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Simulations of coarse-grained network models have long been used to test theoretical predictions
about rubber elasticity, while atomistic models are still largely unexplored. Here we devise a novel
algorithm for the vulcanisation of united-atom poly(cis-1,4-butadiene), characterize the topology of
the resulting networks and test their mechanical properties. We observe clear deviations in chain
dimension when using slower vulcanisation, contrary to the traditional view that cross-linking simply
freezes the melt configuration. Non-ideality of our networks reverberates on the distribution of
strand length and on the strands deformation, which is highly non-affine, especially for short strands.
Nevertheless, we do recover some of the trends observed on ideal bead-and-spring networks and
controlled laboratory experiments, such as the linear relationships linking the degree of cross-linking
and the density. We also compare different deformation methods and find step-equilibrium protocols
to be more reliable. Regardless of the adopted method, it is advisable to precede the deformation
by a pre-stretching cycle in order to release internal stresses accumulated during the vulcanisation.

1 Introduction
Rubber and rubber elasticity have been at the core of polymer sci-
ence since its birth.1,2 Today, rubber is still considered a paradigm
for the behavior of soft matter, thanks to its large and nonlinear
mechanical response and the dominant role of entropy in its be-
havior.3 Fundamental and applied investigations of rubber elas-
ticity have led to a plethora of empirical and theoretical mod-
els that mostly apply to certain materials or to limited deforma-
tion regimes. Statistical mechanical models have the advantage
of relating materials parameters to structure, guiding the prepa-
ration of polymer networks towards the desired properties, but
they tend to be limited to idealized situations.4 Heuristic models
are often more universally applicable, but the empirical param-
eters entering their constitutive equations are difficult to relate
to structure.5,6 Establishing a connection between theory, exper-
iments and applications is also hampered by the difficulties in
the molecular-level characterization of the networks.7,8 Below we
briefly discuss the prominent rubber models, in order to establish
a notation and set the stage for our own work.

The starting point for any theory of rubber elasticity are the
affine9 and the phantom network10 models. They both rely on
Gaussian, infinitely extensible chain strands connecting the cross-
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links. They assume that stress arises entirely from the change in
the entropy of the network upon deformation, which occurs at
constant volume. Under uniaxial deformation, if we define λ =

l/l0 as the ratio between the deformed and undeformed lengths of
the sample in the pulling direction, the cross-section area changes
as A = A0/λ . In the affine network model, cross-links are rigidly
attached to an elastic background that deforms homogeneously,
following the macroscopic deformation. In the phantom network
model, only a subset of the cross-links (e.g., those at the surface
of the sample) are constrained in this way. All the others are
allowed to fluctuate and contribute to the stress, by an extent
which depends on their functionality φ , defined as the number
of strands branching from them. Both models lead to the same
functional form for the stress-strain relationship. Under a uniaxial
extension or compression:

σ(λ ) = ανkBT (λ 2−λ
−1) (1)

where the true stress is the ratio between the pulling force and
the deformed cross-section of the material (σ = Fdeform/A). Using
instead the nominal or engineering stress, which is the ratio be-
tween the pulling force and the undeformed cross-section of the
material (σeng = Fdeform/A0), we have:

σeng(λ ) = ανkBT (λ −λ
−2). (2)

The prefactor entering both equation is proportional to the Young
modulus of the material, E = (dσ/dλ )λ=1 = 3ανkBT . It is the
product of the thermal energy (kBT , a "signature" of the en-
tropic origin of rubber elasticity), the density of elastically ac-
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tive strands (ν)—loops and dangling ends do not carry stress and
therefore are classified as elastically inactive defects—and a fac-
tor α that measures the effectiveness of the active strands. This
is simply equal to unity in the affine network model, while it is
α = (φ − 2)/φ in the phantom one. Thus, α = 0.5 in a perfect
tetrafunctional network, and it converges to unity when φ � 1.
We see that higher functionalities allow smaller fluctuations, lead-
ing back to the affine network result. The modulus of a phantom
network can also be expressed as ξ kBT , where ξ is the cycle rank.
This describes the number of elastic degrees of freedom and it
can be calculated from two definitions that can be shown to be
equivalent for perfect networks, where every strand is elastically
active:4

ξ = ν−µ j = ν

(
1− 2

φ

)
(3)

where µ j is the number density of junctions.

More elaborate rubber elasticity models have been developed
since the 1970’s, in order to improve and reduce the strong as-
sumptions underlying the original ones. Major theoretical ef-
forts have concentrated on the inclusion of entanglements—
topological constraints that limit the movement of the chains.
These act as additional, effective cross-links, causing an increase
of the modulus but also deviations from the behavior embod-
ied by equations (1) and (2). In the constrained-junction mod-
els4,11,12, topological constraints are assumed to be concentrated
on the cross-links. In the tube models,13,14 not only cross-links,
but all the monomers are attached to the non-fluctuating elas-
tic background, in order to model chains whose movements are
constrained to a ‘tube’. Within slip-link models15? , the entan-
glements are modelled as ‘rings’ that constrain the fluctuations of
two chains passing through them. If the ring can slide up to a dis-
tance which is small compared to the distance from another link,
it acts as chemical bond and the model reduces to a phantom
network with a higher cross-link density. In the other case, the
rings can pass through each other and the chains can disentangle
locally.

While the previous statistical-mechanical models provide fun-
damental insights, engineering applications tend to incorporate a
certain degree of empiricism and data fitting.6,7 Micromechanical
models derive quantities from a strain energy function W , which
relates the deformation to the energy stored by the material. The
Mooney-Rivlin constitutive law typically reproduces experimental
data up to 100% deformation and is based on the strain energy
density:5,16

W =C1(I1−3)+C2(I2−3), (4)

where C1 and C2 are material constants, while

I1 = λ
2
1 +λ

2
2 +λ

2
3 and I2 = λ

2
1 λ

2
2 +λ

2
2 λ

2
3 +λ

2
3 λ

2
1 (5)

are invariants that are independent of the coordinate system (a
third invariant is I3 = λ 2

1 λ 2
2 λ 2

3 , which is unity for a constant-
volume deformation).

The stretch ratios λi in Eq.(5) describe the deformation along
three principal axes. In the case of uniaxial deformation, the
stress can be derived through differentiation of the strain energy

with respect to the uniaxial strain:

σeng =

(
2C1 +

2C2

λ

)(
λ − 1

λ 2

)
. (6)

To extract C1 and C2 from a fit, stress vs. strain data are plotted
in the Mooney-Rivlin form, having

σ
∗
eng =

σeng

λ − 1
λ 2

and β =
1
λ

(7)

on the y and x axis respectively. If C2 is zero, the expression re-
duces to the so-called neo-Hookean model. This coincides with
Eq.(2), but it is built on a micromechanical assumption instead
of being derived from a macromolecular picture. Generally, C1

is said to be connected to the network structure, and in partic-
ular to the cross-linking density. C2 is related to non-permanent
constraints, such as entanglements and, in particle-filled systems,
filler-filler and filler-polymer contacts.17 This model, as most of
the existing ones, does not include non-Gaussianity effects given
by the finite extensibility of chains.

In the 1990s, computational models of networks started to ap-
pear18–21, testing theoretical frameworks and finding molecu-
lar explanations to empirical fits. In-silico experiments are fully
designed by the user: in principle, by selectively changing in-
dividual parameters, it is possible to test their contribution to
the macroscopic properties.22 Unlike experiments that give av-
erage values over a large ensemble, Molecular Dynamics (MD)
and other simulation methods offer the possibility to test statis-
tical models, by giving full access to the microscopic details that
enter those averages.23,24 Unfortunately, this advantage does not
come free of costs and the quantities extracted from a simulation
suffer from noise and uncertainty. Indeed, the understanding has
always been limited by the multiscale nature of macromolecular
systems, and rubber networks in particular. The vulcanisation re-
actions adopted by the rubber industry are complex, as they aim
at the optimization of productivity, efficiency and costs.25 Reac-
tion rate can be controlled by temperature, as well as accelerator
ratio and type. High temperature guarantees faster curing, but it
also causes some degradation. An increased sulphur content obvi-
ously leads to a denser network, but also promotes poly-sulphur
connections, that are linked to early aging. The addition of ac-
celerators instead fosters mono- and di-sulphur connections, but
worsens the dynamical properties.26 In addition to chemical de-
fects, networks and gels can also display strong inhomogeneities
in the local density of cross-links, depending on the relative rates
of chain diffusion and reaction.27 We also point out that vulcan-
ization is conducted shortly after mixing and extrusion, so that
shear stresses may not yet be fully relaxed before they are "frozen-
in" by the cross-links.

Clearly, the generation of the network is a critical step also for
computational studies. In some cases, this complex step has been
overcome by simulating networks with idealized (e.g., diamond-
like) connectivities.28,29 This is advantageous when the aim is
to understand of the basic physics of rubber elasticity, but not
when trying to simulate the behavior of real materials. In end-
linked networks30,31, a fraction of the chain ends are function-
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alised with cross-linkers of functionality f . If the fraction of func-
tionalised ends is f−1, the reaction is stoichiometric and should
lead to a network that is free of dangling ends. In reality, to-
wards the end of the process, the slow diffusion of the partially
bonded cross-linkers makes it impossible to obtain a fully reacted
network. An alternative strategy involves bonding of the chain
ends to random monomers within the chains, leading to trifunc-
tional cross-links.31 Another less conventional path32 starts from
a fixed cross-links configuration, from which to build a network
of strands whose length is extracted from the predicted Gaussian
distribution. Completely random cross-linking19 is the method
that mostly resembles the real process, but produces a larger
number of dangling ends, that may be deleted afterword. Dan-
gling ends do not contribute to the elastic stress, complicating
the comparison with the existing theoretical models. Note that
most of the studies cited above adopted a generic bead-and-spring
model, originating from the work of Kremer and Grest on polymer
melts and networks.33 In this model in is relatively easy to create
new bonds, as the equilibrium bond length is close to the dis-
tance of closest approach for non-bonded interactions. Instead,
non-bonded distances are around twice the bond length within
an atomistic model. This can produce strong instabilities in the
simulations and must be properly dealt with.34,35

The rate of vulcanization is also crucial. Many computational
works use instantaneous or near-instantaneous reactions, follow-
ing Edward’s suggestion that cross-linking simply freezes the un-
perturbed configuration of the chains within the melt.13 A few
studies have tested the effects of this hypothesis. A work on end-
linked bead-and-spring chains30 has confirmed that the network’s
static properties are not altered by cross-linking and that the new
junctions are randomly dispersed. Regarding the kinetics, they
registered a t−0.5 time dependence for the concentration of un-
reacted ends, which is connected to their diffusion according to
the Rouse model. In contrast, in a later atomistic work,34 poly-
mer strands were found to contract in response to vulcanisation.
The authors attributed this deviation from ideality to the non-
Gaussian behaviour of the shorter strands.

Computational work on networks has recently moved to more
complex problems, such as networks with unusual topologies36

and aging, which involves bond scission and formation.37,38

Transient bond scission and formation are relevant also for net-
works showing toughness and self-healing properties, whose be-
haviour is yet to be formalised.39–41 Defects and non-uniformity
of the cross-link distribution have also been scrutinized,42? ,43

and they have have been linked to strongly non-affine deforma-
tion and stress concentration.44 Finally, the role of reinforcing
nanoparticles within rubber networks has also been addressed,
using a variety of models.24,45–49 All these problems call for con-
stant updating of well-established models, in order to predict me-
chanical, thermal and degradation behaviour more reliably.

In this work we introduce and study a near-atomistic model of
a cross-linked elastomer. We describe in detail a novel compu-
tational protocol to build rubber networks with sulphur bridges,
and we characterize their properties as a function of vulcanisation
density and rate. The chosen polymer is poly(cis-1,4-butadiene),
which can be produced by Ziegler-Natta catalysis.50,51 High-cis

butadiene rubber is used in tires because of its strength and re-
sistance to fatigue and fracture.52 In a recent study, we have
developed parameters for the interaction of this polymer with
hydrophilic and hydrophobic silica surfaces.53 In the future, we
plan to combine them into a fully-fledged model of rubber-silica
nanocomposites, including also the possibility of bond breaking
and fracture at large elongations.

The paper starts with the description of the chosen model and
of the methods used to equilibrate, vulcanise and deform the sys-
tems. The results are divided into sections regarding the resulting
network topologies, their mechanical properties and thermody-
namic considerations. Conclusions follow.

2 Methods

2.1 Model

The model used for poly(cis-1,4-butadiene) suppresses hydrogen
atoms by utilising carbon superatoms that implicitly take them
into account.54–56 This coarser representation results in slim-
mer simulations, while preserving important molecular details
such as rotational barriers, which a coarser model would not in-
clude.57,58 Compared to an atomistic representation, this model
reduces the number of atoms and bypasses electrostatic interac-
tions, bringing a remarkable speed-up. Also, the suppression of
hydrogen atoms allows to use a longer integration timestep of
2 fs. Finally, if necessary, reinsertion of the hydrogen atoms to
switch to a fully atomistic model is almost trivial.

Vulcanisation involves a complex series of reactions and re-
arrangements, but we assume that it only involves the reaction
between CH2 units and pre-dispersed S-S dimers. We also ex-
clude the possibility of isomerization of some cis bonds to trans.59

Force field parameters for sulphur atoms are taken from OPLS60

and, following its philosophy, geometric mixing rules are applied
for sulphur-carbon non-bonded interactions. In the vulcanisation
process, new bonds, angles and dihedral angles are created, but
some of them are not parametrised in OPLS, therefore their con-
stants are assigned by analogy with other listed interactions. All
force field parameters are collected in the SI.

Our approach is divided into two main steps, covered in the
next sections: equilibration of the polymeric melt and vulcanisa-
tion (see Figure ?? for a flowchart of the process). All calculations
are performed using scripts based on the LAMMPS code (Large-
scale Atomic/Molecular Massively Parallel Simulator).61

2.2 Equilibration of the polymeric melt

Equilibration of polymer melts has been tackled in the literature
in many different ways, and different criteria can be used as indi-
cators of a well equilibrated melt. We follow a procedure similar
to the one implemented by Auhl et al. 62 , that involves the random
insertion of chains and gradual activation of excluded-volume in-
teractions.

The initial configuration of our system is generated by ran-
domly placing and rotating copies of a sample chain into a cubic
box, whose side lengths are chosen to achieve a density of 0.93
g/cm3, which is typical for rubbers.6,63 The sample chain config-
uration incorporates some conformational disorder and it is gen-
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erated with the Materials Studio software.64 All systems include
100 chains, each 100-mers long (i.e. 400 carbon atoms). In the
initial equilibration of the melt, we use a so-called soft potential:

V soft
i j (r) = Asoft

[
1+ cos

(
πr
σi j

)]
(8)

which is purely repulsive, being truncated at r = σi j. During an
NVT run, the prefactor Asoft grows from 0 to 20, allowing the
chains to lose memory of their initial conformation. This poten-
tial avoids excessively large forces arising from atom-atom over-
laps in the initial configurations, and it speeds up equilibration by
allowing the chains to cross each other and to eliminate initial en-
tanglements. According to the Flory theorem, all polymer chains
are “unperturbed” in the melt state.65 Therefore, large scale prop-
erties such as their radii of gyration are largely independent of the
non-bonded interaction potential (Lennard-Jones or soft).

At the end of this step, the atoms are well dispersed and it
is possible to switch to the steeper, standard Lennard-Jones (LJ)
potential:

V LJ
i j (r) = 4ε

[(
σi j

r

)12
−
(

σi j

r

)6
]
, (9)

shifted and truncated at 12 Å. The system is minimised and a 2
ns NPT simulation is run to converge the density and the end-to-
end distance of the chains. As a final step, we randomly disperse
different concentrations of sulphur dimers and equilibrate for a
further 1 ns in the NPT ensemble.

2.3 Vulcanisation

In our simulations, vulcanisation occurs by forming bonds be-
tween the sulphur dimers and the CH2 groups lying within a bond
cutoff distance. Our algorithm ensures that the cross-linkers con-
nect different chains, avoiding the formation of loops, which are
network defects. To allow a complete vulcanisation, this process
is performed in a cyclic fashion with an increasing cutoff distance,
scaling linearly from 4 Å in the first cycle to 8 Å in the last one.
Even if the cutoff distance is large, the vulcanisation process is
rarely complete, due to the restrictions we set (more details in
SI.1). As the chains diffuse, the unreacted sulphur atoms would
eventually come across the right atom-type, but since diffusion
slows down as the reaction proceeds and the unreacted sulphurs
are only a small fraction, we decided to leave a few dimers par-
tially bonded. Their amount is quantified in section 3.1.

The vulcanisation is performed under NPanisoT conditions,
where the three orthogonal box sides are updated independently
during the simulation, to maintain the target pressure of 1 atm.
Large stresses arising from the new bonds may cause the transi-
tion from cis to trans configuration of some double bonds. This
issue has been overcome by performing a gentle transition to the
bonded configuration, through the creation of a bond with low
force constant that quickly grows to the final value. The stiffening
of the bond must be performed in a reasonable time, since a too
slow stiffening would allow the bonded atoms to drift apart. We
run ctot = 160 reaction cycles, alternated by 40-ps-long stiffening
intervals. Hence the whole cross-linking process takes 160*0.04
ns = 6.4 ns, which is almost instantaneous in comparison to the

experimental time scales. In order to homogeneously distribute
the bonding reactions during the cycles, we set a varying reaction
probability. New bonds form for only a given fraction of atoms eli-
gible to bind, given the distance criterion. The probability is set to
i/2ctot where i is the cycle progression. We investigated also the
role of the reaction rate, by performing one slow vulcanization
simulation, In this case the vulcanisation cycles are alternated
to 2 ns NPanisoT simulation, allowing the structure to relax. In
this case the vulcanization takes more than 320 ns. More details
about the LAMMPS implementation are reported in SI.1 and the
relevant code is included in SI.2. LAMMPS data files for these
final states, which could be used to replicate the following simu-
lations, are also given separately in the SI.

We analyse the topological structure and mechanical proper-
ties for systems differing by number of sulphur dimers and vul-
canisation rate. All the systems start from an equilibrated melt of
100 PB chains. Afterwards, 100, 150, 200, 300 sulphur dimers
are added and the system is vulcanized using the previously de-
scribed procedure. We will refer to the systems by n= (no. dimers
/ no. chains). Therefore n = 1, n = 1.5, n = 2, n = 3 represent sys-
tems with increasing degree of cross-linking. We use the notation
n = 2s to indicate a system with 2 dimers/chain obtained by slow
vulcanisation.

2.4 Deformation methods

We compare two step-equilibrium methods which involve mul-
tiple steps of non-instantaneous deformation and equilibration.
These methods mirror the experimental tests known as ‘imposed
strain deformation’ (stress relaxation) and ‘imposed stress defor-
mation’ (creep).

In the imposed strain deformation, the box is stretched in suc-
cessive steps along one direction, keeping its volume constant by
an orthogonal contraction. After each stretching step there is a re-
laxation interval, during which a barostat acts exclusively on the
orthogonal directions, to bring the associated stress components
to 1 atm. The imposed stress deformation66 is performed in the
NPanisoT ensemble, where the parallel stress corresponds to the
true stress defined in the Introduction, while in the other direc-
tions is set to 1 atm. Within the imposed stress deformation, we
highlight a technical detail regarding a parameter LAMMPS uses
to determine the strain energy needed for the box deformation.
When the simulation involves large changes in the dimension of
the box, the parameter nreset—which controls the strain energy
update rate—must be set to a reasonably low value (2 ps in our
case).

Within both protocols, after each stepwise deformation (or
stepwise increase of the stress), successive 1 ns relaxation steps
are repeated until a convergence criterion is satisfied. After that,
data are collected over a further 1 ns run. In the imposed strain
method, the parallel average stress in the last iteration must con-
verge to a tolerance of 1 MPa to the average stress registered in
the previous iteration. In the stress-imposed deformation, a tol-
erance of 2 Å is similarly considered for the parallel side of the
box. The upside of step-equilibrium methods is that quantities
are measured at equilibrium, so it is easier to evaluate the confi-
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dence interval on the outcome quantities. The downside is that
they cannot relate to a deformation rate, because they only give
information about the final equilibrated structure. Also, the sam-
pling density of the stress/strain curve depends strictly on the
number of steps taken.

In addition to the step-deformation methods, we tested the
SLLOD algorithm, used in Non-Equilibrium Molecular Dynamics
(NEMD) and originally conceived for liquids.22,67,68 According to
this method, the drifting velocity due to the deformation is sub-
tracted before applying the thermostat. LAMMPS’ NEMD imple-
mentation does not include a barostat, therefore the deformation
of the box is imposed on the three directions. We used a set of
equations for the deformation of the box that guarantees the con-
servation of volume, which is equivalent to consider a Poisson
ratio equal to 0.5. This approximation is a good assumption for
unfilled rubber at the macroscale. The elongation of the box fol-
lows the law λ (t) = 1+ rdeform×∆t, where the deformation rate is
rdeform = 0.1ns−1. Therefore it takes 10 ns to deform the box by
∆λ (t) = 1. The advantage of this method is that it can relate to
a deformation rate, although the ones achievable by MD are very
high in comparison to the experimental ones.69 The printing rate
of the thermodynamic information defines the density of points of
the stress/strain curve. The reported stress values are corrected
by subtracting the average of the perpendicular components:

σ = σ//−
σ⊥1 +σ⊥2

2
(10)

In order to eliminate the possible residual stresses due to the
vulcanisation, cyclic deformation was applied on system n = 2s
using the NEMD method (rdeform = 0.1ns−1). The deformation in-
cluded two full cycles of linear stretching (up to λ = 1.5) and
return to equilibrium length, and one last stretching ramp. Given
the results of this test (section 3.3) we decided to pre-condition
every system with a linear cyclic deformation (from λ = 1 to λ = 2
and backwards) along each of the three axes. For the production
runs, the systems are stretched again along the three box direc-
tions using the methods reported above, and the data are aver-
aged to minimise the noise.

3 Results

3.1 Vulcanisation

The formation of new bonds during the vulcanization is reported
in Figure 1a. The curve describing the cumulative bond formation
is linear until approximately 90% of possible bonds have formed.
Without a scaled bond creation probability, the vast majority of
bonds would have formed during the first cycles, producing off-
equilibrium network models with huge internal stresses, causing
the MD simulations to fail after a few time steps. The vulcani-
sation is complete, i.e. 100% dimers have reacted, for systems
with n > 1.5, while it saturates at 98.5% and 99.7% for n = 1 and
n = 1.5 respectively.

In theory, instantaneous vulcanisation should produce little
changes in the melt configuration. Figure 1b shows that n is lin-
early connected to the increase in density, as ρ(g/cm3) = 0.97+
0.01n. The inset of Figure 1b shows that in the final vulcanised
state, more and more non-bonded interactions are replaced by

covalent bonds, causing a slight but measurable volume contrac-
tion. The initial concentration of sulphur does not cause large
differences in the density, nor does the vulcanization rate.

The influence of vulcanisation on the statistical properties of
the chains can be monitored through their radii of gyration Rg

and the end-to-end distances Ree. Figure 1c reports their values
before (n = 0) and after the vulcanisation. For sufficiently long,
unperturbed chains satisfying random-walk statistics, their mean-
square values are related by: 〈R2

g〉= 〈R2
ee〉/6.30 Hence the end-to-

end values have been plotted after rescaling by a factor of six. The
two quantities do not coincide, but differences are contained and,
for the most part, do not seem to depend systematically on cross-
linking. We point out that the distributions of values are broad
compared to the window shown (error bars are not included). All
this could be justified by the relatively short chain lengths, lead-
ing to non-Gaussian statistics, and the near-instantaneous vulcan-
ization reactions. However, there is a significant increase of the
chain size in the slowly vulcanized system. Thus, polymer re-
laxation between the cross-linking events tend to produce a cer-
tain chain stretching. This disagrees with experimental and com-
putational work on end-linked poly(dimethylsiloxane) networks,
which either showed no change30,70 or some contraction of the
chain size.34 There are many possible reasons for this disagree-
ment, including different chemistries and different models or sim-
ulation protocols. Note that here we are considering the size of
whole precursor chains, not that of the strands between the cross-
links. The two coincide in the case of end-linked networks, but
are clearly different in our case. Further work would be needed
to fully clarify this issue.

The importance of anisotropic barostatting can be appreciated
by calculating the standard deviation on the three orthogonal side
lengths during the vulcanisation. This is relatively low for the
quickly vulcanised systems, fluctuating around 1 Å independently
of n, while it is about 3 Å for the slowly vulcanised system (Figure
SI.3). System n = 2s experiences stronger fluctuations because
the simulation runs for a longer time. Although the fluctuations
are contained, they can cause large stress variations, which are
more efficiently eliminated by anisotropic barostatting.

3.2 Topology

The topology of the networks has been analysed through methods
of graph theory implemented in Mathematica71. In each case we
have considered the largest connected component of the system,
excluding isolated chains and small, disconnected clusters (see
the SI for an illustration). The information extracted from the
graphs are (Table 1): cycle rank, number of chains connected to
the network (i.e. chains connected to the network with at least
one cross-link), average number of cross-links per chain, average
number of monomers within strands and dangling chains. The
latter has been compared with the theoretical prediction

ls = L/(2n+1) (11)

by Grest and Kremer,33,43 where L is the length of the chains. At
large n, the predicted value approximates very well the calculated
one, while at small n it overestimates it. The dangling chains are
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Fig. 1 (a) Vulcanisation progress against vulcanisation cycle. The inset shows the time dependence of the vulcanisation progress. (b)
Equilibrium density after vulcanisation. Empty symbol refers to system n = 2s. The linear fit (dashed) excludes the system n = 2s. Inset:
density variation with vulcanisation cycle. Colours are self-explanatory. (c) Average square radius of gyration and rescaled average square
end-to-end distance before (n = 0) and after vulcanisation. Empty symbols refer to system n = 2s.
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shorter than the strands for n < 2, while the trend is inverted for
higher n. These discrepancies could be connected to the incom-
plete vulcanisation or to inhomogeneities in the network, as can
be appreciated from the number of connected chains. When n is
low, a small but significant fraction of chains do not take part in
any reaction, and therefore are not included in the subsequent
analysis of network structure. The cycle rank has been calculated
with the two equivalent definitions of Eq. (3), that should give
the same result for perfect networks.43 Indeed, in our case the
values of ξ calculated with the two definitions coincide. The cal-
culated ξ ’s will be compared to the one coming from the fit of the
stress/strain curves in section 3.3.

For random processes, the number of tetrafunctional connec-
tions per chain can be represented by a normal distribution cen-
tred around 2n, since each cross-linker connects 2 chains. Figure
2a shows the distributions, rescaled by 2n. All rescaled plots are
centred around unit. System n = 3 shows almost perfect symme-
try, again demonstrating it best reproduces the predicted theoret-
ical results. As the vulcanisation degree lowers, the distribution
is wider and less symmetric. In system n = 1, it is skewed and its
peak is shifted to lower values. This scenario well reproduces the
early results on bead-and-spring networks.33

Under the assumption of random cross-linking, the distribution
of strand lengths is a simple exponential with decay length equal
ls. Our results are plotted in Fig.2b. The fitted decay length re-
produces the values of ls, except for the system at lowest n. It also
overestimates the average strand length, but the error diminished
on going to higher n. The decay length is said to approach ls from
below because of the existence of intra-chain loops,33 which can-
not form in our systems.

It is interesting to compare the topologies of systems n = 2 and
n = 2s and to relate them to their mechanical properties. Aver-
age values for the two systems in Table 1 do not differ much.
On the contrary, Figure 2a shows that the curve for a slower vul-
canisation approaches the ones related to lower n. Instead, the
fits of the strand length distributions overlap perfectly. A struc-
tural difference is observable in the pair distribution functions
g(r) of the S-S dimers and their integrals, which are given in Fig-
ures 2c and 2d (distances are measured between the centers-of-
mass of the dimers). Before and after quick vulcanisation, the
SS dimers are distributed more or less randomly. There is only
a slight short-range aggregation, due to the preferential forma-
tion of non-bonded contacts among the sulphur atoms. The fast
cross-linking almost freezes this situation, apart from a slight en-
hancement of the peak at contact, while the slow vulcanization
leads to a significantly different distribution. In particular, there
is a clear tendency of some cross-links to come together and pair
up, leaving a depleted shell at distances of 4–8 Å. As we shall
see, this can have measurable consequences on the mechanical
properties.

3.3 Deformation and mechanical properties

As mentioned in the "Methods" section, vulcanization can produce
large local stresses within the polymer, due to the abrupt cre-
ation of new chemical bonds. These stresses can be largely elimi-

nated by alternating bond formation and relaxation and allowing
anisotropic cell deformations. Nonetheless, the system can still
exhibit some residual stresses at the end of the reaction. These
can be characterized by performing cyclic deformations.

In a preliminary set of simulations, system n = 2s was stretched
from λ = 1.0 to λ = 1.5, and then brought back to λ = 1.0 for
three times. The stress history accompanying these deformations
is shown in Figure 3a. The first stress ramp lies visibly higher
than the others and presents larger fluctuations. The curves for
the second and third cycles overlap to a large degree, implying
that a sort of equilibrium has been achieved. Nonetheless, even
in these cases there is some hysteresis, the stress in the "return"
half-cycle being lower than in the previous one. So the system is
not purely elastic and there is still some energy dissipation, also
due to the high rates of deformation which are employed in the
simulations.

Our interpretation is supported by Figure 3b, which presents
the torsional energy throughout the cycles. This is the poten-
tial energy component which changes more systematically dur-
ing deformation, when the polymer segments undergo conforma-
tional transitions. During the first cycle, some high energy con-
formations that were locked-in by the vulcanisation are quickly
released, and they do not return in the following ones. Given
these results, in order to guarantee reproducibility of results, all
system were pre-conditioned as described in the “Methods” sec-
tion.

Figure 4a shows the comparison of the three methods discussed
in Section 2.4, from the undeformed state up to λ = 2.0. The
quasi-static creep (imposed stress) and stress relaxation (imposed
strain) give comparable results, while the NEMD method tends
to produce more noisy data and to predict higher deformation
stress. The noise in the data could be readily eliminated by some
batch averaging of the stress (implicit in the quasi-static meth-
ods), while the higher stress in presumably due to different treat-
ment of volume changes and to the higher deformation rate of
the NEMD simulations (the rate rdeform = 0.1ns−1 implies that the
system is stretched from equilibrium to λ = 2 in 10 ns).

Volume conservation is strictly enforced by the non-equilibrium
SLLOD equations of motion and, as mentioned in the Introduc-
tion, it is indeed assumed to be valid by all the classical theories
of rubber elasticity. Instead, the two quasi-static methods allow
some volume relaxation, following each deformation step. Vol-
ume changes have been reported in Table 2, and they are indeed
very small. They can be used to estimate the Poisson ratio νP. We
did it by a linear fit of ln V

V0
against lnλ , according to the expres-

sion:
ln

V
V0

= (1−2νP) lnλ (12)

where V0 and V are the initial and deformed volume. The data
used for the fit refer to the imposed stress method, up to λ = 1.1,
while the stress/strain results for all systems are shown in Figure
4b. The obtained values are indeed slightly less than 0.50 (table
2), as expected.

The two equilibrium methods produce very similar results up to
λ = 2. It is difficult to conclude which of the two is faster and ac-
curate in general, because the convergence criteria act on differ-
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Table 1 Topological properties of the networks. One monomer is made of four carbon atoms

n 1 1.5 2 2s 3

Connected chains (%) 87 95 99 100 100
Average cross-link per chain (count) 2.3 3.1 4.0 4.0 6.0
Average strand length (mono count) 25.8 22.3 17.7 17.1 14.0
Strand length distribution decaying length (mono count) 28.8 25.8 20.5 20.36 13.7
Average dangling chain length (mono count) 24.7 21.9 21.4 22.4 14.2
lllsss Predicted strand or dangling chain length (mono count) 33.3 25.0 20.0 20.0 14.3
ξξξ Cycle rank (nm−3) 0.012 0.056 0.095 0.095 0.195
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Fig. 2 (a) Probability density function and fit for the number of cross-links per chain. (b) Probability density function and fit for the
strand length. (c) Radial pair distribution function of SS dimers. (d) Number integral of the radial pair distribution function of SS dimers
(coordination number).
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Fig. 3 (a) Stress curves and (b) torsional energy for three deformation cycles of systems n = 2s.

ent variables. To calculate the points in Figure 4a the simulation
ran for about 75 ns, independently of the method. In this range,
the line corresponding to the imposed stress method required 6
points, while the imposed strain method required 5 points.

The data in the range λ = 1.1− 2.0 have been fitted with the
neo-Hookean model of Eq. (2), in order to extract the ανkBT
prefactor. Such prefactor can be identified with the shear modu-
lus G:

G =
E

2(1+νP)
=

1
3

dσeng

dλ

∣∣∣∣
λ=1

= ανkBT (13)

Here E is the Young modulus, a derivative of the stress with re-
spect to the elongation, and νP = 0.5 due to incompressibility.
Switching to the more general Mooney-Rivlin formula, Equation
(6), which comprises the neo-Hooke model as a special case, the
shear modulus becomes

G =
1
3

dσeng

dλ

∣∣∣∣
λ=1

= 2(C1 +C2) (14)

Once G is known, αν and α can also be extracted using knowl-
edge of the network structure from Table 1.

Table 2 demonstrates an increase of the elastic moduli with
the degree of cross-linking, and a decrease on going to a slowly
vulcanized system. After conversion to the α values, these are
always well above unity, as predicted by the affine deformation
model (the other models would predict even lower values). In
the best cases (n ≥ 2), there is an order-of-magnitude difference
theoretical and the simulated moduli. Comparison of the fitted
prefactor αν (also in Table 2) of Eq. (1) and the calculated ξ (in
Table 1), shows that network non-ideality, in addition to entan-
glements and non-entropic contributions to the stress, causes the
theoretical prediction to fail.

In general, the simulated elastic moduli are higher than typi-
cal ones coming from experiments on similar networks. The most
likely cause of this different is the density of the cross-links. Rel-
ative short chains such as those simulated here require higher
cross-linking degree to guarantee the formation of a fully-fledged
three dimensional network, well beyond the gelation point. In-
deed, in the experimental work by Jacobi et al. 63 , PB chains com-

posed of about 20000 mers were vulcanised to obtain networks
of ξ ≈ 10−4nm−3. This should be compared with ξ ≈ 10−1nm−3 in
our case. Correspondingly, the obtained C1 and C2 were about 0.1
MPa. Fits with the Mooney-Rivlin model (Eq. 6) are shown in SI.4
and the extracted C1 and C2 values are also reported in Table 2.
The last line of the table gives EMR, the estimate of the shear mod-
ulus derived from these coefficients according to Equation (14).
Comparison with the previous set of G values demonstrates that
there is also a certain uncertainty which depends on the choice
of the fitting model, but this does not affect the main conclusions
derived above.

3.4 Stress per strand

To investigate the local behaviour of the systems, we consider the
atomic definition of stress. Within LAMMPS, each atom i con-
tributes to the overall stress according to:72

sαβ (i) =−
[
miviα viβ + riα Fiβ

]
(15)

where mi is the atom’s mass, and the other quantities are the
components of its position, velocity and force (α,β = x,y,z). Note
that sαβ (i) has the dimension of energy, so it must be divided by
a volume to obtain a quantity having the dimension of a stress.
Hence, the full stress tensor is then obtained as:

Σαβ =
1
V

N

∑
i=1

sαβ (i) . (16)

The stress tensor associated with strand a is calculated as a sum
over all atoms belonging to it, normalized by the volume of the
strand:

σ
s
αβ

(a) =
∑i∈a sαβ (i)

∑i∈a V (i)
(17)

The denominator in the previous equation contains the volumes
V (i) associated with the individual atoms, obtained by a Voronoi
tessellation.73,74

Figure 5 documents the σ s
xx components of the stress of the

chain strands, in the direction of elongation. In general, we al-
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Table 2 Mechanical properties calculated using the imposed stress deformation

n 1 1.5 2 2s 3

νννPPP Poisson’s ratio (λλλ <<< 111...111) 0.49 0.49 0.48 0.49 0.50
∆∆∆VVV///VVV 000 (‰) (λλλ === 111...111) 1.8 2.3 1.8 1.6 -0.2
GGG (MPa) 4.93 ± 0.56 5.25± 0.99 6.72± 1.11 5.65± 0.75 6.84± 0.46
αααννν (nm−3) 1.20± 0.14 1.28± 0.24 1.63± 0.27 1.37± 0.18 1.66± 0.11
ααα 10.46± 1.20 5.84± 1.10 3.15± 0.52 4.41± 0.58 5.33± 0.36
CCC111 (MPa) -2.78 ± 0.21 -1.64 ± 1.26 -2.12 ± 0.70 -1.09 ± 0.93 0.48 ± 0.62
CCC222 (MPa) 6.67 ± 0.27 5.79 ± 1.68 7.06 ± 0.89 5.17 ± 1.22 3.80 ± 0.79
GGGMR (MPa) 7.78±0.34 8.30±2.10 9.88±1.13 8.16±1.53 8.56±1.00

(a)
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Fig. 4 (a) Comparison between deformation methods for system n = 1 in the range λ = 1− 2. (b) Stress-strain curves for all systems,
from the imposed stress deformation.
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ways find a broad distribution of stresses, with some chains un-
dergoing compression and and others extension (negative and
positive values, respectively). The distribution broadens with the
sample elongation. The strands that are subject to the largest
stresses (in absolute value) are the short ones, which are also
more likely to deviate from ideal Gaussian statistics. They would
also be the ones more likely to break, in agreement with our un-
derstanding of their role in the rupture and thoughening of poly-
mer networks.41

In the work of Gao and Weiner,18,20 non-bonding interactions
are claimed to counterbalance the stress coming from the bonded
interactions, by a mechanism named shielding effect. This runs
contrary to the classic picture of rubber elasticity, according to
which the only role of non-bonded interactions is to keep the vol-
ume (approximately) constant under deformation. We have cal-
culated the stress per strand originating from the LJ interactions
and we see indeed a negative contribution (SI.5). We link this
effect to the tendency of chains to maximise the pair interactions
as the strands extend.

3.5 Thermodynamics of deformation

In principle, entropy and free energy can be estimated using MD,
but their calculation is not trivial as it requires specialized meth-
ods to measure the volume of the accessible phase space.22 These
are, in general, computationally very intensive. We report here
the results from a simplified method35 that confirms the entropic
origin of rubber elasticity.3,4 All data in this section derive from
the NEMD simulations.

Consider the Helmholtz free energy for a system at constant
volume:

F =U−T S, (18)

where U is the internal energy—readily available from the
dynamics—and S is the entropy. Differentiation of F with respect
to the box length gives the force, equal in turn to the stress σ

times the deformed cross-section A:

σA =

(
∂F
∂ l

)
T
=

(
∂U
∂ l

)
T
−T

(
∂S
∂ l

)
T
= fU + fS. (19)

Here fU and fS are respectively forces arising from internal energy
and entropy. Thus, the entropic force is calculated as:

fS =−T
(

∂S
∂ l

)
T
= σA−

(
∂U
∂ l

)
T

(20)

and the variation of entropy ∆S is obtained by integration:

∆S(l∗) =− 1
T

∫ l∗

l0

[
σA−

(
∂U
∂ l

)
T

]
dl. (21)

The data are then rescaled for consistency in the form ∆S(λ ). In
the process of calculating fU , data smoothing is applied before
differentiation, to avoid noise amplification given by differentia-
tion of a highly fluctuating variable.

Figure 6a shows a comparison between the entropic and en-
thalpic forces for system n = 3. Up to about λ = 3, the enthalpic
force fluctuates around zero, while the entropic force represents
the totality of the deformation force, confirming the entropic ori-

gin of the elasticity at low to moderate extensions. Figure 6b
shows the calculated entropy for all systems. Note that the inte-
gration smooths out the fluctuations in the force. In general, the
entropy changes are largest for the system with higher degrees of
cross-linking.

In order to clarify the role of strand orientation in the entropy
change, we include the calculation of the second Legendre poly-
nomial P2[cosθ ], where θ is the angle between the end-to-end
vector of the strands and the stretching direction. P2 equals −0.5
for a strand that is orthogonal to the deformation direction, while
it is 1 for a strand that is perfectly aligned. Its average 〈P2〉 mea-
sures the overall orientation of the system at the strand length
scale. An ensemble of randomly oriented strands would give
P2 = 0. Figure 7a shows a non-linear, saturating rise in 〈P2〉 as
the deformation proceeds. All systems have overlapping curves,
with more dispersed values at lower n. More cross-linked systems
have a higher number of strands, and this reduces the fluctua-
tions in resulting average 〈P2〉. It is striking that the orientation
of all systems has the same dependence on λ , irrespective of their
closeness to the limit of finite extensibility. This occurs earlier for
the highly cross-linked systems than for the lightly cross-linked
ones (e.g., λ ' 3 for n = 3, versus λ > 5 for n = 1). Clearly, in a
heterogeneous network in which bonds are not allowed to break,
the limit of maximum extensibility will be reached when even a
small minority of chains is fully extended. Figure 7b shows a vi-
sual representation of the strand orientation for system n = 2s at
three different elongations.

4 Conclusions and outlook
We have presented a computational study of the topology and
mechanical properties of polybutadiene networks, starting from a
detailed description of the methods used to generate them. This
methodological part has been made necessary by the adoption
of a united-atom model, which is one level of complexity above
the widespread bead-and-spring models of rubbers. We have re-
covered some of the trends observed on ideal bead-and-spring
networks and controlled laboratory experiments, such as the lin-
ear relationships linking the degree of cross-linking, the elastic
moduli and the density. Nonetheless, the simulated moduli are
still much higher than typical experimental ones. They are also
higher than the predictions of molecular theories based on purely
entropic elasticity (for the same network topology). The main
reason for this disagreement is likely the relatively short length
of the precursor chains (100-mers, or 400 carbons), implying the
need of a high concentration of sulphur cross-linker in order to
produce a fully developed network. Better quantitative results
will come from longer chains and larger system sizes, as well as
improvements in atomistic force fields.75,76

Traditionally, cross-linking is thought to freeze the melt config-
uration, while we observed clear deviations in chain dimension
when using slower vulcanisation. Both topologically and me-
chanically, a slower vulcanisation has effects similar to a lower-
ing the cross-linking density. The influence of the vulcanisation
velocity has experimental relevance when comparing techniques
such as curing by radiation or thermal treatment. Our networks
include a large number of defects (broad strand length distribu-
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Fig. 6 (a) Enthalpic, entropic and total forces for n = 3. (b) Entropy variation through the deformation for all systems.
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coloured according to their P2[cosθ ] value for system n = 2s at λ = 1,2,3.
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tions and presence of dangling chains, but no closed loops), since
they are the result of random processes. This reverberates on
the strands deformation, which is highly non-affine, especially for
short strands.

Pre-stretching cycles are very important for a reliable acquisi-
tion of mechanical quantities, in order to release internal stresses
and unlock metastable conformations accumulated during vul-
canisation. The comparison between deformation methods has
shown that the step-equilibrium protocols are more reliable than
the non-equilibrium simulations, as implemented in the SLLOD
algorithm. Nonetheless, non-equilibrium simulations remain es-
sential when the deformation rate and energy dissipation are rele-
vant variables, such as high-frequency viscoelastic properties and
failure at large deformations. A more extensive exploration of
non-equilibrium simulations should teach us more about their
strengths and weaknesses in these situations. In the meantime,
the present and a previous study53 should provide a good starting
point for near-atomistic simulations of reinforcement and tough-
ening of rubber by silica nanoparticles.77
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