2 + 5κγ >
γ (κ− 3γ)Cb. Then, there exist constants ǫ, λ > 0 such that for any N-weak solution (ρt)t≥0

to (1) with ω 6= 0 we have

tr (|ρt − ̺c (ωt− θ∞)|) ≤ K (tr (ρ0N)) exp (−λt) ∀t ≥ 0 (13)

provided that the initial datum ρ0 ∈ L+
1,N (ℓ2 (Z+)⊗ C2) satisfies





∣∣∣∣|tr (ρ0 a)| −
γ
√
Cb − 1√
2 |g|

∣∣∣∣ < ǫ,

∣∣∣∣tr
(
ρ0 σ

−)− κ

g

γ
√
Cb − 1√
2 |g|

tr (ρ0 a)

|tr (ρ0 a)|

∣∣∣∣ < ǫ,

and

∣∣∣∣tr
(
ρ0 σ

3
)
− d

Cb

∣∣∣∣ < ǫ.

(14)

Here, ̺c is given by (4), and θ∞ ∈ [0, 2π[ is the argument of the unit complex number

tr (ρ0 a)

|tr (ρ0 a)|
exp

(
ig

∫ +∞

0

ℑ
(
S (s)

A (s)

)
ds

)
,

where (A (t) , S (t) , D (t)) is the solution of (2) with ω = 0, A (0) = tr (ρ0 a), S (0) =
tr (ρ0 σ

−) and D (0) = tr (ρ0 σ
3). Moreover, under the condition (14) we have

|tr (ρt A)− tr (̺c (ωt− θ∞)A)| ≤ K̃ K (tr (ρ0N)) exp (−λt) ∀t ≥ 0 (15)

for any linear operator A in ℓ2 (Z+)⊗ C
2 satisfying

max {‖Ax‖ , ‖A⋆ x‖} ≤ K̃ ‖x‖N ∀x ∈ D (N) , (16)

where K̃ > 0 and the non-decreasing non-negative function K (·) does not depend on A.
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Proof. Deferred to Section 4.7. In order to facilitate the reading of the proof, we advice to
read first the proofs of Theorems 2.2 and 2.4, although it is not necessary.

According to Theorem 2.6 and Lemma 2.7, given below, we have that there exist a
neighborhood of the limit cycle {̺c (ϑ) : ϑ ∈ [0, 2π]} in

(
L+
1,N (ℓ2 (Z+)⊗ C2) , dN

)
such that

ρt approaches exponentially fast to {̺c (ϑ) : ϑ ∈ [0, 2π]} –in the metric dN– whenever ρ0 is
in this neighborhood. Hence, {̺c (ϑ) : ϑ ∈ [0, 2π]} is a stable limit cycle of the dynamical
system on

(
L+
1,N (ℓ2 (Z+)⊗ C2) , dN

)
given by (1) with ω 6= 0 and κ2 + 5κγ > γ (κ− 3γ)Cb.

By Theorem 2.3, the basis of attraction of {̺c (ϑ) : ϑ ∈ [0, 2π]} is not composed by all N -
regular density operator different from ̺∞.

Lemma 2.7. Consider ̺ ∈ L+
1,N (ℓ2 (Z+)⊗ C2) and Cb > 1. If tr (̺ a) 6= 0 and

inf {dN (̺, ̺c (ϑ)) : ϑ ∈ [0, 2π]} < ε, (17)

then the inequalities (14) hold with ρ0 = ̺ and ǫ =
√
2 ε (1 + 2 κ/g). Here, ̺c and dC

are described by (4) and Definition 2.3, respectively. Moreover, tr (̺ a) 6= 0 whenever
inf {dN (̺, ̺c (ϑ)) : ϑ ∈ [0, 2π]} < γ

√
Cb − 1/ (2 |g|).

Proof. Deferred to Section 4.8.

Under the hypotheses of Theorem 2.6, the laser operates stably. Applying Theorem 2.6
we deduce that if the initial density operator is in a small enough neighborhood of the orbit
{̺c (ϑ) : ϑ ∈ [0, 2π]}, then, for instance, the probability distribution of finding n photons are
pulled toward a Poissonian statistics, the product of the standard deviations of the position
and momentum operators converges to the lower bound of the Heisenberg’s uncertainty
principle, and the quantum linear entropy converges exponentially fast to 1/2+d2/ (2C2

b )−
d2/Cb.

Corollary 2.8. Let Cb > 1 and ω 6= 0. Suppose that κ ≤ 3γ or that κ > 3γ and κ2+5κγ >
γ (κ− 3γ)Cb. Then, there exist constants ǫ, λ > 0 such that the fulfillment of (14) implies
that:

• There exists K > 0 such that all t ≥ 0 and n ∈ N,

∣∣∣∣tr (ρt |en〉 〈en|)− e
− γ2(Cb

−1)
2g2

(
γ2 (Cb − 1)

2g2

)n

/n!

∣∣∣∣ ≤ K exp (−λ t) .

• For all t ≥ 0,
∣∣tr (ρt Q2)− tr (ρtQ)2 − 1/2

∣∣ ≤ K exp (−λ t) and

∣∣tr
(
ρt P

2
)
− tr (ρt P )2 − 1/2

∣∣ ≤ K exp (−λ t) .

• For all t ≥ 0,
∣∣∣(1− tr (ρ2t ))−

(
1
2
+ 1

2
d2

C2
b

− d2

Cb

)∣∣∣ ≤ K exp (−λ t).

11



From the proof of Theorems 2.4 and 2.6 we have supt≥0 tr (ρt N) < +∞, and so combining
Lemma 18 of [41] (see also [38]) with Theorems 2.4 and 2.6 we obtain the long-time limit of
the von Neumann entropy.

Corollary 2.9. Consider the N-weak solution (ρt)t≥0 to (1) with ω 6= 0.

• If Cb < 1, then limt→+∞−tr (ρt log (ρt)) = −1
2
log
(

1
4
− d2

4

)
− d

2
log
(
1+d
1−d

)
.

• If Cb > 1 and γ (κ− 3γ)Cb < κ2+5κγ, then there exist ǫ > 0 such that −tr (ρt log (ρt))
converges to

−1

2
log

(
1

4
− d2

4C2
b

(2Cb − 1)

)
− d

√
2Cb − 1

2Cb

log

(
Cb + d

√
2Cb − 1

Cb − d
√
2Cb − 1

)

as t → +∞ in case (14) holds.

Remark 2.5. If we change the phase of the electromagnetic field of the laser modeled by
(1), then the evolution of the density operator ρ̂t describing the laser, under the mean field
approximation, is governed by the GKSL equation (1) with the mean-field Hamiltonian H
replaced by

H (̺) = ω
(
a†a + σ3/2

)
+ g

(
eiφtr

(
σ−̺

)
a† + e−iφtr

(
σ+̺

)
a+ eiφtr

(
a†̺
)
σ− + e−iφtr (a ̺) σ+

)
.

Since ρt = exp (i (π/2− φ)N) ρ̂t exp (−i (π/2− φ)N) satisfies (1), the long time behavior
of ρ̂t is characterized by that of ρt.

3 Linear quantum master equation

This section is devoted to the non-homogeneous linear evolution equation (6). Suppose
for a moment that ρt is the N -weak solution of the mean-field laser equation (1) with
ρ0 ∈ L+

1,N (ℓ2 (Z+)⊗ C
2). According to [15] we have that t 7→ (tr (a ρt) , tr (σ

−ρt) , tr (σ
3ρt)) is

the solution to the Maxwell-Bloch equations (2) with (tr (a ρ0) , tr (σ
−ρ0) , tr (σ

3ρ0)) as initial
condition. Then, as in [15] we replace in (1) the functions tr (σ−ρt) and tr (a ρt) by S (t)
and A (t), respectively, to obtain that ρt satisfies (6) with initial datum ρ0 and coefficients
α (t) = g S (t) and β (t) = g A (t). We use this relation to study the equilibrium point of
the mean-field laser equation. Moreover, in order to study the cycle of (1) with Cb > 1,
applying the unitary transformation ρt 7→ exp (iω (N + σ3/2) t) ρt exp (−iω (N + σ3/2) t) we
transform (1) into (1) with ω = 0. This leads to treat the fixed points of the system formed
by (2) and (6) with α (t) = g S (t) and β (t) = g A (t), in case ω = 0.

If the functions α (t) and β (t) are constant, i.e., α (t) ≡ α0 ∈ C and β (t) ≡ β0 ∈ C, then
(6) becomes the autonomous quantum master equation





d

dt
ρRt (̺) = Lh

⋆ ρ
R
t +

[
α0 a

† − α0 a+ β0 σ
− − β0 σ

+, ρRt
]

∀t ≥ 0

ρR0 (̺) = ̺
, (18)
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where Lh
⋆ is defined by (7); we recall that d ∈ ]−1, 1[, ω ∈ R and κ, γ > 0. For any

̺ ∈ L+
1,Np (ℓ2(Z+)⊗ C2) with p ∈ N, (18) has a unique Np-weak solution (see [15]). Using

Theorems 4.1 and 4.3 of [30] we get that the family of bounded linear operators

(
ρRt : L+

1,N

(
ℓ2(Z+)⊗ C

2
)
→ L1

(
ℓ2(Z+)⊗ C

2
))

t≥0

can be extended uniquely to a one-parameter semigroup of contractions
(
ρRt (·)

)
t≥0

on

L1 (ℓ
2(Z+)⊗ C2), which indeed is a C0-semigroup as the next theorem shows.

Theorem 3.1. The family
(
ρRt
)
t≥0

is a strongly continuous semigroup on bounded linear

operators on L1 (ℓ
2(Z+)⊗ C2).

Proof. Deferred to Section 4.1.1.

We rewrite (6) as

d

dt
ρt = Lh

⋆ ρt +
[
α0 a

† − α0 a+ β0 σ
− − β0 σ

+, ρt
]

+
[
(α (t)− α0) a

† − (α (t)− α0)a+ (β (t)− β0)σ
− − (β (t)− β0) σ

+, ρt

]
,

(19)

where Lh
⋆ is given by (7). Thus, we see (6) as a perturbation of (18) in case the functions

α (t) and β (t) converge to the points α0 and β0 as t → +∞. Since the current perturbation
theory does not apply to (19) –to the best of our knowledge–, we next develop mathematical
perturbation methods for (19), and so for (1). First, we establish a variation of constant
formula for (19) by using techniques from functional analysis and stochastic processes.

Theorem 3.2. Let (ρt)t≥0 be the N-weak solution of (6) with α, β : [0,∞[ → C continuous
functions. Then, for all t ≥ s ≥ 0 we have

ρt = ρRt−s (ρs) +

∫ t

s

ρRt−u

([(
αR (u) a† − αR (u)a

)
+
(
βR (u)σ− − βR (u)σ+

)
, ρu

])
du, (20)

where ρRt (·) is as in Theorem 3.1, αR (u) = α (u)− α0 and βR (u) = β (u)− β0.

Proof. Deferred to Section 4.1.2.

If α (t) and β (t) converge fast enough to α0 and β0 as t → +∞, then from (20) we infer
that (6) and (18) have similar long-time behavior. In more detail, using Theorem 3.2 we
get the following estimate of the trace distance between the N -weak solution to (6) and the
equilibrium state of (18).

Corollary 3.3. Let (ρt)t≥0 be the N-weak solution of (6) with α, β : [0,∞[ → C continuous

functions. Suppose that ρRt (·) is the one-parameter semigroup of contractions described by
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the N-weak solutions of (18), αR (u) = α (u)− α0, and that βR (u) = β (u)− β0. Then, for
all t ≥ s ≥ 0 we have

tr
(∣∣ρt − ̺f∞ ⊗ ̺a∞

∣∣) ≤ tr
(∣∣ρRt−s (ρs)− ̺f∞ ⊗ ̺a∞

∣∣)+ 4

∫ t

s

|αR (u)|
√
tr (ρuN) + 1 du

+ 2
(∥∥σ−∥∥+

∥∥σ+
∥∥)
∫ t

s

|βR (u)| du,
(21)

where ̺f∞ =
∣∣E
(

α0

κ+iω

)〉 〈
E
(

α0

κ+iω

)∣∣ with E (·) the coherent vector given by (5), and

̺a∞ =




1
2
+

d(γ2+ω2)
2(γ2+ω2+2|β0|2)

dβ0(γ−iω)

γ2+ω2+2|β0|2

dβ̄0(γ+iω)

γ2+ω2+2|β0|2
1
2
− d(γ2+ω2)

2(γ2+ω2+2|β0|2)


 .

Proof. Deferred to Section 4.2.

In view of (21), we now obtain the rate of convergence of the solution of (18) to its
equilibrium state ̺f∞⊗̺a∞. For this purpose, we make use of specific features of (18), together
with mathematical techniques for proving the exponential convergence to the equilibrium
state of a quantum Markov semigroup (see, e.g., [1, 10, 11]). We also employ Theorem 3.4
and Corollary 3.5 to assure the uniqueness of the equilibrium point and the limit cycle of
the non-linear laser equation (1), in the proofs of Theorems 2.1 and 2.2.

Theorem 3.4. Let ρRt (̺) be the N-weak solution of (18) with ̺ ∈ L+
1,N (ℓ2(Z+)⊗ C2). Then

tr
(∣∣ρRt (̺)− ̺f∞ ⊗ ̺a∞

∣∣) ≤ 12 e−γt (1 + |d|) + e−κt

(
2 |α0|√
κ2 + ω2

+ 4
√
tr (̺N)

)
(22)

for all t ≥ 0, where ̺f∞ and ̺a∞ are defined as in Corollary 3.3.

Proof. Deferred to Section 4.2.1.

Applying Theorem 3.4 with α0 = β0 = 0 we get:

Corollary 3.5. Suppose that
(
ρht (̺)

)
t≥0

is the N-weak solution of

d

dt
ρht (̺) = Lh

⋆ ρ
h
t (̺) ∀t ≥ 0, ρh0 (̺) = ̺ ∈ L+

1,N

(
ℓ2(Z+)⊗ C

2
)
, (23)

where Lh
⋆ is as in (7). Let ̺∞ be given by (3). Then, for all t ≥ 0 we have

tr
(∣∣ρht (̺)− ̺∞

∣∣) ≤ 12 e−γt (1 + |d|) + 4 e−κt
√

tr (̺N).

14



The proofs of Theorems 2.4 and 2.6 are mainly based on a perturbation method. Ap-
plying Corollary 3.3 we approximate the solution of (1), resp. an unitary transformation of
it, by the quantum evolution ρRt corresponding to α0 = β0 = 0, resp. ω = 0 and suitable
parameters α0, β0. Then, using Theorem 3.4, or Corollary 3.5, we obtain the stability of the
equilibrium point or the limit cycle of (1), as appropriate. Other perturbation techniques
for GKSL quantum master equations have been developed to treat, for instance, the Markov
property of quantum Markov semigroups [26], the adiabatic elimination (see, e.g., [16] and
references therein), and the estimation of the steady-state density matrix (see, e.g., [27] and
references therein).

4 Proofs

4.1 Proofs of theorems from Section 3

4.1.1 Proof of Theorem 3.1

Proof of Theorem 3.1. Let ̺ be a non-negative trace-class operator on ℓ2(Z+)⊗C2. Accord-
ing to Lemma 7.10 of [30] we have that there exists a sequence of N -regular non-negative
operators ̺n such as limn→+∞ tr (|̺− ̺n|) = 0, where N is the number operator. Now,

tr
(∣∣ρRt (̺)− ρRs (̺)

∣∣)

≤ tr
(∣∣ρRt (̺)− ρRt (̺n)

∣∣)+ tr
(∣∣ρRt (̺n)− ρRs (̺n)

∣∣)+ tr
(∣∣ρRs (̺n)− ρRs (̺)

∣∣)

≤ 2 tr (|̺− ̺n|) + tr
(∣∣ρRt (̺n)− ρRs (̺n)

∣∣) .

From, e.g., [15] it follows that the hypothesis of Theorem 4.3 of [30] holds, and hence
lims→t tr

(∣∣ρRt (̺n)− ρRs (̺n)
∣∣) = 0. This leads to

lim
s→t

tr
(∣∣ρRt (̺)− ρRs (̺)

∣∣) = 0. (24)

Decomposing the real and imaginary parts of an element of L1 (ℓ
2(Z+)⊗ C2) into positive

and negative parts (see, e.g., proof of Theorem 4.1 of [30]) we find that (24) holds for any
̺ ∈ L1 (ℓ

2(Z+)⊗ C
2).

4.1.2 Proof of Theorem 3.2

Let Lfull
⋆ (t), LR

⋆ (t) be the linear operators in L1 (ℓ
2 (Z+)⊗ C

2) defined by

Lfull
⋆ (t) ̺ = Lh

⋆ ̺+
[
α (t) a† − α (t)a + β (t)σ− − β (t) σ+, ̺

]

and LR
⋆ (t) ̺ = Lh

⋆ ̺ +
[
α0 a

† − α0 a+ β0 σ
− − β0 σ

+, ̺
]
for any N -regular density operator

̺ ∈ L1 (ℓ
2 (Z+)⊗ C2); we recall that Lh

⋆ is given by (7). Suppose that ρt is the Np-weak
solution of (6) (see, e.g., [15]). Therefore, ρt satisfies

d

dt
ρt = Lfull

⋆ (t) ρt

15



in the Np-weak sense. According to [15] we have that t 7→ tr
(
ALfull

⋆ (t) ρt
)
is a continuous

function whenever A : ℓ2 (Z+)⊗ C2 → ℓ2 (Z+)⊗ C2 is bounded and ρ0 is N -regular, which
was obtained by using probabilistic techniques. A delicate issue in the proof of Theorem 3.2
is to establish the continuity of t 7→ Lfull

⋆ (t) ρt and t 7→ LR
⋆ (t) ρt with respect to the trace

norm. To this end, we first restrict the initial condition to be N2-regular. As in [15], we
next profit from the probabilistic representation of (6) given by

ρt = E |Xt (ξ)〉 〈Xt (ξ)| (25)

with Xt (ξ) being the solution of the linear stochastic Schrödinger equation on ℓ2(Z+)⊗C2:

Xt (ξ) = ξ +

∫ t

0

G (s)Xs (ξ) ds+

3∑

ℓ=1

∫ t

0

Lℓ Xs (ξ) dW
ℓ
s ∀t ≥ 0, (26)

where G (t) , Lk are the linear operators in ℓ2(Z+) ⊗ C2 defined by G (t) = −iH (t) −∑3
ℓ=1 L

∗
ℓLℓ/2, L1 =

√
2κ a, L2 =

√
γ (1− d) σ−, L3 =

√
γ (1 + d) σ+,

H (t) = ω
(
a†a + σ3/2

)
+ i
(
α (t) a† − α (t)a + β (t)σ− − β (t) σ+

)
,

and W 1,W 2, . . . are independent real Brownian motions on a filtered complete probability
space

(
Ω,F, (Ft)t≥0 ,P

)
(see Theorem 6 of [15] for details).

Lemma 4.1. Suppose that α, β : [0,∞[ → C are continuous functions, and that (ρt)t≥0 is

a N2-weak solution of (6). Then, for any t ≥ 0 we have Lfull
⋆ (s) ρs −→s→t Lfull

⋆ (t) ρt, and
LR

⋆ ρs −→s→t LR
⋆ ρt, where both limits are taken in L1 (ℓ

2 (Z+)⊗ C
2).

Proof. Since ρ0 is N2-regular, there exists ξ ∈ L2
N2 (P, ℓ2 (Z+)⊗ C

2) such that ρ0 = E |ξ〉〈ξ|
(see, e.g., Theorem 3.1 of [30]). Then ρt = E |Xt (ξ)〉 〈Xt (ξ)|, where Xt (ξ) is the strong
N2-solution of (26) (see, e.g., [15]).

Using Xt (ξ) ∈ L2
N2 (P, ℓ2 (Z+)⊗ C2) we deduce that

Yt := Nξ +

∫ t

0

NG (s)Xs (ξ) ds+
3∑

ℓ=1

∫ t

0

NLℓXs (ξ) dW
ℓ
s ∀t ≥ 0

is a well-defined continuous stochastic process. As N is a closed operator in ℓ2 (Z+) ⊗ C2

we have Yt = NXt (ξ) for all t ≥ 0 P-a.s. (see, e.g., Proposition 4.15 of [36]). Moreover,
E
(
sups∈[0,t+1] ‖Ys‖2

)
< ∞ and E

(
sups∈[0,t+1] ‖Xs (ξ)‖2

)
< ∞ (see, e.g., Theorem 4.2.5 of

[37]). Then, applying the dominated convergence theorem we get

lim
n→+∞

E ‖NXsn (ξ)−NXt (ξ)‖2 = lim
n→+∞

E ‖Ysn − Yt‖2 = 0

and limn→+∞ E ‖Xsn (ξ)−Xt (ξ)‖2 = 0, where sn → t as n → +∞. Therefore,

lim
s→t

E ‖Xs (ξ)−Xt (ξ)‖2N = 0 ∀t ≥ 0. (27)
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Suppose that A,B are linear operators in ℓ2 (Z+) ⊗ C2, which are relatively bounded
with respect to N . Then E |AXs (ξ)〉〈BXt (ξ)| is well defined as a Bochner integral in
ℓ2 (Z+) ⊗ C

2 for all s, t ≥ 0 (see, e.g., [30]). Since ‖ |x〉〈y| ‖L1(ℓ2(Z+)⊗C2) = ‖x‖ ‖y‖ for any

x, y ∈ ℓ2 (Z+)⊗ C2,

‖E |AXs (ξ)〉〈BXs (ξ)| − E |AXt (ξ)〉〈BXt (ξ)|‖L1(ℓ2(Z+)⊗C2)

≤ ‖E |AXs (ξ)− AXt (ξ)〉〈BXs (ξ)|‖L1(ℓ2(Z+)⊗C2)

+ ‖E |AXt (ξ)〉〈BXs (ξ)−BXt (ξ)|‖L1(ℓ2(Z+)⊗C2)

≤ E ‖ |AXs (ξ)−AXt (ξ)〉〈BXs (ξ)| ‖L1(ℓ2(Z+)⊗C2)

+ E ‖ |AXt (ξ)〉〈BXs (ξ)− BXt (ξ)| ‖L1(ℓ2(Z+)⊗C2)

= E (‖AXs (ξ)−AXt (ξ)‖ ‖BXs (ξ)‖) + E (‖AXt (ξ)‖ ‖BXs (ξ)−BXt (ξ)‖)

for any s, t ≥ 0. Therefore, using the Cauchy-Schwarz inequality gives

‖E |AXs (ξ)〉〈BXs (ξ)| − E |AXt (ξ)〉〈BXt (ξ)|‖L1(ℓ2(Z+)⊗C2)

≤
√
E
(
‖AXs (ξ)− AXt (ξ)‖2

)√
E
(
‖BXs (ξ)‖2

)

+
√
E
(
‖AXt (ξ)‖2

)√
E
(
‖BXs (ξ)−BXt (ξ)‖2

)
,

and so combining (27) with sups∈[0,t+1] E
(
‖Xs (ξ)‖2N

)
< ∞ we get

‖E |AXs (ξ)〉〈BXs (ξ)| − E |AXt (ξ)〉〈BXt (ξ)|‖L1(ℓ2(Z+)⊗C2) −→s→t 0. (28)

According to ρt = E |Xt (ξ)〉 〈Xt (ξ)| we have that G (t) ρt = E |G (t)Xt (ξ)〉〈Xt (ξ)|,
ρt G (t)∗ = E |Xt (ξ)〉〈G (t)Xt (ξ)| and Lℓ ρt L

∗
ℓ = E |LℓXt (ξ)〉〈LℓXt (ξ)| (see, e.g., Theorem

3.2 of [30]). Hence,

Lfull
⋆ (t) ρt = G (t) ρt + ρt G (t)∗ +

3∑

ℓ=1

Lℓ ρt L
∗
ℓ

= E |G (t)Xt (ξ)〉〈Xt (ξ)|+ E |Xt (ξ)〉〈G (t)Xt (ξ)|+
3∑

ℓ=1

E |LℓXt (ξ)〉〈LℓXt (ξ)| .

Since α, β : [0,∞[ → C are continuous functions and σ−, σ+, σ3 ∈ L (ℓ2 (Z+)⊗ C2), combin-
ing (28) with the fact that a†a, a† and a are relatively bounded with respect to N we obtain
that t 7→ E |G (t)Xt (ξ)〉〈Xt (ξ)| + E |Xt (ξ)〉〈G (t)Xt (ξ)| +

∑3
ℓ=1E |LℓXt (ξ)〉〈LℓXt (ξ)| is a

continuous function from [0,∞[ to L1 (ℓ
2 (Z+)⊗ C

2). Hence

Lfull
⋆ (s) ρs −→s→t Lfull

⋆ (t) ρt in L1

(
ℓ2 (Z+)⊗ C

2
)
.

Similarly,

LR
⋆ (t) ρt = E

∣∣GR (t)Xt (ξ)〉〈Xt (ξ)
∣∣+ E

∣∣Xt (ξ)〉〈GR (t)Xt (ξ)
∣∣+

3∑

ℓ=1

E |LℓXt (ξ)〉〈LℓXt (ξ)| ,
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where GR (t) is defined by G (t) with α (t) = α0 and β (t) = β0. Then LR
⋆ (s) ρs converges

in L1 (ℓ
2 (Z+)⊗ C2) to LR

⋆ (t) ρt as s → t.

Now, applying functional analysis techniques we show the assertion of Theorem 3.2 in
case ρ0 is a N2-regular density operator.

Lemma 4.2. Under the assumptions of Lemma 4.1,

lim
s→t

ρs − ρt
s− t

= Lfull
⋆ (t) ρt in L1

(
ℓ2 (Z+)⊗ C

2
)
.

Proof. Fix t ≥ 0. Since (ρt)t≥0 satisfies (6) in the Bochner integral sense (see, e.g., Theorem
6 of [15]),

ρs − ρt
s− t

− Lfull
⋆ (t) ρt =

1

s− t

∫ s

t

(
Lfull

⋆ (u) ρu − Lfull
⋆ (t) ρt

)
du in L1 (h) (29)

for all s ≥ 0 with s 6= t . From Lemma 4.1 it follows the continuity of the function
u 7→ Lfull

⋆ (u) ρu −Lfull
⋆ (t) ρt defined from [0,+∞[ to L1 (ℓ

2 (Z+)⊗ C2). Therefore,

lim
s→t

1

s− t

∫ s

t

(
Lfull

⋆ (u) ρu − Lfull
⋆ (t) ρt

)
du = 0 in L1

(
ℓ2 (Z+)⊗ C

2
)
,

and so the lemma follows from (29).

Lemma 4.3. Assume the hypothesis of Lemma 4.1. Then, for all t ≥ s ≥ 0 we have

ρt = ρRt−s (ρs) +

∫ t

s

ρRt−u

([(
αR (u) a† − αR (u)a

)
+
(
βR (u)σ− − βR (u)σ+

)
, ρu

])
du,

where ρRt (·) is as in Theorem 3.1, αR (u) = α (u)− α0 and βR (u) = β (u)− β0.

Proof. Consider t > s ≥ 0. For any non-zero real number ∆ such that −s ≤ ∆ < t− s we
have

1

∆

(
ρRt−(s+∆) (ρs+∆)− ρRt−s (ρs)

)
+ LR

⋆ ρRt−s (ρs)− ρRt−s

(
Lfull

⋆ (s) ρs
)

= ρRt−(s+∆)

(
1

∆
(ρs+∆ − ρs)−Lfull

⋆ (s) ρs

)
+ ρRt−(s+∆)

(
Lfull

⋆ (s) ρs
)
− ρRt−s

(
Lfull

⋆ (s) ρs
)

+
1

∆

(
ρRt−(s+∆) (ρs)− ρRt−s (ρs)

)
+ LR

⋆ ρRt−s (ρs) .

Since ρRt−(s+∆) is a contraction acting on L1 (ℓ
2 (Z+)⊗ C2),

tr

(∣∣∣∣ρ
R
t−(s+∆)

(
1

∆
(ρs+∆ − ρs)− Lfull

⋆ (s) ρs

)∣∣∣∣
)

≤ tr

(∣∣∣∣
1

∆
(ρs+∆ − ρs)− Lfull

⋆ (s) ρs

∣∣∣∣
)
,
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and so applying Lemma 4.2 yields

tr

(∣∣∣∣ρ
R
t−(s+∆)

(
1

∆
(ρs+∆ − ρs)− Lfull

⋆ (s) ρs

)∣∣∣∣
)

−→∆→0 0.

The operator LR
⋆ is equal to Lfull

⋆ (t) in case α (t) = α0 and β (t) = β0 for all t ≥ 0. Hence,
using Lemma 4.2 we deduce that LR

⋆ coincides with the infinitesimal generator of the strongly
continuous semigroup

(
ρRt
)
t≥0

on the subset L+
1,N2 (ℓ

2 (Z+)⊗ C2), as well as

tr

(∣∣∣∣
1

∆

(
ρRt−(s+∆) (ρs)− ρRt−s (ρs)

)
+ LR

⋆ ρRt−s (ρs)

∣∣∣∣
)

−→∆→0 0.

Moreover, the strong continuity of the semigroup
(
ρRu
)
u≥0

implies

tr
(∣∣ρRt−(s+∆)

(
Lfull

⋆ (s) ρs
)
− ρRt−s

(
Lfull

⋆ (s) ρs
)∣∣) −→∆→0 0.

Therefore, 1
∆

(
ρRt−(s+∆) (ρs+∆)− ρRt−s (ρs)

)
+ LR

⋆ ρRt−s (ρs)− ρRt−s

(
Lfull

⋆ (s) ρs
)
converges to 0

in L1 (ℓ
2 (Z+)⊗ C2) as ∆ → 0. Thus

d

ds
ρRt−s (ρs) = ρRt−s

(
Lfull

⋆ (s) ρs
)
− LR

⋆ ρRt−s (ρs) = ρRt−s

(
Lfull

⋆ (s) ρs
)
− ρRt−s

(
LR

⋆ ρs
)
,

and consequently
d

ds
ρRt−s (ρs) = ρRt−s

(
Lfull

⋆ (s) ρs − LR
⋆ ρs

)
. (30)

Now, we deduce the continuity of the map s 7→ ρRt−s

(
Lfull

⋆ (s) ρs −LR
⋆ ρs

)
. The contrac-

tion property of ρRt−u leads to

tr
(∣∣ρRt−s

(
Lfull

⋆ (s) ρs −LR
⋆ ρs

)
− ρRt−u

(
Lfull

⋆ (u) ρu − LR
⋆ ρu

)∣∣)

≤ tr
(∣∣ρRt−s

(
Lfull

⋆ (s) ρs −LR
⋆ ρs

)
− ρRt−u

(
Lfull

⋆ (s) ρs − LR
⋆ ρs

)∣∣)

+ tr
(∣∣ρRt−u

(
Lfull

⋆ (s) ρs − LR
⋆ ρs

)
− ρRt−u

(
Lfull

⋆ (u) ρu −LR
⋆ ρu

)∣∣)

≤ tr
(∣∣ρRt−s

(
Lfull

⋆ (s) ρs −LR
⋆ ρs

)
− ρRt−u

(
Lfull

⋆ (s) ρs − LR
⋆ ρs

)∣∣)

+ tr
(∣∣(Lfull

⋆ (s) ρs − LR
⋆ ρs

)
−
(
Lfull

⋆ (u) ρu − LR
⋆ ρu

)∣∣) .
According to Lemma 4.1 we have

lim
u→s

tr
(∣∣(Lfull

⋆ (s) ρs − LR
⋆ ρs

)
−
(
Lfull

⋆ c (u) ρu −LR
⋆ ρu

)∣∣) = 0,

and the strong continuity of
(
ρRr
)
r≥0

yields

lim
u→s

tr
(∣∣ρRt−s

(
Lfull

⋆ (s) ρs − LR
⋆ ρs

)
− ρRt−u

(
Lfull

⋆ (s) ρs − LR
⋆ ρs

)∣∣) = 0.

Then, s 7→ ρht−s

(
Lfull

⋆ (s) ρs − Lh
⋆ ρs
)
is continuous. By the fundamental theorem of calculus

for the Bochner integral, integrating (30) gives

ρR0 (ρt)− ρRt−s (ρs) =

∫ t

s

ρRt−u

(
Lfull

⋆ (u) ρu −LR
⋆ ρu

)
du,

which is the desired conclusion.
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Now, we extend Lemma 4.3 to any N -regular initial condition by combining a limit
procedure with the probabilistic representation (25).

Proof of Theorem 3.2. We start by approximating the N -regular initial condition ρ0 by N2-
regular density operators. As ρ0 ∈ L+

1,N (ℓ2(Z+)⊗ C2) we have that ρ0 = E |ξ〉〈ξ| for certain
ξ ∈ L2

N (P, ℓ2 (Z+)⊗ C
2) (see, e.g., Theorem 3.1 of [30]). Let prn denote the orthonormal

projection of ℓ2 (Z+)⊗C2 onto the linear span of e0⊗ e−, e0⊗ e+, . . . , en⊗ e−, en⊗ e+. Since

E ‖prn (ξ)‖2 + E
∥∥N2 prn (ξ)

∥∥2 ≤ E ‖ξ‖2 + n2
E

n∑

k=0

∑

η=±
|〈ek ⊗ eη, ξ〉|2 ≤ 1 + n2,

prn (ξ) ∈ L2
N2 (P, ℓ2 (Z+)⊗ C2). The increasing sequence E ‖prn (ξ)‖2 converges to E ‖ξ‖2 =

1 as n → +∞, and so there exists n0 ∈ N such that E ‖prn (ξ)‖2 > 0 for all n ≥ n0. For any

n ≥ n0 we set ξn := prn (ξ) /
√

E ‖prn (ξ)‖2. Then ξn ∈ L2
N2 (P, ℓ2 (Z+)⊗ C2).

Since N commutes with prn,
∥∥∥∥
√
E ‖prn (ξ)‖2Np ξ −Npprn (ξ)

∥∥∥∥
2

=

(√
E ‖prn (ξ)‖2 − 1

)2

‖prn (Np ξ)‖2 +
(
E ‖prn (ξ)‖2

)
‖Npξ − prn (N

pξ)‖2

with p = 0, 1, and so

E
(
‖ξ − ξn‖2N

)
≤

(√
E ‖prn (ξ)‖2 − 1

)2

E ‖prn (ξ)‖2
(
E
(
‖ξ‖2

)
+ E

(
‖Nξ‖2

))

+ E
(
‖ξ − prn (ξ)‖2

)
+ E

(
‖Nξ − prn (Nξ)‖2

)
−→n→+∞ 0.

Let Xt (ξ) be the strong N -solution of (26). Since ρ0 = E |ξ〉〈ξ|, ρt = E |Xt (ξ)〉 〈Xt (ξ)|
(see, e.g., [15]). Similarly, ρnt := E |Xt (ξn)〉 〈Xt (ξn)| is the N2-weak solution of (6) with
initial condition E |ξn〉 〈ξn| (see, e.g., [15]), where Xt (ξn) is the strong N2-solution of (26)
with initial datum ξn. Lemma 4.3 yields

ρnt = ρRt−s (ρ
n
s )

+

∫ t

s

ρRt−u

([(
αR (u) a† − αR (u)a

)
+
(
βR (u)σ− − βR (u)σ+

)
, ρnu

])
du

(31)

for all t ≥ s ≥ 0 and n ≥ n0.
The linearity of (26) leads to

E
(
‖Xu (ξ)−Xu (ξn)‖2N

)
= E

(
‖Xu (ξ − ξn)‖2N

)
≤ K (u)E

(
‖ξ − ξn‖2N

)

for all u ≥ 0 (see, e.g., [15]). Therefore,

lim sup
n→+∞

sup
u∈[0,t]

E
(
‖Xu (ξ)−Xu (ξn)‖2N

)
≤ lim

n→+∞
K (t)E

(
‖ξ − ξn‖2N

)
= 0. (32)
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Consider the linear operators A,B in ℓ2 (Z+)⊗C2 that are relatively bounded with respect
to N . Then

tr (|E |AXu (ξ)〉〈BXu (ξ)| − E |AXu (ξn)〉〈BXu (ξn)||)
≤ tr (|E |AXu (ξ)− AXu (ξn)〉〈BXu (ξ)||)
+ tr (|E |AXu (ξn)〉〈BXu (ξ)− BXu (ξn)||)

≤ E (‖AXu (ξ)− AXu (ξn)‖ ‖BXu (ξ)‖) + E (‖AXu (ξn)‖ ‖BXu (ξ)−BXu (ξn)‖)

≤
√
E
(
‖AXu (ξ)− AXu (ξn)‖2

)√
E
(
‖BXu (ξ)‖2

)

+
√

E
(
‖AXu (ξn)‖2

)√
E
(
‖BXu (ξ)−BXu (ξn)‖2

)
.

Since

E
(
‖AXu (ξn)‖2

)
≤ K E

(
‖Xu (ξn)‖2N

)
≤ K (u)E

(
‖ξn‖2N

)
≤ K (u)E

(
‖ξ‖2N

)

(see, e.g., [15]), applying (32) gives

sup
u∈[0,t]

tr (|E |AXu (ξ)〉〈BXu (ξ)| − E |AXu (ξn)〉〈BXu (ξn)||) −→n→+∞ 0. (33)

We shall now proceed to tend n to +∞ in (31). Applying (33) we obtain

sup
u∈[0,t]

tr (|ρu − ρnu|) = sup
u∈[0,t]

tr (|E |Xu (ξ)〉〈Xu (ξ)|−E |Xu (ξn)〉〈Xu (ξn)||) −→n→+∞ 0.

Since ρRt−s is a contraction acting on L1 (ℓ
2 (Z+)⊗ C2),

tr
(∣∣ρRt−s (ρs)− ρRt−s (ρ

n
s )
∣∣) ≤ tr (|ρs − ρns |) −→n→+∞ 0.

Moreover,

tr
(∣∣∣ρRt−u

([
βR (u)σ− − βR (u)σ+, ρu − ρnu

])∣∣∣
)
≤ tr

(∣∣∣
[
βR (u)σ− − βR (u)σ+, ρu − ρnu

]∣∣∣
)

≤ 2 |βR (u)|
(∥∥σ−∥∥+

∥∥σ+
∥∥) tr (|ρu − ρnu|) .

This implies

sup
u∈[0,t]

tr
(∣∣∣ρRt−u

([
βR (u)σ− − βR (u)σ+, ρu − ρnu

])∣∣∣
)
−→n→+∞ 0.

Using that ρRt (·) is a contraction semigroup gives

tr
(∣∣∣ρRt−u

([
αR (u) a† − αR (u)a, ρu − ρnu

]∣∣∣
))

≤ tr
(∣∣∣
[
αR (u) a† − αR (u)a, ρu − ρnu

]∣∣∣
)
.

(34)
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Since
[
αR (u) a† − αR (u)a, ρu − ρnu

]

= E

∣∣∣
(
αR (u) a† − αR (u)a

)
Xu (ξ)〉〈Xu (ξ)

∣∣∣− E

∣∣∣
(
αR (u) a† − αR (u)a

)
Xu (ξn)〉〈Xu (ξn)

∣∣∣

+ E

∣∣∣Xu (ξ)〉〈
(
αR (u) a† − αR (u)a

)
Xu (ξ)

∣∣∣− E

∣∣∣Xu (ξn)〉〈
(
αR (u) a† − αR (u)a

)
Xu (ξn)

∣∣∣

(see, e.g., Theorem 3.2 of [30]), combining (33) with (34) we deduce that

sup
u∈[0,t]

tr
(∣∣∣ρRt−u

([
αR (u) a† − αR (u)a, ρu − ρnu

]∣∣∣
))

−→n→+∞ 0.

Now, taking the limit as n → +∞ in (31) we obtain (20).

4.2 Proof of Corollary 3.3

Lemma 4.4. Suppose that the operator C : D (C) ⊂ h → h is positive and self-adjoint.
Asume that ̺ is a C-regular density operator in h. Consider the linear operator A : D (A) ⊂
h → h. Then:

• tr (|A̺|) ≤
√
tr (̺A⋆A) whenever A,A⋆A ∈ L ((D (C) , ‖·‖C) , h).

• tr (|̺A|) ≤
√
tr (̺AA⋆) provided that A⋆, AA⋆ ∈ L ((D (C) , ‖·‖C) , h).

Proof. Since ̺ ∈ L+
1,C (h), there exists ξ ∈ L2

C (P, h) such that ̺ = E |ξ〉〈ξ| and E
(
‖ξ‖2

)
= 1

(see, e.g., Theorem 3.1 of [30]). If A,A⋆A ∈ L ((D (C) , ‖·‖C) , h), then using Theorem 3.2 of
of [30] we obtain

tr (|A̺|) = sup
‖B‖=1

|tr (BA̺)| = sup
‖B‖=1

|E〈ξ, BA ξ〉| ≤ E (‖ξ‖ ‖Aξ‖) ,

and so

E (‖ξ‖ ‖Aξ‖) ≤
√
E
(
‖ξ‖2

)√
E
(
‖Aξ‖2

)
=
√

E〈A⋆Aξ, ξ〉 =
√

tr (̺A⋆A),

because E
(
‖ξ‖2

)
= 1. Similarly, in case A⋆, AA⋆ ∈ L ((D (C) , ‖·‖C) , h) we have tr (|̺A|) =

sup‖B‖=1 |E〈A⋆ ξ, Bξ〉| =
√

E
(
‖A⋆ ξ‖2

)
=
√

tr (̺AA⋆).

Proof of Corollary 3.3. Theorem 3.2 leads to

tr
(∣∣ρt − ̺f∞ ⊗ ̺a∞

∣∣) ≤ tr
(∣∣ρRt−s (ρs)− ̺f∞ ⊗ ̺a∞

∣∣)

+ tr

(∣∣∣∣
∫ t

s

ρRt−u

([(
αR (u) a† − αR (u)a

)
+
(
βR (u)σ− − βR (u)σ+

)
, ρu

])
du

∣∣∣∣
)
,
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where t ≥ s ≥ 0. Using that ρRt−u is a contraction acting on L1 (ℓ
2 (Z+)⊗ C2) we obtain

tr
(∣∣ρt − ̺f∞ ⊗ ̺a∞

∣∣) ≤ tr
(∣∣ρRt−s (ρs)− ̺f∞ ⊗ ̺a∞

∣∣)

+

∫ t

s

tr
(∣∣∣
[(

αR (u) a† − αR (u)a
)
+
(
βR (u)σ− − βR (u)σ+

)
, ρu

]∣∣∣
)
du,

and so

tr
(∣∣ρt − ̺f∞ ⊗ ̺a∞

∣∣) ≤ tr
(∣∣ρRt−s (ρs)− ̺f∞ ⊗ ̺a∞

∣∣)

+

∫ t

s

|αR (u)|
(
tr
(∣∣a†ρu

∣∣)+ tr
(∣∣ρu a†

∣∣)+ tr (|a ρu|) + tr (|ρu a|)
)
du

+

∫ t

s

|βR (u)|
(
tr
(∣∣σ−ρu

∣∣)+ tr
(∣∣ρu σ−∣∣)+ tr

(∣∣σ+ρu
∣∣)+ tr

(∣∣ρuσ+
∣∣)) du.

As σ± are bounded operators,

tr
(∣∣σ−ρu

∣∣)+ tr
(∣∣ρu σ−∣∣)+ tr

(∣∣σ+ρu
∣∣)+ tr

(∣∣ρu σ+
∣∣) ≤

(
2
∥∥σ−∥∥+ 2

∥∥σ+
∥∥) tr (ρu)

= 2
∥∥σ−∥∥+ 2

∥∥σ+
∥∥ .

By a†a = N , a a† = N + I and tr (ρu) = 1, applying Lemma 4.4 yields

tr
(∣∣a†ρu

∣∣)+ tr
(∣∣ρu a†

∣∣)+ tr (|a ρu|) + tr (|ρu a|)
≤ 2
√

tr (ρu (N + I)) + 2
√
tr (ρu N) ≤ 4

√
tr (ρu N) + 1.

We thus get (21).

4.2.1 Proof of Theorem 3.4

We rewrite (18) as

d

dt
ρRt (̺) = Lf

⋆ ⊗ I
(
ρRt (̺)

)
+ I ⊗La

⋆

(
ρRt (̺)

)
,

where Lf
⋆ is the unbounded linear operator in L1 (ℓ

2 (Z+)) given by

Lf
⋆ (˜̺) =

[
− (κ + iω) a†a +

(
α0a

† − α0 a
)
, ˜̺
]
+ 2κ a ˜̺a† (35)

and for any ˆ̺ ∈ C2×2 we set

La
⋆ (ˆ̺) = −iω

[
1

2
σ3, ˆ̺

]
+
[
β0σ

− − β0σ
+, ˆ̺
]
+

γ (1− d)

2

(
2 σ− ˆ̺σ+ − σ+σ− ˆ̺− ˆ̺σ+σ−)

+
γ (1 + d)

2

(
2 σ+ ˆ̺σ− − σ−σ+ ˆ̺− ˆ̺σ−σ+

)
. (36)

Here, d, ω ∈ R, α0, β0 ∈ C and γ, κ > 0. Using matrix analysis tools we now study the long
time behavior of the semigroup of bounded operators on C2×2 generated by La

⋆.
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Lemma 4.5. Consider the linear ordinary differential equation
{

d

dt
ρat = La

⋆ (ρ
a
t ) ∀t ≥ 0, ρa0 = ̺a , (37)

where ρat ∈ C
2×2 and La

⋆ is as in (36) with d, ω ∈ R, γ > 0 and β0 ∈ C. Then

tr (|ρat − tr (̺a) ̺a∞|) ≤ 4 exp (−γ t) (‖̺a‖F + |d tr (̺a)|) ∀t ≥ 0,

where ‖̺a‖F stands for the Frobenius norm of ̺a, and ̺a∞ is as in Corollary 3.3.

Proof. Decomposing ρat in the canonical basis of C2×2 we obtain

ρat = α++ (t) |e+〉 〈e+|+ α+− (t) |e+〉 〈e−|+ α−+ (t) |e−〉 〈e+|+ α−− (t) |e−〉 〈e−| ,

where α±± (t) and α±∓ (t) belong to C. Then

d

dt
ρat = La

⋆ (ρ
a
t ) = α++ (t)La

⋆ (|e+〉 〈e+|) + α+− (t)La
⋆ (|e+〉 〈e−|)

+ α−+ (t)La
⋆ (|e−〉 〈e+|) + α−− (t)La

⋆ (|e−〉 〈e−|) .

Computing explicitly La
⋆ (|e±〉 〈e±|) and La

⋆ (|e±〉 〈e∓|) yields




d

dt
α++ (t) = −β0 α+− (t)− β0 α−+ (t)− γ (1− d)α++ (t) + γ (1 + d)α−− (t)

d

dt
α−− (t) = β0 α+− (t) + β0 α−+ (t) + γ (1− d)α++ (t)− γ (1 + d)α−− (t)

d

dt
α+− (t) = − (γ + iω)α+− (t) + β0 α++ (t)− β0 α−− (t)

d

dt
α−+ (t) = (−γ + iω)α−+ (t) + β0 α++ (t)− β0 α−− (t)

.

Adding the first two equations we get

α++ (t) + α−− (t) = α++ (0) + α−− (0) = tr (̺a) , (38)

and so subtracting the first two equations we deduce that

d

dt
(α++ (t)− α−− (t)) = −2β0 α+− (t)− 2β0 α−+ (t)− 2γ (α++ (t)− α−− (t)) + 2γd tr (̺a) .

Therefore

d

dt



α++ (t)− α−− (t)

α+− (t)
α−+ (t)


 = A



α++ (t)− α−− (t)

α+− (t)
α−+ (t)


 +



2γd tr (̺a)

0
0


 , (39)

where A =



−2γ −2β0 −2β0

β0 −γ − iω 0

β0 0 −γ + iω


 .
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Solving explicitly (39), together the calculation of A−1
(
2γd tr (̺a) 0 0

)⊤
, gives



α++ (t)− α−− (t)

α+− (t)
α−+ (t)


− d tr (̺a)

γ2 + ω2 + 2 |β0|2




γ2 + ω2

β0 (γ − iω)

β0 (γ + iω)




= exp (At)





α++ (0)− α−− (0)

α+− (0)
α−+ (0)


− d tr (̺a)

γ2 + ω2 + 2 |β0|2




γ2 + ω2

β0 (γ − iω)

β0 (γ + iω)




 .

(40)

Consider v ∈ C3 and M =



1 0 0
0 2 0
0 0 2


. Then

d

dt
〈exp (At) v,M exp (At) v〉 = 〈exp (At) v, (A⋆M +M A) exp (At) v〉

= −4γ ‖exp (At) v‖2 ≤ −2γ〈exp (At) v,M exp (At) v〉,
and hence for all t ≥ 0,

‖exp (At) v‖2 ≤ 〈exp (At) v,M exp (At) v〉 ≤ exp (−2γ t) 〈v,M v〉 ≤ 2 exp (−2γ t) ‖v‖2 .
From (40) it follows

∥∥∥∥∥∥



α++ (t)− α−− (t)

α+− (t)
α−+ (t)


− d tr (̺a)

γ2 + ω2 + 2 |β0|2




γ2 + ω2

β0 (γ − iω)

β0 (γ + iω)



∥∥∥∥∥∥

≤
√
2 exp (−γ t)



∥∥∥∥∥∥



α++ (0)− α−− (0)

α+− (0)
α−+ (0)



∥∥∥∥∥∥
+

|d tr (̺a)|
√

γ2 + ω2

√
γ2 + ω2 + 2 |β0|2




≤ 2 exp (−γ t)




∥∥∥∥∥∥∥∥




α++ (0)
α−− (0)
α+− (0)
α−+ (0)




∥∥∥∥∥∥∥∥
+ |d tr (̺a)|


 .

Using (38) we deduce that

tr

(∣∣∣∣ρ
a
t −

tr (̺a)

2

(
1 0
0 1

)
− d tr (̺a)

γ2 + ω2 + 2 |β0|2
(
(γ2 + ω2) /2 β0 (γ − iω)

β0 (γ + iω) − (γ2 + ω2) /2

)∣∣∣∣
)

≤
√
2

∥∥∥∥∥∥∥∥




α++ (t)
α−− (t)
α+− (t)
α−+ (t)


− tr (̺a)

2




1
1
0
0


− d tr (̺a)

γ2 + ω2 + 2 |β0|2




(γ2 + ω2) /2
− (γ2 + ω2) /2
β0 (γ − iω)

β0 (γ + iω)




∥∥∥∥∥∥∥∥

≤ 4 exp (−γ t)




∥∥∥∥∥∥∥∥




α++ (0)
α−− (0)
α+− (0)
α−+ (0)




∥∥∥∥∥∥∥∥
+ |d tr (̺a)|


 .
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Next, by means of the Weyl operator we connect Lf
⋆ with a GKSL master equation in

L+
1 (ℓ2 (Z+)) whose coefficients only involve annihilation, number and identity operators.

Then, applying techniques used to get the convergence of quantum dynamical semigroups
to the ground state we obtain the exponential convergence to the equilibrium of the regular
solution of (41) given below.

Lemma 4.6. Suppose that
(
ρft

)
t≥0

is the N-weak solution to

d

dt
ρft = Lf

⋆

(
ρft

)
∀t ≥ 0, ρf0 = ̺f , (41)

where ̺f ∈ L+
1 (ℓ2 (Z+)) is a N-regular density operator and Lf

⋆ is described by (35) with
κ > 0, α0 ∈ C and ω ∈ R. Then

tr

(∣∣∣∣ρ
f
t −

∣∣∣∣E
(

α0

κ+ iω

)〉〈
E
(

α0

κ+ iω

)∣∣∣∣
∣∣∣∣
)

≤ 2e−κ t
(√

tr (̺f N) + |α0| /
√
κ2 + ω2

)

for all t ≥ 0, where E (·) is defined by (5).

Proof. Consider the unitary Weyl operator W (u) defined by

W (u) e (z) = exp
(
− |u|2 /2− uz

)
e (z + u) ∀z ∈ C,

where u ∈ C and the exponential vector associated with ζ ∈ C is given by e (ζ) =∑
n≥0 ζ

nen/
√
n! (see, e.g., [35]). Applying the well-known relations

W (u)W (−u) = I, W (u) aW (−u) = a− uI, W (u) a† W (−u) = a† − uI

we obtain W (u) a†aW (−u) = a†a− ua† − ua + |u|2. Take

v = α0/ (κ + iω) .

For any ξ ∈ L2
N (P, ℓ2 (Z+)), W (−v)E |ξ〉〈ξ| W (v) = E |W (−v) ξ〉〈W (−v) ξ| and

E
(
‖N W (−v) ξ‖2

)
≤ ‖W (−v)‖2 E

∥∥(a†a− va† − v̄a+ |v|2
)
ξ
∥∥2 ≤K (|v|)E

(
‖ξ‖2N

)
.

Hence, the application ˜̺ 7→ W (−v) ˜̺W (v) preserves the property of being N -regular.

Set L̃ =
√
2κa +

√
2κ v I and

G̃ = − (κ + iω) a†a− 2κα0

κ− iω
a + |α0|2

(
1

κ− iω
− 2κ

κ2 + ω2

)
I.

Then, for all x in the domain of a†a we have

√
2κ a x = W

(
α0

κ+ iω

)
L̃W

(
− α0

κ + iω

)
x
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and

− (κ+ iω) a†a x+
(
α0a

† − α0a
)
x = W

(
α0

κ+ iω

)
G̃W

(
− α0

κ + iω

)
x.

This gives

Lf
⋆ (˜̺) = W (v) G̃W (−v) ˜̺+ ˜̺W (v) G̃ ∗W (−v)

+W (v) L̃W (−v) ˜̺W (v) L̃ ∗ W (−v) ,
(42)

for any N -regular density operator ˜̺ in ℓ2 (Z+).
Choose ρ̃t = W (−v) ρft W (v). Then, the density operator ρ̃t is N -regular. Combining

(41) with (42) we obtain that (ρ̃t)t≥0 is the N -weak solution to

{
d

dt
ρ̃t = L̃⋆ (ρ̃t) ∀t ≥ 0, ρ̃0 = W (−v) ̺f W (v) , (43)

where L̃⋆ (˜̺) = G̃ ˜̺+ ˜̺G̃ ∗ + L̃ ˜̺L̃ ∗. A computation yields
〈
ej, L̃⋆ (˜̺) ej

〉
= −2κj 〈ej , ˜̺ej〉+ 2κ (j + 1) 〈ej+1, ˜̺ej+1〉 ∀j ≥ 0

whenever ˜̺ is a N -regular density operator in ℓ2 (Z+). Applying (43) we deduce that the
functions ϕj (t) := 〈ej, ρ̃t ej〉 satisfy

ϕ′
j (t) = −2κjϕj (t) + 2κ(j + 1)ϕj+1 (t) , (44)

which are the Kolmogorov equations for a pure-death process. In case ϕj(0) = δjn, for all

j ≥ 0, the solution of (44) is ϕj (t) =

(
n
j

)
e−2κ j t (1− e−2κ t)

n−j
for 0 ≤ j ≤ n, and ϕj (t) = 0

if j > n. Therefore, 〈e0, ρ̃t e0〉 = ϕ0 (t) =
∑

n≥0 ϕn (0) (1− e−2κt)
n
.

According to Theorem 4.2 of [1] we have tr (|ρ̃t − |e0〉 〈e0||) ≤ 2 (1− 〈e0, ρ̃te0〉)1/2. Using
that ϕn (0) ≥ 0 and

∑
n≥0 ϕn (0) = 1 we obtain

0 ≤ 1− 〈e0, ρ̃t e0〉 =
∑

n≥1

ϕn (0)
(
1−

(
1− e−2κt

)n) ≤ e−2κt
∑

n≥1

nϕn (0) ,

because 1− (1− x)n ≤ nx for any n ∈ N and x ∈ [0, 1]. Hence

tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt

(
∑

n≥0

〈n en, ρ̃0 en〉
)1/2

= 2e−κt

(
∑

n≥0

〈N en, ρ̃0 en〉
)1/2

,

and so

tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt (tr (ρ̃0N))1/2 = 2e−κt
(
tr
(
̺f W (v)N W (−v)

))1/2

(see, e.g., Theorem 3.2 of [30]). Then

tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt
(
tr
(
̺f
(
N − va† − v̄a + |v|2

)))1/2
. (45)
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Due to ̺f = E |ξ〉〈ξ| for certain ξ ∈ L2
N (P, ℓ2 (Z+)),

∣∣tr
(
̺f a†

)∣∣ = |E〈a ξ, ξ〉| ≤
√

E |a ξ|2
√

E |ξ|2 =
√

E |a ξ|2 =
√
E〈N ξ, ξ〉 =

√
tr (̺f N)

and
∣∣tr
(
̺f a

)∣∣ =
∣∣E〈a† ξ, ξ〉

∣∣ ≤
√

E |a ξ|2 =
√

tr (̺f N) (see, e.g., Theorem 3.2 of [30]). From

(45) we deduce that tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt
(√

tr (̺f N) + |v|
)
, and consequently

tr
(∣∣∣ρft −W (v) |e0〉 〈e0|W (−v)

∣∣∣
)
= tr (|W (v) (ρ̃t − |e0〉 〈e0|)W (−v)|)

≤ ‖W (v)‖ ‖W (−v)‖ tr (|ρ̃t − |e0〉 〈e0||) = tr (|ρ̃t − |e0〉 〈e0||) ≤ 2e−κt
(√

tr (̺f N) + |v|
)
.

Since W (v) e0 = W (v) e (0) = exp
(
− |v|2 /2

)
e (v),

W (v) |e0〉 〈e0|W (−v) = exp
(
− |α0/ (κ+ iω)|2

) ∣∣∣∣e
(

α0

κ + iω

)〉〈
e

(
α0

κ+ iω

)∣∣∣∣ .

Finally, applying Lemma 4.5 we deduce the convergence to 0 of the non-diagonal compo-
nents of some representation of ρRt (̺) as L1 (ℓ

2 (Z+))
2,2

matrix. Then, using Lemmata 4.5
and 4.6 we get (22).

Proof of Theorem 3.4. The solution of (37) is denoted by ρat (̺
a), and we write

(
ρft

)
t≥0

for

the semigroup N -solution of the quantum master equation (41) (see [30] for details). Due
to ̺ is N -regular, ̺ = E |ξ+ ⊗ e+ + ξ− ⊗ e−〉〈ξ+ ⊗ e+ + ξ− ⊗ e−| with ξ± ∈ L2

N (P, ℓ2 (Z+)),
and so

̺ = ̺++ ⊗ |e+〉 〈e+|+ ̺+− ⊗ |e+〉 〈e−|+ ̺−+ ⊗ |e−〉 〈e+|+ ̺−− ⊗ |e−〉 〈e−| , (46)

where ̺ηη̃ = E |ξη〉〈ξη̃|. Since the right-hand term of (18) is equal to Lf
⋆ ⊗ I

(
ρRt (̺)

)
+ I ⊗

La
⋆

(
ρRt (̺)

)
, where Lf

⋆ and La
⋆ are as in (35) and (36), respectively, from (46) we obtain

ρRt (̺) = ρft (̺++)⊗ ρat (|e+〉 〈e+|) + ρft (̺+−)⊗ ρat (|e+〉 〈e−|)
+ ρft (̺−+)⊗ ρat (|e−〉 〈e+|) + ρft (̺−−)⊗ ρat (|e−〉 〈e−|) .

(47)

Combining tr (|e±〉 〈e∓|) = 0 with Lemma 4.5 we deduce that

tr
(∣∣∣ρft

(
̺+−
−+

)
⊗ ρat (|e±〉 〈e∓|)

∣∣∣
)
= tr

(∣∣∣ρft
(
̺+−
−+

)∣∣∣
)
tr (|ρat (|e±〉 〈e∓|)|)

≤ tr
(∣∣∣̺+−

−+

∣∣∣
)
tr (|ρat (|e±〉 〈e∓|)|) ≤ 4 exp (−γ t) tr

(∣∣∣̺+−
−+

∣∣∣
)
,

and so
tr
(∣∣∣ρft

(
̺+−
−+

)
⊗ ρat (|e±〉 〈e∓|)

∣∣∣
)
≤ 4 exp (−γ t) ∀t ≥ 0, (48)
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because tr
(∣∣∣̺+−

−+

∣∣∣
)
≤ Etr (|ξ±〉〈ξ∓|) = E ‖ξ±‖ ‖ξ∓‖ ≤

√
E ‖ξ±‖2

√
E ‖ξ∓‖2 ≤ 1.

Since

tr
(∣∣∣ρft (̺±±)⊗ ρat (|e±〉 〈e±|)− tr (̺±±) ̺

f
∞ ⊗ ̺a∞

∣∣∣
)

≤ tr
(∣∣∣ρft (̺±±)⊗ ρat (|e±〉 〈e±|)− tr (̺±±) ̺

f
∞ ⊗ ρat (|e±〉 〈e±|)

∣∣∣
)

+ tr
(∣∣tr (̺±±) ̺

f
∞ ⊗ ρat (|e±〉 〈e±|)− tr (̺±±) ̺

f
∞ ⊗ ̺a∞

∣∣)

= tr
(∣∣∣ρft (̺±±)− tr (̺±±) ̺

f
∞

∣∣∣
)
tr (|ρat (|e±〉 〈e±|)|)

+ tr (̺±±) tr
(
̺f∞
)
tr (|ρat (|e±〉 〈e±|)− ̺a∞|)

= tr
(∣∣∣ρft (̺±±)− tr (̺±±) ̺

f
∞

∣∣∣
)
+ tr (̺±±) tr (|ρat (|e±〉 〈e±|)− ̺a∞|) ,

applying Lemmata 4.5 and 4.6 yields

tr
(∣∣∣ρft (̺±±)⊗ ρat (|e±〉 〈e±|)− tr (̺±±) ̺

f
∞ ⊗ ̺a∞

∣∣∣
)

≤ 2
√

tr (̺±±)e
−κt
√
tr (̺±±N) + tr (̺±±) e

−κt 2 |α0|√
κ2 + ω2

+ 4e−γttr (̺±±) (1 + |d|)

≤ 2e−κt
√
tr (̺±±N) + tr (̺±±) e

−κt 2 |α0|√
κ2 + ω2

+ 4e−γttr (̺±±) (1 + |d|) .

Now, using (47), (48), tr (̺++) + tr (̺−−) = 1 and tr (̺±±N) ≤ tr (̺N) we get (22).

4.3 Proof of Theorem 2.1

For completeness, we start by examining the fix points of the Maxwell-Bloch equations (2).

Lemma 4.7. Assume that d ∈ ]−1, 1[, κ, γ ∈ ]0,+∞[ and that g, ω are real numbers different
from 0. Then, the unique constant solution of (2) is (A (t) , S (t) , D (t)) = (0, 0, d).

Proof. Let (A (t) , S (t) , D (t)) = (A, S,D) be a constant solution of (2). Then

− (κ+ iω)A+ g S = 0, (49a)

− (γ + iω) S + g A D = 0, (49b)

−4g ℜ
(
A S

)
− 2γ (D − d) = 0. (49c)

Combining (49a) with (49b) we deduce that

A
(
− (γ + iω) (κ+ iω) + g2 D

)
= 0. (50)

Using ω 6= 0 and κ, γ > 0 we get (γ + iω) (κ+ iω) /∈ R. Since D ∈ R, − (γ + iω) (κ + iω) +
g2 D 6= 0, and so (50) yields A = 0. From (49a)-(49c) we obtain S = 0 and D = d.
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Proof of Theorem 2.1. First, we check by direct computation that ̺∞, given by (3), is a con-
stant solution of (1). Since tr (σ−̺∞) = d+1

2
〈e+, σ−e+〉+ 1−d

2
〈e−, σ−e−〉 = 0 and tr (a ̺∞) =

〈e0, ae0〉 = 0,
[
tr (σ−̺∞) a† − tr (σ+̺∞) a + tr

(
a†̺∞

)
σ− − tr (a ̺∞)σ+, ̺∞

]
= 0. Moreover,

using the fact that A |x〉〈y|B = |Ax〉〈B⋆y| for any operators A,B in h, x ∈ D (A) and
y ∈ D (B⋆), we obtain Lh

⋆ ̺∞ = 0, where Lh
⋆ is defined by (7). Therefore,

Lh
⋆ ̺∞ + g

[
tr
(
σ−̺∞

)
a† − tr

(
σ+̺∞

)
a+ tr

(
a†̺∞

)
σ− − tr (a ̺∞)σ+, ̺∞

]
= 0,

and so ̺∞ is a stationary state for (1), which is Np-regular for all p ∈ N.
Next, we deal with the uniqueness of the N -regular stationary state for (1) with ω 6= 0.

Let ˜̺be aN -regular stationary state for (1). Then ρt ≡ ˜̺ satisfies (1), and so A (t) ≡ tr (a ˜̺),
S (t) ≡ tr (σ− ˜̺) and D (t) ≡ tr (σ3 ˜̺) is a constant solution to the Maxwell-Bloch equations
(2) (see, e.g., [15]). According to Lemma 4.7 it follows that tr (a ˜̺) = tr (σ− ˜̺) = 0 and
tr (σ3 ˜̺) = d, because ω 6= 0. Therefore,

0 = Lh
⋆ ˜̺+ g

[
tr
(
σ− ˜̺

)
a† − tr

(
σ+ ˜̺

)
a + tr

(
a† ˜̺
)
σ− − tr (a ˜̺) σ+, ˜̺

]
= Lh

⋆ ˜̺,

that is, ˜̺ satisfies the linear equation Lh
⋆ ˜̺= 0. Hence, ˜̺ is a stationary state for the linear

quantum master equation (23). Using Corollary 3.5 we obtain ˜̺= ρht (˜̺) −→t→+∞ ̺∞.

4.4 Proof of Theorem 2.2

Applying Theorem 3.4, together with Lemmata 4.5 and 4.6 used in the proof of Theorem
3.4, we now find the N -regular invariant states of the linear quantum master equation (18).

Lemma 4.8. Let
(
ρRt (̺)

)
t≥0

be the N-weak solution of the linear quantum master equa-

tion (18) with α0, β0 ∈ C and initial datum ̺ ∈ L+
1,N (ℓ2 (Z+)⊗ C2). Consider the oper-

ators ̺f∞ and ̺a∞ defined in Corollary 3.3. Then ̺f∞ ⊗ ̺a∞ is the unique operator ˆ̺∞ ∈
L+
1,N (ℓ2 (Z+)⊗ C2) for which

ρRt (ˆ̺∞) = ˆ̺∞ ∀t ≥ 0. (51)

Proof. Since (37) is a complex ordinary differential equation, using Lemma 4.5 we deduce
that ̺a∞ is a fix point of (37), and so La

⋆ (̺
a
∞) = 0. Moreover, from the proof of Lemma 4.6

we obtain that for any N -regular density operator ˜̺ in ℓ2 (Z+),

Lf
⋆

(
W

(
α0

κ+ iω

)
˜̺W

(
− α0

κ+ iω

))
= W

(
α0

κ + iω

)
L̃⋆ (˜̺)W

(
− α0

κ + iω

)

(see relation (42), where L̃⋆ is as in (43). As L̃⋆ (|e0〉 〈e0|) = 0 we have

Lf
⋆

(
W

(
α0

κ+ iω

)
|e0〉 〈e0|W

(
− α0

κ + iω

))
= W

(
α0

κ+ iω

)
L̃⋆ (|e0〉 〈e0|)W

(
− α0

κ + iω

)
= 0.

Hence, Lf
⋆

(
̺f∞
)
= 0 since W

(
α0

κ+iω

)
e0 = exp

(
−
∣∣ α0

κ+iω

∣∣2 /2
)
e
(

α0

κ+iω

)
. Therefore,

Lf
⋆ ⊗ I

(
̺f∞ ⊗ ̺a∞

)
+ I ⊗ La

⋆

(
̺f∞ ⊗ ̺a∞

)
= 0.

30



This gives ρRt
(
̺f∞ ⊗ ̺a∞

)
= ̺f∞ ⊗ ̺a∞ for all t ≥ 0.

In order to prove the uniqueness of the N -regular invariant state of ρRt (·), we now
consider ˆ̺∞ ∈ L+

1,N (ℓ2 (Z+)⊗ C
2) satisfying (51). Then, applying Theorem 3.4 yields ˆ̺∞ =

limt→+∞ ρRt (ˆ̺∞) = ̺f∞ ⊗ ̺a∞ in L1 (ℓ
2 (Z+)⊗ C2).

Proof of Theorem 2.2. By Stone’s theorem, the self-adjoint operator ω (N + σ3/2) generates

the strongly continuous one-parameter unitary group
(
eiω(N+σ3/2)t

)
t∈R

. In order to describe

the physical system in the interaction picture we set

ρ̃t = exp
(
iω
(
N + σ3/2

)
t
)
ρt exp

(
−iω

(
N + σ3/2

)
t
)

∀t ≥ 0.

Since N commutes with σ3, ρt ∈ L+
1,N (ℓ2 (Z+)⊗ C2) iff ρ̃t ∈ L+

1,N (ℓ2 (Z+)⊗ C2). Hence, ρt
is a N -regular free interaction solution to (1) iff

ρ̃t = ρ0 ∈ L+
1,N

(
ℓ2 (Z+)⊗ C

2
)

∀t ≥ 0. (52)

A careful computation shows that ρt is a N -weak solution to (1) iff ρ̃t is a N -weak solution
to

d

dt
ρ̃t = g

[
tr
(
σ−ρ̃t

)
a† − tr

(
σ+ρ̃t

)
a+ tr

(
a†ρ̃t

)
σ− − tr (a ρ̃t) σ

+, ρ̃t
]

+ κ
(
2 a ρ̃ta

† − a†aρ̃t − ρ̃ta
†a
)
+

γ(1− d)

2

(
2 σ−ρ̃t σ

+ − σ+σ−ρ̃t − ρ̃t σ
+σ−)

+
γ(1 + d)

2

(
2 σ+ρ̃t σ

− − σ−σ+ρ̃t − ρ̃t σ
−σ+

)
.

(53)

Therefore, ρt is a N -regular free interaction solution to (1) iff ρ0 is a N -regular stationary
state for (53).

Suppose that ρ0 is a constant N -regular solution to the non-linear evolution equation
(53). Then tr (a ρt) ≡ tr (a ρ0), tr (σ

−ρt) ≡ tr (σ−ρ0) and tr (σ3ρt) ≡ tr (σ3ρ0), and so ρ0
is a N -regular stationary state of the linear quantum master equation (18) with ω = 0,
α0 = g tr (σ−ρ0) and β0 = g tr (a ρ0). Moreover, tr (σ−ρ0) and tr (a ρ0) are given by the
constant solutions of the Maxwell-Bloch equations (2) with ω = 0. Thus, we next obtain all
N -regular stationary states for non-linear evolution equation (53) by finding the constant
N -regular solutions of the linear evolution equation (18) with ω = 0, α0 = g S (0) and
β0 = g A (0), where A (0), S (0) and D (0) is a fix-point of (2) with ω = 0.

Suppose that (52) holds. Since the functions t 7→ tr (a ρ0), t 7→ tr (σ−ρ0) and t 7→
tr (σ3ρ0) satisfy (2) with ω = 0 (see [15]),

−κ tr (a ρ0) + g tr
(
σ−ρ0

)
= 0, (54a)

−γ tr
(
σ−ρ0

)
+ g tr (a ρ0) tr

(
σ3ρ0

)
= 0, (54b)

2g ℜ
(
tr (a ρ0) tr (σ−ρ0)

)
+ γ

(
tr
(
σ3ρ0

)
− d
)
= 0. (54c)

Combining (54a) with (54b) we obtain tr (a ρ0)
(
−γκ+g2 tr (σ3ρ0)

)
= 0. Then tr (a ρ0) = 0

or g2 tr (σ3ρ0) = γκ.
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Asume tr (a ρ0) = 0, together with (52). Then (54a) and (54c) lead to tr (σ−ρ0) = 0 and
tr (σ3ρ0) = d. So,

tr (a ρ̃t) = tr
(
σ−ρ̃t

)
= 0 and tr

(
σ3ρ̃t

)
= d. (55)

Therefore, ρ0 is a N-regular stationary state for (23) with ω = 0. Using Corollary 3.5 gives
ρ0 = ̺∞, where ̺∞ is defined by (3). Since tr (a ̺∞) = tr (σ−̺∞) = 0, tr (σ3̺∞) = d and
Lh

⋆ ̺∞ = 0, (3) is indeed a constant N -regular solution to (53). Summarizing, ̺∞, given by
(3), is the unique N -regular stationary state for (53) satisfying tr (a ρ0) = 0. This yields the
free interaction solution to (1):

ρt = exp
(
−iω

(
N + σ3/2

)
t
)
ρ̃t exp

(
iω
(
N + σ3/2

)
t
)

= exp
(
−iω

(
N + σ3/2

)
t
)
̺∞ exp

(
iω
(
N + σ3/2

)
t
)

= |e0〉 〈e0| ⊗
(
d+ 1

2
|e+〉 〈e+|+

1− d

2
|e−〉 〈e−|

)
= ̺∞.

On the other hand, suppose that tr (a ρ0) 6= 0 and that (52) holds. Then, g2 tr (σ3ρ0) =
γκ, and (54a) implies that g 6= 0. Hence, tr (σ3ρ0) = γκ/ (g2). Using (54b) and (54c) we
deduce that

|tr (a ρ0)|2 =
γ

2κg2
(
dg2 − γκ

)
. (56)

Therefore dg2 > γκ, i.e., Cb > 1. Hence, there are no N -regular free interaction solution to
(1) with tr (a ρ0) 6= 0 in case dg2 ≤ γκ, and so from the previous paragraph we conclude
that the state (3) is the unique N -regular free interaction solution to (1) whenever Cb ≤ 1.

Let Cb > 1 and tr (a ρ0) 6= 0. According to (56) we have that there exists z ∈ C

with |z| = 1 such that tr (a ρ̃t) = z
√

γ
2κg2

(dg2 − γκ), and so (54a) yields tr (σ−ρ̃t) =

κ z
g

√
γ

2κg2
(dg2 − γκ). Since (52) holds, from (53) it follows that ρ0 is a N -regular stationary

state for (18) with

α0 = z κ

√
γ

2κg2
(dg2 − γκ), β0 = g z

√
γ

2κg2
(dg2 − γκ), (57)

and ω = 0. Applying Lemma 4.8 we obtain ̺0 = ̺∞ (z) with

̺∞ (z) =

∣∣∣∣E
(
zγ

√
Cb − 1√
2 |g|

)〉〈
E
(
zγ

√
Cb − 1√
2 |g|

)∣∣∣∣⊗




1
2

(
1 + d

Cb

)
zκγ√
2g|g|

√
Cb − 1

z̄κγ√
2g|g|

√
Cb − 1 1

2

(
1− d

Cb

)

 . (58)

Then, the only candidate for N -regular stationary states of (53) with the property tr (a ρ0) 6=
0 are: ̺∞ (z) for any |z| = 1.

Consider |z| = 1, and let dg2 > γκ. By a E (ζ) = ζ E (ζ) for any ζ ∈ C, a direct

computation yields tr (a ̺∞ (z)) = z
√

γ
2κg2

(dg2 − γκ). Moreover, a direct calculation gives

tr (σ3̺∞ (z)) = γκ
g2
, and tr (σ−̺∞ (z)) = κ z

g

√
γ

2κg2
(dg2 − γκ). Therefore, g tr (σ−̺∞ (z)) =
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α0 and g tr (a ̺∞ (z)) = β0, where α0 and β0 are as in (57). Using Lemma 4.8 we get that
̺∞ (z) is a N -regular stationary state of (53). Then, in addition to (3), the only N -regular
stationary states for (53) with dg2 > γκ are given by (58) for any complex number |z| = 1.

Since ρt = exp (−iω (N + σ3/2) t) ρ̃t exp (iω (N + σ3/2) t), all non-constant N -regular
free interaction solution to (1) are:

∣∣∣∣e
−iωNtE

(
zγ

√
Cb − 1√
2 |g|

)〉〈
e−iωNtE

(
zγ

√
Cb − 1√
2 |g|

)∣∣∣∣⊗

e−iω
2
σ3t




1
2

(
1 + d

Cb

)
zκγ√
2g|g|

√
Cb − 1

z̄κγ√
2g|g|

√
Cb − 1 1

2

(
1− d

Cb

)

 ei

ω
2
σ3t,

where |z| = 1, and therefore they are:

∣∣∣∣E
(
zγ

√
Cb − 1√
2 |g|

e−iωt

)〉〈
E
(
zγ

√
Cb − 1√
2 |g|

e−iωt

)∣∣∣∣⊗




1
2

(
1 + d

Cb

)
e−iωt zκγ√

2g|g|
√
Cb − 1

eiωt z̄κγ√
2g|g|

√
Cb − 1 1

2

(
1− d

Cb

)



for any |z| = 1.

4.5 Proof of Theorem 2.3

Proof of Theorem 2.3. Recall that tr (a ρt), tr (σ
−ρt) and tr (σ3ρt) are given by the Maxwell-

Bloch equations (2) (see [15]). Since tr (a ̺) = tr (σ−̺) = 0, from (2) it follows that
tr (a ρt) = tr (σ−ρt) = 0 for all t ≥ 0. Therefore, ρt solves (23) with initial condition ̺,
and hence ρt = ρht (̺), where ρht (̺) is the N -weak solution of (23). Applying Corollary 3.5
gives (8).

4.6 Proof of Theorem 2.4

First, we establish the equation of motion of the mean value of the number operator by
applying an Ehrenfest-type theorem developed in [14].

Lemma 4.9. Let (ρt)t≥0 be the N-weak solution to (6) with N-regular initial datum and
α, β : [0,∞[ → C continuous. Then for all t ≥ 0,

d

dt
tr (ρtN) = −2κ tr (ρt N) + 2ℜ

(
α (t) tr (ρt a)

)
. (59)

Proof. LetXt (ξ) be the strongN -solution of (26) with initial datum ξ ∈ L2
N (P, ℓ2 (Z+)⊗ C2)

satisfying ρ0 = E |ξ〉〈ξ|. According Theorem 4.1 of [14] we have

tr (Nρt) = tr (Nρ0) +

∫ t

0

E (2 ℜ 〈NXs (ξ) , G (s)Xs (ξ)〉) ds

+
3∑

ℓ=1

∫ t

0

E
〈
N1/2LℓXs (ξ) , N

1/2LℓXs (ξ)
〉
ds,

(60)
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where G (t), H (t), L1, L2, L3 is defined as in (26).
We write D for the set of all x ∈ ℓ2(Z+)⊗C2 such that 〈en ⊗ eη, x〉 = 0 for all combina-

tions of n ∈ Z+ and η = ± except a finite number. Then, for all x ∈ D we have

2 ℜ 〈Nx,G (t)x〉 +
3∑

ℓ=1

〈
N1/2Lℓ x,N

1/2Lℓ x
〉

=

〈
x,

(
i [H (t) , N ] +

3∑

ℓ=1

(
1

2
[L∗

ℓ , N ]Lℓ +
1

2
L∗
ℓ [N,Lℓ]

))
x

〉

=
〈
x,
(
−
[
α (t) a† − α (t)a,N

]
+ κ

[
a†, N

]
a+ κ a† [N, a]

)
x
〉
,

and so

2 ℜ 〈Nx,G (t) x〉+
3∑

ℓ=1

〈
N1/2Lℓ x,N

1/2Lℓ x
〉
=
〈
x,
(
α (t) a† + α (t)a− 2κN

)
x
〉

(61)

since
[
N, a†

]
= a† and [a,N ] = a. As D is a core for N , (61) holds for all x ∈ D (N), and

hence (60) gives

tr (Nρt) = tr (Nρ0) +

∫ t

0

(
2ℜ
(
α (t)E 〈Xs (ξ) , aXs (ξ)〉

)
− 2κE 〈Xs (ξ) , NXs (ξ)〉

)
ds.

This, together with ρs = E |Xs (ξ)〉 〈Xs (ξ)|, implies

tr (Nρt) = tr (Nρ0) +

∫ t

0

(
2ℜ
(
α (s) tr (aρs)

)
− 2κ tr (Nρs)

)
ds

(see, e.g, [30]). The continuity of α (t), tr (aρt) and tr (Nρt) yields (59).

Let d ≥ 0. From, for instance Theorem 8 of [15], we have that

|A (t)|2 + g2 |S (t)|2 / (γκ) + g2 (D (t)− d)2 / (4γκ)

≤ exp

(
−tmin

{
κ− g2d

γ
, γ − g2d

κ

})(
|A (0)|2 + g2

γκ
|S (0)|2 + g2

4γκ
(D (0)− d)2

)
(62)

for any t ≥ 0. Next, we improve the upper bound of |S (t)| and (D (t)− d)2 given by (62)
in case g ≈ 0 and Cb < 1.

Lemma 4.10. Assume that S (t), Z (t) and D (t) is the solution of (2) with ω ∈ R, d ∈ [0, 1[,
g ∈ Rr {0} and κ, γ > 0. Let Cb < 1. Then for any t ≥ 0 we have

|S (t)|2 + (D (t)− d)2 /4

≤ e−(1−Cb)min{κ,γ}t
(
4κd

γ
|A (0)|2 +

(
4κ

γ
+ 1

)
|S (0)|2 +

(
κ

γ
+

1

4

)
(D (0)− d)2

)
.
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Proof. Define X (t) = eiωtA (t), Y (t) = eiωtS (t) and Z (t) = D (t)−d for any t ≥ 0. By (2),
computing the derivatives of |Y (t)|2 and Z (t)2 gives

4
d

dt
|Y (t)|2 + d

dt
Z (t)2 = 8 d gℜ

(
X (t) Y (t)

)
− 8γ |Y (t)|2 − 4γZ (t)2 (63)

(see, e.g., proof of Theorem 8 of [15]). Since

2ℜ
(
X (t)Y (t)

)
=

4 d g

γ
ℜ
(
X (t)

γ

2 d g
Y (t)

)
≤ 2 d g

γ
|X (t)|2 + γ

2 d g
|Y (t)|2 ,

(63) leads to

d

dt

(
4 |Y (t)|2 + Z (t)2

)
≤ 8d2g2

γ
|X (t)|2 − 3

2
γ
(
4 |Y (t)|2 + Z (t)2

)
.

This implies

4 |Y (t)|2 + Z (t)2 ≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2

)
+

8d2g2

γ
e−

3
2
γ t

∫ t

0

e
3
2
γ s |X (s)|2 ds,

and so

4 |Y (t)|2 + Z (t)2 ≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2

)
+ 8κ e−

3
2
γ t

∫ t

0

e
3
2
γ sd |X (s)|2 ds, (64)

because Cb < 1.
Combining (62) with g2 d/ (κ γ) < 1 we deduce that

d |X (t)|2 ≤ e−(1−Cb)min{κ,γ}t
(
d |A (0)|2 + |S (0)|2 + 1

4
(D (0)− d)2

)
.

Using (64), together with 3γ/2− (1− Cb)min {κ, γ} ≥ γ/2, yields

4 |Y (t)|2 + Z (t)2 ≤ e−
3
2
γ t
(
4 |Y (0)|2 + Z (0)2

)

+
16κ

γ

(
d |A (0)|2 + |S (0)|2 + 1

4
(D (0)− d)2

)(
e−(1−Cb)min{κ,γ}t − e−

3
2
γ t
)
,

and the lemma follows.

Proof of Theorem 2.4. First, we shift the analysis from the non-linear quantum master equa-
tion (1) to the linear quantum master equation (6). To this end, we consider the solution
A (t), S (t) and D (t) to (2) with initial datum A (0) = tr (a ρ0), S (0) = tr (σ− ρ0) and
D (0) = tr (σ3 ρ0). Since ρ0 ∈ L+

1,N (ℓ2 (Z+)⊗ C2), the functions t 7→ tr (a ρt), t 7→ tr (σ−ρt)
and t 7→ tr (σ3ρt) satisfy (2) (see, e.g., [15]), and so the uniqueness of the solution to (2) im-
plies (A (t) , S (t) , D (t)) = (tr (a ρt) , tr (σ

−ρt) , tr (σ
3ρt)) for all t ≥ 0. By the uniqueness of

the N -weak solution to (6), the N -weak solution ρt to (1) is equal to the N -weak solution to
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the non-homogeneous linear evolution equation (6) with initial condition ρ0 and coefficients
α (t) = g S (t) and β (t) = g A (t).

Now, we apply Corollary 3.3 with α (t) = g S (t) and β (t) = g A (t), together with
α0 = β0 = 0 since tr (̺∞ a) = tr (̺∞ σ−) = 0. This gives

tr (|ρt − ̺∞|) ≤ tr
(∣∣ρht−s (ρs)− ̺∞

∣∣)+ 4 |g|
∫ t

s

|S (u)|
√

tr (ρu N) + 1 du

+ 2 |g|
(∥∥σ−∥∥+

∥∥σ+
∥∥)
∫ t

s

|A (u)| du
(65)

for all t ≥ s ≥ 0, because E (0) = e0 and

(
1
2
+ d

2
0

0 1
2
− d

2

)
=
(
d+1
2

|e+〉 〈e+|+ 1−d
2

|e−〉 〈e−|
)
.

Here, ̺∞ is defined by (3) and
(
ρhu (ρs)

)
u≥0

is the N -weak solution of (23) with initial datum

ρs. Combining (65) with Corollary 3.5 yields

tr (|ρt − ̺∞|) ≤ 12 e−γ(t−s) (1 + |d|) + 4 e−κ(t−s)
√

tr (ρs N) (66)

+ 4 |g|
∫ t

s

|S (u)|
√
tr (ρuN) + 1 du+ 2 |g|

(∥∥σ−∥∥+
∥∥σ+

∥∥)
∫ t

s

|A (u)| du.

Next, we estimate the right-hand of (66). Applying Lemma 4.9 we obtain

tr (ρt N) = e−2κ ttr (ρ0N) + 2g

∫ t

0

e−2κ(t−s)ℜ
(
S (t) tr (ρs a)

)
ds

= e−2κ ttr (ρ0N) + 2g

∫ t

0

e−2κ(t−s)ℜ
(
S (s)A (s)

)
ds

≤ e−2κ ttr (ρ0 N) + |g|
∫ t

0

e−2κ(t−s)
(
|S (s)|2 + |A (s)|2

)
ds. (67)

If d < 0, then for all t ≥ 0 we have

|d| |A (t)|2 + |S (t)|2 + (D (t)− d)2 /4 ≤ e−2t min{κ,γ} (|d| |A (0)|2 + |S (0)|2 + (D (0)− d)2 /4
)

(see, e.g., [15]). Using this inequality, (62) and Lemma 4.10, together with dg2/ (γκ) < 1,
we deduce that

|A (t)|2 ≤ KA exp (−csys t) and |S (t)|2 ≤ KS exp (−csys t) ∀t ≥ 0, (68)

where:

• In case d < 0, csys = 2 min {κ, γ}, KS = |d| |A (0)|2 + |S (0)|2 + (D (0)− d)2 /4, and
KA = |A (0)|2 + |S (0)|2 / |d|+ (D (0)− d)2 / (4 |d|).

• In case d ≥ 0, csys = (1− Cb)min {κ, γ}, KA = |A (0)|2 + g2

γκ
|S (0)|2+ g2

4γκ
(D (0)− d)2

and KS = 4κd
γ

|A (0)|2 +
(

4κ
γ
+ 1
)
|S (0)|2 +

(
κ
γ
+ 1

4

)
(D (0)− d)2.
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Suppose that either d ≥ 0 or d < 0 with κ > γ. Then 2κ > csys and
∫ t

0

e−2κ(t−u)
(
|S (u)|2 + |A (u)|2

)
du <

KA +KS

2κ− csys

(
e−csys t − e−2κ t

)
<

KA +KS

2κ− csys
e−csys t.

From (67) it follows that

tr (ρt N) ≤
(
tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)
e−csys t. (69)

Consider t ≥ s ≥ 0. Applying (69) we get

tr (ρtN) ≤ tr (ρ0N) + |g| (KA +KS) / (2κ− csys) ,

and hence (68) gives
∫ t

s

|S (u)|
√

tr (ρu N) + 1 du ≤
(
1 + tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)1/2 ∫ t

s

|S (u)| du

≤
(
2
√
KS

(
1 + tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)1/2
)

e−csys s/2 − e−csys t/2

csys
.

Using (68) we also obtain

(∥∥σ−∥∥+
∥∥σ+

∥∥)
∫ t

s

|A (u)| du ≤ 2

∫ t

s

|A (u)| du ≤ 4
√

KA
e−csys s/2 − e−csys t/2

csys
. (70)

Then, from (66) and (69) we get

tr (|ρt − ̺∞|) ≤ 12 e−γ(t−s) (1 + |d|) + 4 e−κ(t−s)− csys
2

s

√
tr (ρ0 N) +

|g| (KA +KS)

2κ− csys

+
8 |g|
csys

(
√

KS

(
1 + tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)1/2

+
√

KA

)
e−

csys

2
s.

In case d ≥ 0, taking t = 3s/2 yields

tr
(∣∣ρ3s/2 − ̺∞

∣∣) ≤ 12 e−γs/2 (1 + |d|) + 4 e−
csys
2

s

√
tr (ρ0 N) +

|g| (KA +KS)

2κ− csys

+
8 |g|
csys

(
√
KS

(
1 + tr (ρ0 N) +

|g| (KA +KS)

2κ− csys

)1/2

+
√
KA

)
e−

csys
2

s,

and so for all t ≥ 0,

tr (|ρt − ̺∞|) ≤ e−
csys
3

t

(
12 (1 + |d|) + 4

√
tr (ρ0N) +

|g| (KA +KS)

2κ− csys
+

8 |g|
csys

√
KA

+
8 |g|
csys

√
KS

(
1 + tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)1/2
)
.
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In case d < 0 with κ > γ, choosing t = 2s we deduce that

tr (|ρ2s − ̺∞|) ≤ 12 e−γs (1 + |d|) + 4 e−κs− csys
2

s

√
tr (ρ0 N) +

|g| (KA +KS)

2κ− csys

+
8 |g|
csys

(
√

KS

(
1 + tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)1/2

+
√

KA

)
e−

csys
2

s,

and consequently

tr (|ρt − ̺∞|) ≤ e−
csys
4

t

(
12 (1 + |d|) + 4

√
tr (ρ0N) +

|g| (KA +KS)

2κ− csys
+

8 |g|
csys

√
KA

+
8 |g|
csys

√
KS

(
1 + tr (ρ0N) +

|g| (KA +KS)

2κ− csys

)1/2
)
.

for any t ≥ 0.
On the other hand, we assume that d < 0 and κ ≤ γ. Then

∫ t

0

e−2κ(t−u)
(
|S (u)|2 + |A (u)|2

)
du ≤ 2t (KA +KS) exp (−2κ t) ,

and so (67) leads to

tr (ρt N) ≤ exp (−2κ t) tr (ρ0N) + 2 |g| (KA +KS) t exp (−2κ t) . (71)

Since t exp (−2κ t) ≤ 1/ (2 eκ), according to (68) we have that for all t ≥ s ≥ 0,

∫ t

s

|S (u)|
√
tr (ρu N) + 1 du ≤

√
KS

√
tr (ρ0N) +

|g| (KA +KS)

κ e

e−κ s − e−κ t

κ
.

Moreover, (70) gives

(∥∥σ−∥∥+
∥∥σ+

∥∥)
∫ t

s

|A (u)| du ≤ 2
√
KA

e−κ s − e−κ t

κ
.

Therefore, (66) yields

tr (|ρt − ̺∞|) ≤ 12 e−γ(t−s) (1 + |d|) + 4 e−κ(t−s)
√

tr (ρ0 N) + |g| (KA +KS) / (κ e)

+ 4 |g|
(√

KS

√
tr (ρ0 N) + |g| (KA +KS) / (κe) +

√
KA

)
e−κ s/κ.

Hence

tr (|ρ2s − ̺∞|) ≤ 12 e−γs (1 + |d|) + 4 e−κs
√

tr (ρ0N) + |g| (KA +KS) / (κe)

+ 4 |g|
(√

KS

√
tr (ρ0 N) + |g| (KA +KS) / (κe) +

√
KA

)
e−κ s/κ,
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which implies

tr (|ρt − ̺∞|) ≤ 4e−
csys
4

t

((
1 +

|g|
√
KS

κ

)√
tr (ρ0N) +

|g| (KA +KS)

κ e

+3 (1 + |d|) + |g|
√
KA

κ

)
.

This completes the proof of (9).
We are now in position to show (11). We decompose A as

A = AP + PA (I − P ) + (I − P )A (I − P ) ,

where P is the orthogonal projection of ℓ2 (Z+) ⊗ C
2 onto the linear span of e0 ⊗ e+ and

e0 ⊗ e−, i.e., P x = 〈e0 ⊗ e+, x〉 e0 ⊗ e+ + 〈e0 ⊗ e−, x〉 e0 ⊗ e−. From (3) it follows

tr (̺∞ AP ) =
+∞∑

n=0

∑

η=±
〈en ⊗ eη, ̺∞ APen ⊗ eη〉 = 〈̺∞e0 ⊗ eη, A e0 ⊗ eη〉

=
d+ 1

2
〈e0 ⊗ e+, A e0 ⊗ e+〉+

1− d

2
〈e0 ⊗ e−, A e0 ⊗ e−〉.

We can extend PA (I − P ) to the bounded linear operator

PA (I − P )x = 〈A⋆e0 ⊗ e+, (I − P )x〉 e0 ⊗ e+ + 〈A⋆e0 ⊗ e−, (I − P )x〉 e0 ⊗ e−.

Using (3) yields tr (̺∞PA (I − P )) =
∑+∞

n=0

∑
η=±〈̺∞en ⊗ eη, PA (I − P ) en ⊗ eη〉 = 0.

Applying (9) we deduce that for all t ≥ 0,
∣∣∣∣tr (ρt (AP + PA (I − P )))− d+ 1

2
〈e0 ⊗ e+, A e0 ⊗ e+〉 −

1− d

2
〈e0 ⊗ e−, A e0 ⊗ e−〉

∣∣∣∣
= |tr (ρt (AP + PA (I − P )))− tr (̺∞ (AP + PA (I − P )))| (72)

≤ (‖AP‖+ ‖PA (I − P )‖)Ksys (|g|) exp (−δsys t) .

According to (12) we have

max

{∥∥∥∥
1

2
(A + A⋆) x

∥∥∥∥ ,
∥∥∥∥
i

2
(A⋆ − A)x

∥∥∥∥
}

≤ K̃ ‖x‖N ∀x ∈ D (N) .

Hence, for any x ∈ D (N), |〈x,Ax〉| =
∣∣〈x, 1

2
(A + A⋆) x〉+ i〈x, i

2
(A⋆ −A) x〉

∣∣ ≤ 4K̃ ‖x‖N
(see, e.g., proof of Theorem VI.1.38 of [23]). Therefore,

|〈(I − P )x, (I − P )A (I − P )x〉| ≤ 4K̃
(
‖(I − P )x‖2 + 〈(I − P )x,N (I − P )x〉

)

≤ 8K̃ 〈(I − P )x,N (I − P )x〉 = 8K̃ 〈x,Nx〉
for any x ∈ D (N), and so

|tr (ρt (I − P )A (I − P ))| ≤ 8K̃ tr (ρtN) ∀t ≥ 0.

Then, using (69), (71) and (72) we obtain (11), because ‖AP‖ ≤ K̃ and ‖PA (I − P )‖ =

‖(I − P )A∗P‖ ≤ K̃.
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4.7 Proof of Theorem 2.6

For the sake of completeness, we now study the local stability of the nonzero equilibrium
points of (2) with ω = 0. As in the physical literature (see, e.g., [24, 33]), we combine a
change of variables with linear stability analysis.

Lemma 4.11. Let Cb > 1. Consider (2) with ω = 0, d ∈ ]−1, 1[, g ∈ Rr {0} and κ, γ > 0.
Suppose that κ ≤ 3γ or that κ > 3γ and κ2 + 5κγ > γ (κ− 3γ)Cb. Then, there exist
constants ǫ, λ,K > 0 such that for all t ≥ 0,

∣∣∣∣A (t)− γ
√
Cb − 1√
2 |g|

A (0)

|A (0)| exp
(
ig

∫ +∞

0

ℑ
(
S (s)

A (s)

)
ds

)∣∣∣∣ ≤ K exp (−λt) ,

∣∣∣∣S (t)− κ

g

γ
√
Cb − 1√
2 |g|

A (0)

|A (0)| exp
(
ig

∫ +∞

0

ℑ
(
S (s)

A (s)

)
ds

)∣∣∣∣ ≤ K exp (−λt)

and |D (t)− d/Cb| ≤ K exp (−λt) provided that

max

{∣∣∣∣|A (0)| − γ
√
Cb − 1√
2 |g|

∣∣∣∣ ,
∣∣∣∣S (0)− κ

g

γ
√
Cb − 1√
2 |g|

A (0)

|A (0)|

∣∣∣∣ ,
∣∣∣∣D (0)− d

Cb

∣∣∣∣
}

< ǫ.

Proof. Consider the change of functions A (t) = r (t) eiφ(t), S (t) = (SR (t) + iSI (t)) e
iφ(t)

and D (t) = DR (t) + d, where the unknown A (t), S (t), D (t) are replaced by the real
functions r (t), φ (t), SR (t), SI (t), DR (t). Let A (0) 6= 0. Then, from (2) it follows that





r′ (t) = −κ r (t) + g SR (t)

S ′
R (t) = −γSR (t) + g r (t) (DR (t) + d) + g SI (t)

2 /r (t)

S ′
I (t) = −γSI (t)− g SI (t)SR (t) /r (t)

D′
R (t) = −2γDR (t)− 4g r (t)SR (t)

. (73)

and
φ′ (t) = g SI (t) /r (t) . (74)

Since Cb > 1, (73) has the fix point: r = r0, SR = κ r0/g, SI = 0 and DR = d (1/Cb − 1),
where r0 = γ√

2|g|
√
Cb − 1. The Jacobian matrix of the function describing the right-hand

side of (73) evaluated at this fix point is equal to

J =




−κ g 0 0
κγ/g −γ 0 g r0
0 0 −γ − κ 0

−4κ r0 −4g r0 0 −2γ


 .

As det (J − λ I) = (λ+ γ + κ) (λ3 + (3γ + κ)λ2 + (2γ2Cb + 2γκ) λ+ 8g2κr20), the eigenval-
ues of J are −γ − κ, which is less than 0, and the zeros of the polynomial

λ3 + (3γ + κ)λ2 +
(
2γ2Cb + 2γκ

)
λ+ 8g2κr20. (75)
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Since the coefficients of (75) are positive, the real roots of (75) are negative. Substituting
λ = u + iv, with u, v ∈ R, into (75) we deduce that u + iv, with v 6= 0, is a root of (75) iff
v2 = 3u2 + 2 (3γ + κ)u+ 2γ2Cb + 2κγ and

0 = 8u3 + (24γ + 8κ)u2 +
(
16γκ+ 4Cbγ

2 + 18γ2 + 2κ2
)
u

+ 2γ2Cb (3γ − κ) + 2γκ2 + 10γ2κ.
(76)

Applying Descartes’ rule of signs we obtain that (76) has one positive root whenever

2γ2Cb (3γ − κ) + 2γκ2 + 10γ2κ < 0.

Therefore, all the roots of (76) are strictly negative iff 2γ2Cb (3γ − κ) + 2γκ2 + 10γ2κ > 0,
which is equivalent to κ > 3γ and κ2 + 5κγ > γ (κ− 3γ)Cb. In this case, the real parts
of all eigenvalues of J are less than 0, and so the nonzero equilibrium point of (73) is
locally exponentially stable (see, e.g., Section 23.4 of [5]). Therefore, there exist constants
ǫ, λ,K > 0 such that for all t ≥ 0

max {|r (t)− r0| , |SR (t)− κ r0/g| , |SI (t)| , |DR (t)− d (1/Cb − 1)|} ≤ K exp (−λt)

whenever max {|r (0)− r0| , |SR (0)− κ r0/g| , |SI (0)| , |DR (0)− d (1/Cb − 1)|} < ǫ. This
implies |g SI (t) /r (t)| ≤ K exp (−λt). Using (74) gives

∣∣∣∣e
iφ(t) − e

i
(
φ(0)+g

∫+∞

0
SI (s)

r(s)
ds

)∣∣∣∣ ≤
∣∣∣∣φ (t)− φ (0)− g

∫ +∞

0

SI (s)

r (s)
ds

∣∣∣∣ ≤ Ke−λt.

This leads to the assertion of the lemma.

Proof of Theorem 2.6. Consider the the unitary transformation:

ρ̃t := exp
(
iω
(
N + σ3/2

)
t
)
ρt exp

(
−iω

(
N + σ3/2

)
t
)

∀t ≥ 0.

From a careful computation we obtain that ρt is a N -weak solution to (1) iff ρ̃t is a N -weak
solution to the non-linear equation (53), i.e., equation (1) with ω = 0, as in the proof of
Theorem 2.2.

Now, we shift the analysis from (53) to the linear quantum master equation (6), in a
similar way to that in the proof of Theorem 2.4. Set A (t) = tr (ρ̃t a), S (t) = tr (ρ̃t σ

−) and
D (t) = tr (ρ̃t σ

3) for all t ≥ 0. Then, A (t), S (t) and D (t) satisfy (2) with ω = 0 (see,
e.g., [15]), and so ( ρ̃t)t≥0 coincides with the unique N -weak solution to (6) with ω = 0,
α (t) = g S (t), β (t) = g A (t), and initial datum ρ0. This leads us to study the long-time
behavior of ρ̃t by means of Corollary 3.3.

Using Corollary 3.3 with α (t) = g S (t), β (t) = g A (t), α0 = 1√
2|g|
(
z∞κγ

√
Cb − 1

)
and

β0 =
1√
2|g|
(
z∞gγ

√
Cb − 1

)
we deduce that for all t ≥ s ≥ 0,

tr (|ρ̃t − ˜̺∞|) ≤ tr
(∣∣ρRt−s (ρ̃s)− ˜̺∞

∣∣)+ 4 |g|
∫ t

s

∣∣∣∣S (u)− κ

g

γ
√
Cb − 1√
2 |g|

z∞

∣∣∣∣
√

tr (ρ̃u N) + 1 du

+ 2 |g|
(∥∥σ−∥∥+

∥∥σ+
∥∥)
∫ t

s

∣∣∣∣A (u)− γ
√
Cb − 1√
2 |g|

z∞

∣∣∣∣ du,
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where ρRt (·) is the one-parameter semigroup of contractions described by the N -weak solu-
tions of (18) and

˜̺∞ =

∣∣∣∣E
(
z∞γ

√
Cb − 1√
2 |g|

)〉〈
E
(
z∞γ

√
Cb − 1√
2 |g|

)∣∣∣∣⊗




1
2

(
1 + d

Cb

)
z∞κγ√
2g|g|

√
Cb − 1

z∞κγ√
2g|g|

√
Cb − 1 1

2

(
1− d

Cb

)



with z∞ = A(0)
|A(0)| exp

(
ig
∫ +∞
0

ℑ
(

S(s)
A(s)

)
ds
)
. Applying Lemma 4.11, together with the upper

bound of the term tr
(∣∣ρRt−s (ρ̃s)− ˜̺∞

∣∣) provided by Theorem 3.4, we obtain that there exist
constants ǫ, λ,K > 0 such that for all t ≥ s ≥ 0:

tr (|ρ̃t − ˜̺∞|) ≤ 12 e−γ(t−s) (1 + |d|) + e−κ(t−s)

(√
2γ

√
Cb − 1

|g| + 4
√

tr (ρ̃sN)

)

+K |g|
∫ t

s

e−λu
√

tr (ρ̃u N) + 1 du+K |g|
(∥∥σ−∥∥+

∥∥σ+
∥∥)
∫ t

s

e−λudu

(77)

in case

max

{∣∣∣∣|A (0)| − γ
√
Cb − 1√
2 |g|

∣∣∣∣ ,
∣∣∣∣S (0)− κ

g

γ
√
Cb − 1√
2 |g|

A (0)

|A (0)|

∣∣∣∣ ,
∣∣∣∣D (0)− d

Cb

∣∣∣∣
}

< ǫ. (78)

Now, we examine the long-time behavior of tr (ρ̃tN). According to Lemma 4.9 we have

tr (ρ̃tN) = e−2κ ttr (ρ0N) + 2g

∫ t

0

e−2κ(t−s)ℜ
(
S (s) tr (ρ̃s a)

)
ds

= e−2κ ttr (ρ0N) + 2g

∫ t

0

e−2κ(t−s)ℜ
(
S (s)A (s)

)
ds.

Since
∣∣∣∣S (s)A (s)− κ

g

γ2 (Cb − 1)

2 g2

∣∣∣∣ ≤
∥∥σ−∥∥

∣∣∣∣A (s)− γ
√
Cb − 1√
2 |g|

z∞

∣∣∣∣

+
γ
√
Cb − 1√
2 |g|

∣∣∣∣S (s)− κ

g

γ
√
Cb − 1√
2 |g|

z∞

∣∣∣∣ ,

from Lemma 4.11 we get

∣∣∣∣tr (ρ̃t N)− γ2 (Cb − 1)

2 g2

∣∣∣∣ ≤ e−2κ ttr (ρ0 N) + 2gK

∫ t

0

e−2κ(t−s)e−λsds

whenever (78) holds. As tr (˜̺∞N) = γ2 (Cb − 1) / (2 g2) we have

|tr (ρ̃t N)− tr (˜̺∞ N)| ≤ K (tr (ρ0N)) e−2κ t ∀t ≥ 0. (79)
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We are in position to show the exponential convergence of ρt − ̺c (ωt− θ∞) to 0. Ac-
cording to (79) we have tr (ρ̃tN) ≤ K (tr (ρ0N)) e−2κ t + tr (˜̺∞N), and so taking s = t/2
in (77) we get

tr (|ρ̃t − ˜̺∞|) ≤ K (tr (ρ0N)) exp (−λt) ∀t ≥ 0, (80)

where, by abuse of notation, we recall that λ is a strictly positive constant and K (·) is a
non-decreasing non-negative function. Therefore, for all t ≥ 0:

tr
(∣∣ρt − exp

(
−iω

(
N + σ3/2

)
t
)
˜̺∞ exp

(
iω
(
N + σ3/2

)
t
)∣∣)

≤
∥∥exp

(
−iω

(
N + σ3/2

)
t
)∥∥ ∥∥exp

(
iω
(
N + σ3/2

)
t
)∥∥ tr (|ρ̃t − ˜̺∞|) ≤ K (tr (ρ0 N)) e−λt.

Similar to the final part of the proof of Theorem 2.2 we get

exp
(
−iω

(
N + σ3/2

)
t
)
˜̺∞ exp

(
iω
(
N + σ3/2

)
t
)
= ̺c (ωt− θ∞) ,

where ̺c is defined by (4). This gives (13).
Let Pn be the orthogonal projection of ℓ2 (Z+)⊗C2 onto the linear span of e0⊗e±, . . . , en⊗

e±, i.e., Pn =
∑n

j=0 |ej〉 〈ej |. By the triangular inequality,

|tr (ρt A)− tr (̺c (ωt− θ∞) A)| ≤ |tr (ρtAPn)− tr (̺c (ωt− θ∞) APn)|
+ |tr (ρt Pn A (I − Pn))− tr (̺c (ωt− θ∞) PnA (I − Pn))|

+ |tr (ρt (I − Pn)A (I − Pn))− tr (̺c (ωt− θ∞) (I − Pn)A (I − Pn))| .

Using (16) and ‖NPn‖ = n gives ‖PnA (I − Pn)‖ = ‖(I − Pn)A
∗Pn‖ ≤ (n + 1) K̃ and

‖APn‖ ≤ (n + 1) K̃. Hence,

|tr (ρt A)− tr (̺c (ωt− θ∞) A)| ≤ 2 (n + 1) K̃ tr (|ρt − ̺c (ωt− θ∞)|)
+ |tr (ρt (I − Pn)A (I − Pn))|+ |tr (̺c (ωt− θ∞) (I − Pn)A (I − Pn))| ,

and so (13) yields

|tr (ρt A)− tr (̺c (ωt− θ∞) A)| ≤ 2 (n+ 1) K̃ K (tr (ρ0N)) exp (−λt) (81)

+ |tr (ρt (I − Pn)A (I − Pn))|+ |tr (̺c (ωt− θ∞) (I − Pn)A (I − Pn))| .

Next, we estimate the last two terms of the right-hand side of (81). Using (16) we get

|〈(I − Pn) x, (I − Pn)A (I − Pn) x〉| ≤ 4K̃
(
‖(I − Pn)x‖2 + 〈(I − Pn) x,N (I − Pn) x〉

)

for all x ∈ D (N) (see, e.g., the last part of the proof of Theorem 2.4). Hence

|tr (ρt (I − Pn)A (I − Pn))| ≤ 4K̃ (tr (ρt (I − Pn)) + tr (ρt N (I − Pn)))

= 4K̃ (tr (ρ̃t (I − Pn)) + tr (ρ̃tN (I − Pn)))
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and
∣∣tr
(
ρθ∞t (I − Pn)A (I − Pn)

)∣∣ ≤ 4K̃
(
tr
(
ρθ∞t (I − Pn)

)
+ tr

(
ρθ∞t N (I − Pn)

))

= 4K̃ (tr (˜̺∞ (I − Pn)) + tr (˜̺∞N (I − Pn)))

since (I − Pn)N = N (I − Pn). Combining (79) with

|tr (ρ̃tN (I − Pn))| ≤ |tr (ρ̃tN)− tr (˜̺∞N)|+ |tr (˜̺∞N (I − Pn))|+ |tr ((˜̺∞ − ρ̃t)NPn)|

we obtain

|tr (ρ̃tN (I − Pn))| ≤ K (tr (ρ0N)) e−2κ t + |tr (˜̺∞N (I − Pn))|+ n tr (|˜̺∞ − ρ̃t|) .

Moreover, |tr (ρ̃t (I − Pn))| ≤ |tr (˜̺∞ (I − Pn))|+ tr (|˜̺∞ − ρ̃t|) since

|tr (ρ̃t (I − Pn))| = |1− tr (˜̺t Pn)| ≤ |tr (˜̺∞ (I − Pn))|+ |tr ((˜̺∞ − ρ̃t)Pn)| .

Finally, applying (80) we get

|tr (ρt (I − Pn)A (I − Pn))|+ |tr (̺c (ωt− θ∞) (I − Pn)A (I − Pn))| (82)

≤ 8K̃ tr (˜̺∞ (I − Pn)) + 8K̃ tr (˜̺∞N (I − Pn)) + (n+ 1) K̃ K (tr (ρ0N)) exp (−λt) ,

where, for simplicity of notation, λ is a strictly positive constant andK (·) is a non-decreasing
non-negative function that does not depend on A.

From the definition of ˜̺∞ we deduce that

tr (˜̺∞N (I − Pn)) =
γ2 (Cb − 1)

2g2
exp

(
−γ2 (Cb − 1)

2g2

) +∞∑

k=n

(
γ2(Cb−1)

2g2

)k

k!

<
γ2 (Cb − 1)

2g2

(
γ2(Cb−1)

2g2

)n

n!

and

tr (˜̺∞ (I − Pn)) = exp

(
−γ2 (Cb − 1)

2g2

) +∞∑

k=n+1

(
γ2(Cb−1)

z2g2

)k

k!
<

(
γ2(Cb−1)

2g2

)(n+1)

(n+ 1)!
.

Fix a natural number ñ ∈ N satisfying ñ > exp (λ) γ2 (Cb − 1) / (2g2). For any n > ñ,

tr (˜̺∞N (I − Pn)) + tr (˜̺∞ (I − Pn)) <
γ2 (Cb − 1)

g2

(
γ2(Cb−1)

2g2

)n

n!

<
γ2 (Cb − 1)

g2

(
γ2(Cb−1)

2g2

)ñ

ñ!

(
γ2 (Cb − 1)

2 g2 ñ

)(n−ñ)

.
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Using (82) gives

|tr (ρt (I − Pn)A (I − Pn))|+ |tr (̺c (ωt− θ∞) (I − Pn)A (I − Pn))|

< K̃ K exp

(
− (n− ñ) ln

(
2g2ñ

γ2 (Cb − 1)

))
+ (n + 1) K̃ K (tr (ρ0N)) exp (−λt)

for all n > ñ. Now, taking n = t + ñ in (81) we get

|tr (ρtA)− tr (̺c (ωt− θ∞) A)| ≤ (t + ñ+ 1) K̃ K (tr (ρ0N)) e−λt + K̃ K e
−t ln

(
2 g2 ñ

γ2(Cb−1)

)

.

Since ñ > exp (λ) γ2 (Cb − 1) / (2g2), |tr (ρt A)− tr (̺c (ωt− θ∞) A)| ≤ K̃ K (tr (ρ0N)) e−
λ
2
t

for all t ≥ 0.

4.8 Proof of Lemma 2.7

Proof. According to (17) we have that there exists ϑ ∈ [0, 2π[ such that dN (̺, ̺c (ϑ)) < ε.

Since a E (ζ) = ζ E (ζ) for any ζ ∈ C, a direct computation gives tr (̺c (ϑ) a) =
γ
√
Cb−1√
2|g| e−iϑ,

tr (̺c (ϑ) σ
3) = d

Cb

, and tr (̺c (ϑ) σ
−) = e−iϑ κγ√

2g|g|
√
Cb − 1. From Definition 2.3 we now

deduce that
∣∣∣tr (̺ σ3)− d

Cb

∣∣∣ <
√
2 ε,

∣∣∣tr (̺ σ−)− κ
g
γ
√
Cb−1√
2|g| e−iϑ

∣∣∣ <
√
2 ε, and

∣∣∣∣tr (̺ a)−
γ
√
Cb − 1√
2 |g|

e−iϑ

∣∣∣∣ <
√
2 ε, (83)

because ‖σ−‖ = ‖σ3‖ = 1 and ‖a x‖2 = 〈x,N x〉 ≤ ‖N x‖2 ,
∥∥a† x

∥∥2 = 〈x, (N + 1) x〉 ≤
‖x‖2 + ‖N x‖2 for all x ∈ D (N). Using (83) gives

∣∣∣∣|tr (̺ a)| −
γ
√
Cb − 1√
2 |g|

∣∣∣∣ ≤
∣∣∣∣tr (̺ a)−

γ
√
Cb − 1√
2 |g|

e−iϑ

∣∣∣∣ <
√
2 ε.

As tr (̺ a) 6= 0,

∣∣∣∣tr (̺ a)−
γ
√
Cb−1√
2|g|

tr(̺ a)
|tr(̺ a)|

∣∣∣∣ =
∣∣∣|tr (̺ a)| − γ

√
Cb−1√
2|g|

∣∣∣ <
√
2 ε, and so (83) yields

∣∣∣∣
γ
√
Cb−1√
2|g| e−iϑ − γ

√
Cb−1√
2|g|

tr(̺ a)
|tr(̺ a)|

∣∣∣∣ < 2
√
2 ε. Applying the triangle inequality we get

∣∣∣∣tr
(
̺ σ−)− κ

g

γ
√
Cb − 1√
2 |g|

tr (̺ a)

|tr (̺ a)|

∣∣∣∣ <
√
2ε (1 + 2 κ/g) .

On the other hand, applying the triangular inequality we obtain the second assertion of the
lemma.
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