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Abstract

Defining tools and algorithms to support the decision-making process
for charging electric vehicles is a fundamental theme for the spread of
electric vehicles. Utilities can use this approach to incentive or discourage
the charge of electric vehicles according to different constraints. In this
article we refer the electric vehicle (EV) clusters or fleets, where there is
only one energy Buyer for all the cluster. This approach corresponds is an
indirect method based on prices to induce behaviours in the management
of charging on clusters of electric vehicles. The first actor of the algorithm
is an Aggregator of electric vehicle fleet operators acts as a dealer between
the electricity market and consumers. A theoretical game model based on
Stackelberg’s formulation is proposed to capture the interaction between
the fleet operator and the owners/drivers of the electric vehicles. A bi-
level optimization problem arises to represent the game between the agents
involved: At the upper level, the aggregator maximizes its benefits, while
the lower level represents the behavior of rational drivers as a fleet. The
proposed method is applied to actual data obtained observing the behavior
of a car-sharing fleet.

Nomenclature

Abbreviations

DR Demand response.

EV Electric vehicle.

MPEC Mathematical programming with equilibrium constraints.

SO System operator.

TOU Time-of-use.

MILP Mixed-integer linear programming.

LSE Load-serving entity.

KKT Karush–Kuhn–Tucker.
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Indices

t index for time (t = 1, 2, ..., nt).

w index for clusters of electric vehicles (w ∈ π(w)).

v index for scenarios of market prices.

Parameters

η charging efficiency.

δ time-step duration [h].

ES
t , E

S
t upper/lower bound on the energy content (state of charge) of the virtual

battery of the EV aggregation [kWh].

Pt upper bound for the maximum charging power of EV aggregation [kW]

γ̂ average daily dynamic price charged to EV owners [e/kWh].

γ, γ maximum/minimum dynamic price charged to EV owners [e/kWh].

E0
w initial condition of the virtual battery representing the EV aggregation

[kWh].

∆ maximum price change by hour.

Random variables

ET
t,w energy demand of the electric fleet in scenario w at time t [kWh].

λt,v energy price at the spot market [e/kWh] according to the scenario v.

Optimization variables

ES
t,w energy content (state-of-charge) of the virtual battery of the EV aggrega-

tion [kWh].

Pt,w charging power of the virtual battery depicting the EV aggregation [kW].

γt dynamic price charged to the EV owner [e/kWh].

Dual variables

The dual variables below are associated with the following constraints:

αt,w state-space model of the electric vehicle fleet.

µa
t,w, µ

b
t,w upper/lower bound of stored energy.

µc
t,w upper bound of charging power.
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Binary variables

The binary variables below are associated with the following constraints:

zat,w, z
b
t,w upper/lower bound of stored energy.

zct,w upper bound of charging power.

1 Introduction

Today there are a lot of discussion about electric vehicles and their adoption in
urban and non-urban contexts. However, there are many reasons that make the
adoption process complex and difficult. First of all, it is strongly related to the
management of the vehicle and the possibility of recharging it. This is not only
a problem of availability of the infrastructure but also of its ability to deliver
power without losing its stability and robustness. However, electric vehicles
are becoming a reality from the point of view of both commercial fleets and
passenger transport. This is because the fleet manager has access to reduced
costs due to the quantity purchased: both vehicles and energy. For instance,
taxi services and urban car-sharing companies have introduced EVs as a part of
their solutions [1, 2, 3, 4, 5]. However, at the electricity distribution level, the
additional demand generated by the growing number of electric vehicles could
have negative effects on the grid due to undesirable conditions during the charg-
ing process. It therefore becomes necessary to organize and plan the recharge in
order to overcome these problems [5, 6, 7, 8]. Both from a fleet and a network
point of view, it would be useful to have a mechanic able to have an economic
advantage to recharge when the network has more availability and to be discour-
aged when the network has to supply other more critical loads [9, 10, 11, 12, 13].
Then, it becomes necessary to implement a new market agent known as demand
aggregator or EV fleet operator. The aggregator has to address two main dif-
ferent problems. First, the price determination must be performed in order to
satisfy both consumers and EV fleet operator needs; second, the aggregator has
to induce an adequate charging behaviour in the EV user, considering the grid’s
needs in terms of operational constraints, environmental protection, production
cost, and congestion management. A convenient charging schedule planning is
required to fulfill the grid objectives.

In general terms, there are two approaches to schedule the charging pro-
cess: direct control and indirect methods [14]. The first one means that the
aggregator directly manages the charging profile of each EV. In this setting, a
robust outcome is obtained since, by being a centralized solution, the power
system security is guaranteed. However, the fleet operator needs bidirectional
communication and smart devices alongside each EV, thus a large investment
to deploy a proper infrastructure is required. Furthermore, this paradigm poses
some problems of consumer acceptance [15]. On the other hand, indirect meth-
ods are based on prices or incentive signals aimed to influence the consumer
behaviour (EV owners decisions) [16, 17]. The main advantage of this approach
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is that the infrastructure costs can be reduced [18], since it is an unidirectional
approach. Nevertheless, the solution is not necessarily optimal since it depends
on the used algorithm and the quality of the demand model (expected con-
sumers decisions) [19]. In the case of indirect control, electricity prices can be
properly formed to diminish load at peak time periods while increasing EV pen-
etration level in the electricity market. A decentralized charging approach based
on Time-Of-Use (TOU) tariffs is proposed in [15], where drivers seek to mini-
mize their costs respecting battery capacity, charging power level, energy needs
and constraints. Similarly, a decentralized computational algorithm is proposed
in [20] by focusing on studying the Nash equilibrium of the charging problems
of large populations of EVs. Furthermore, dynamic price signals are proposed
to avoid transformer overloads in [21]. In [22], TOU tariffs are studied in the
context of EV charging profiles. That work claims the importance of designing
appropriate rates to motivate demand response. Also, TOU pricing is proposed
in [23], where a social experiment is suggested to estimate the price response of
the EV charging process. Additionally, distribution locational marginal pricing
is developed to manage network congestion in [24]. Nevertheless, more research
in price response model is required to achieve the appropriate performance in
the grid, [19]. Note that the previous works rely on consumer models based
on demand functions where the elasticity is a key factor. Related to bi-level
approaches or Stackelberg structures, some solutions are found in literature on
EV charging management. In [25], an MPEC formulation is developed to find
optimal bidding strategies of EV aggregators in day-ahead energy and ancillary
services markets with variable wind energy, in which the upper-level problem
is the aggregator conditional value at risk maximization, while the lower-level
problem represents the system operation cost minimization. Similarly, [26] pro-
posed an MPEC approach of a price-maker aggregator for bidding into the
day-ahead electricity market with the aim of minimizing charging costs while
satisfying the EV flexible demand. In that approach, the upper-level problem
corresponds to the charging cost minimization of the aggregator, whereas the
lower-level problem represents the market clearing. Furthermore, a stochastic
robust optimization formulation is presented in [27], where a bidding strategy
of an EV aggregator that participates in the day-ahead energy market is devel-
oped. The model output corresponds to the bidding curves that are submitted
to the System Operator (SO). Additionally, a bi-level programming approach or
MPEC between a parking lot and a SO is developed in [28]. In that model, the
upper-level problem represents the operation cost minimization of the SO while
the lower-level problem corresponds to the scheduling of energy and reserves
with the aim of minimizing the parking cost. Moreover, a profit-maximizing
EV aggregator is developed in [29], it participates as a price-taker agent into
day-ahead energy and reserve markets, which include compensation for battery
degradation. In the previous works, a centralized aggregator with access to the
charging infrastructure is assumed.

[30] proposes a bi-level mechanism to determine TOU prices to incentive EV
behaviour to elicit load levelling. Particularly, the top-level solves the problem
to minimize the system load variance, and the lower level the charging cost of ev-
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ery EV. In [31] is developed a distributed charging strategy based on day-ahead
prices, with the aim of increasing the operating profits based on a Stackelberg
game. The authors present a heuristic algorithm to obtain a sub-optimal so-
lution for the EV operator and each smart charger. [32] remarks the benefits
of employing dynamic pricing to induce demand response in EVs, the authors
propose a bi-level formulation for the interaction between between the SO and
EV parking lots to reduce energy consumption under price spikes. Furthermore,
an aggregator is considered for buying energy in the day-ahead market while
accounting for technical aspects of each EV [33]. In [34], an optimal pricing and
charging scheduling model is developed for a car-sharing company, considering
EV mobility to capture the spatial translations without tracking every single
vehicle. A bi-level program for EV aggregation using indirect load control is de-
signed to minimize the personal mobility cost while maximizing the aggregator
profit.

This paper develops an aggregator model based on a dynamic game between
a fleet operator and EV clusters, under a price-based DR program, with the
aim of planning prices. A DR contract is incorporated through optimization
constraints in the problem. In particular, it is assumed that the two parties are
agreed on certain characteristics of a variable electricity price, i.e. minimum,
maximum, average energy value during the day, similar to [35], and maximum
price change by hours. In addition, it is considered that the EV fleet operator
participates as a price-taker agent in the wholesale electricity market, then it
faces stochasticity in spot prices and also in the driving behaviours (energy re-
quirements) of the EV fleet. The proposed approach allows the determination
of the price signal that maximizes the expected value of the objective function
of the aggregator and the optimal load pattern for the EV fleet, under the pro-
posed criteria. An MPEC optimization problem is formulated to model the
conflict between the involved agents. At the upper-level, the aggregator maxi-
mizes its objective (e.g. profit) whereas the lower-level represents the behaviour
of rational EV drivers as a cluster. A virtual battery model is employed to
represent the ability of the group of EVs to store energy and offer flexibility
in energy demand. This tool allows to describe the aggregated flexibility of a
possibly large set of loads with a simple first-order model, without considering
the complexity of each participant behaviour, see e.g., [36]. Uncertainties are
included by considering a scenario-probability framework in the model. The
MPEC formulation is transformed into a MILP problem that can be solved in
commercial optimization software. Therefore, this model can be employed as a
price planner or TOU designer for indirect methods of load management in EV.
Respect to the previous work [37] the paper introduce some new aspects that
can be summarized as follows:

• A new game-theoretic approach is proposed to model the interaction be-
tween an aggregator and flexible EV owners to design retail tariffs by
facing uncertainties in demand and spot prices.

• The consumer behaviour is depicted through an optimization problem
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rather than using demand elasticities or utility functions for EV applica-
tions.

• By using an aggregated virtual battery formulation as a state-space model,
the dynamics of consumer behaviour is captured in the lower-level of the
proposed bi-level game and some restriction are introduced on the price
ramp.

• The approach captures the EV owners habits as behaviour clusters. The
driving patterns are included in the form of EV groups with similar de-
mand profiles, without requiring detail models or measurements for each
EV.

The paper is structured as follows. Section 2 introduces the problem setup.
Section 3 describes the EV aggregator model. In Section 4, a simulation case
study is presented. Next, Conclusions are drawn in Section 5.

2 Problem setup

The optimal decision making of a EV fleet operator or aggregator is considered.
It is an intermediate agent between wholesale electricity markets and EV owners.
The aggregator is responsible of providing charging services to an EV fleet and
to manage its customers for other purposes, e.g., ancillary services and balancing
operations, while deriving profits from the services. Unidirectional charging is
considered, in which price signals are used as the control variables, as shown in
Fig. 1. Energy is purchased at the electricity market (e.g. at the day-ahead
stage) and then it is sold to EV owners, who face an optimization problem aimed
at minimizing the cost of their energy consumption.

From the perspective of the decision-making process, the aggregator has to
determine the price signals so that the users then decide their consumption
patterns on the base of the energy prices and requirements (energy required for
EV usage). This sequential interaction is captured by a dynamic game with
Stackelberg structure, which is formulated as a bi-level optimization problem,
depicted through an MPEC algorithm. An advantage of this formulation is
that the EV fleet behaviour is incorporated in the model as an optimization
problem, offering an alternative to standard solutions that require the estimation
of demand elasticities [21] or consumer benefit functions [38].

The contract between the aggregator and EV owners is depicted in Fig. 2,
which is a decision sequence diagram under the proposed setting. Beforehand,
the aggregator and EV fleet are agreed on certain parameters, i.e., contract
terms. In this paper, the agreement is subscribed under the following parameters
on prices: minimum γ, maximum γ, average energy values γ̂ during the day are
fixed. Also the hourly price update is limited to a fixed rate ∆. The contract
process is described below.

• First, the aggregator designs time-variant retail prices by maximizing a
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Figure 1: Functional flow description between aggregator and EV fleet based.
In the aggregator the price is optimised and signed (also with different values)
to the fleet that decide definitively the charging strategy

private objective function, for example its expected profit, considering
uncertainties on demand and spot prices.

• Second, the EV fleet decides its consumption patterns during the day,
given the prices. It is assumed that EV owners are rational agents that
minimize their costs.

The whole decision-making problem is illustrated in Fig 3. There are three
main agents participating in energy transactions to provide balancing between
supply and demand. SO is in charge of clearing the operations between genera-
tors and load-serving entities/aggregators. Typically, SO has multiple markets
to guarantee a match among producers and consumers. For instance, SO de-
termines the energy price trough day-ahead settlements and real-time (or bal-
ancing) markets every day. In this approach, the aggregator buys energy by
bidding in the wholesale electricity market, where prices are formed ex-post.
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Therefore, aggregator faces uncertainty in spot prices when it designs the retail
prices for EV owners. Moreover, the EV fleet operator does not know a-priori
the energy demand of the fleet for the next day. Thus, under the terms of the
proposed contract, aggregator has to obtain earnings for the provided service,
i.e. the average electricity price γ̂ charged to EV owners should be greater or
equal than the stochastic price λt,v, which is the spot price at the period time
t in the scenario w. An example of this issue is described in [39]. Then, the
aggregator goal is to act as a price planner by sending retail prices in advance
in order to induce adequate consumption patterns of EV owners.

In order to find a solution to the problem, the aggregation needs a forecast
of EV fleet response to the prices. The proposed model takes into account the
EV charging profiles by grouping drivers with similar behaviours in clusters.
For instance, Fig. 4 presents a envelope plot of historical data related to the
daily use, in term of energy consumption, for 1000 EVs, from January to April
2018, by cars that are part of a fleet of identical EVs from a car-sharing service
in Italy, which can be utilized to estimate driving patterns and define statistical
models of energy requirements in urban areas. Note that the energy demand is
greater during the night or early morning since the availability of public trans-
port is reduced. Therefore, historical demand patterns can be used to forecast
driving behaviours and as a consequence, energy requirements, then this fact
provides information on the flexibility of EV demand. Finally, the best aggrega-
tor strategy is captured by means of an optimization problem. The aggregator
sets an objective function defining its interests, for example profit maximiza-
tion, congestion reduction or peak shaving, subject to the contract terms and
expected optimal EV fleet behaviour. In this case, the expected EV driving
patters are included by adding another level into the problem formulation, in
order to depict EV fleet decisions as behaviour clusters.

3 Model formulation

This section presents the proposed method for optimization which describes the
operation of the EV aggregator. A group of electric vehicles is studied as if it
behaved as a single virtual battery within a fleet of electric vehicles. This virtual
battery represents the aggregate flexibility of that group of electric vehicles and
its charge curve. Flexibility means the availability to be recharged at a certain
time and at a certain price. The aggregator has information about the fleet,
which can be estimated, for example, through measurements at the charging
points, assuming that the technology is available in the system. In addition,
the fleet operator participates in the market as a LSE/retailer in a price-taker
approach.
This model proposes a solution to the aggregator planning problem by assuming
rational behaviour of EV owners grouped as clusters.

In this work, time is discretized into 24 hour periods. Nevertheless, the dura-
tion of these time steps may be adjusted to attain a more detailed modelling of
the charging process. The proposed formulation is explained in two subsections:
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EV fleet model, the bi-level problem, and the MILP model. The mathemati-
cal details about transforming the resulting MPEC to a MILP problem and
relaxing bilinear term in the objective function are explained in the following
subsections.

3.1 Electric vehicle fleet model

The Aggregator has to anticipate the EV behaviour in order to properly design
retail prices γt. In this sense, Aggregator assumes a model of the EV fleet with
uncertainty in its energy consumption, using a predicted energy demand by the
cluster for the next day, see e.g., [27, 40].

The EV aggregation is performed as a virtual battery, where the dynamics
of the fleet are modeled as a single variable that represents the behaviour of
the energy of the group of EVs, using the same principle proposed in [41] for
thermostatically controlled loads.

The EV fleet model is formulated as follows:

ES
t,w = ES

t−1,w − ET
t,w + ηδPt : αt,w ∀t (1a)

ES
t,w ≤ ES

t : µa
t,w ∀t (1b)

ES
t ≤ ES

t,w : µb
t,w ∀t (1c)

Pt ≤ Pt : µc
t,w ∀t (1d)

Pt, E
S
t,w ≥ 0 ∀t (1e)

Eq. (1a) is the energy balance for the virtual battery representing the EV
fleet behaviour, where ES

t,w is the energy stored by the cluster (virtual battery),
η is the charging efficiency, Pt is the charging power requested by EV fleet,
ET

t,w is a random variable that models the energy demand of drivers, at each
interval t, for using the EV fleet. w is a sub-index that represents the different
scenarios that can be observed. It accounts for the aggregated battery discharge
produced by the use of the EVs during each interval of length δ. Eq. (1b), (1c)

and (1d) are upper and lower stored energy bound (ES
t and ES

t ), and upper

charging power limit Pt, respectively. Lastly, eq. (1e) are the declarations of
non-negative variables. Notice that αt,w, µa

t,w, µb
t,w, µc

t,w are the corresponding
dual variables of constraints (1).

It is important to recall that the power and energy limits can be obtained by
analyzing the driving patterns of EV users, added to the physical characteristics
of the EV fleet and the charging stations. Then, this information can be acquired
using historical data to predict the future energy requirements (see Fig. 4). This
estimation process of parameters and stochastic variables is out of the scope of
this work. However, note that this input data is vital to obtain a suitable result
in real applications of the proposed model.

Notice that users decide their charging profile Pt,w already knowing the retail
price γt and their energy requirements for the day ET

t,w, see the decision sequence
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in Fig. 3. Finally, consumers face the following problem:

Pt,w = arg min
∑
t

γtPt

subject to constraints (1)

(2)

Therefore, EV owners solve a deterministic optimization problem that is asso-
ciated with their energy requirements for each scenario w and technical con-
straints. However, when designing the prices, Aggregator faces uncertainty in
the demand. This situation is captured through a bi-level optimization problem
which is explained in the following subsection.

3.2 Time-of-use model: bi-level approach

According to the contract, aggregator sends regulated prices to consumers in
advance. These are comprised between γ and γ, their daily average is γ̂ and the
maximum price change by hour is ∆. Furthermore, the fleet operator has to
inform its bidding strategy in advance to the SO. With that information of all
market participants, SO clears the market and then communicates to aggregator
the market results. Given that the EV fleet operator has to purchase energy
and design retail prices in advance, it faces uncertainty in spot prices and EV
driving patterns.

A bi-level problem is posed to model the interaction between aggregator and
EV fleet . In the upper-level, an strategic aggregator is considered to determine
the prices γt. The lower-level is formulated as a constraint of the main problem,
where, for each demand scenario, the EV fleet minimizes the charging costs.
The stochastic optimization problem is proposed below,

minimize
ΦU

Ev [f (γt, λt,v,Pt)]

subject to

− γt satisfies contract terms

− Pt,w is the optimal power request

of the fleet in front of price γt and

scenario w

(3)

f (γt, λt,v,Pt) is the objective function to be minimized by the fleet operator.
The aggregator sets the objective according to its targets. For instance, f can be
focused on profit maximization, peak demand reduction or congestion control.

If the objective function of the aggregator is profit maximization,

f (γt, λt,v,Pt) =
∑
t

(γt − λt,v)δPt, (4)
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Then, the problem faced by the aggregator becomes,

minimize
ΦU

Ev [f (γt, λt,v,Pt)]

subject to γ ≤ γt ≤ γ ∀t
1

nt

∑
t

γt = γ̂

|γt − γt−1|≤ ∆

Pt = Ew[Pt,w]

Pt,w = arg min
ΦL

w

∑
t

γtPt,w ∀w

subject to constraints (1)

(5)

where ΦU = {γt} and ΦL
w =

{
ES

t,w, Pt,w

}
. Constraints of the upper-level

ensure that the demand price is enclosed between γ and γ, and also they enforce
by contract that the dynamic price has a fixed daily average. Furthermore, λt,v
is the energy price resulting form the market clearing and nt is total number
of periods. Note that the Problem (5) has two random variables which are λt,v
and ET

t,w, the last one appearing in the lower level problem, eq. (1a). Scenarios
for the prices can be obtained using the method proposed in [42].

The problem faced by the aggregator in eq. (5) is a non-linear stochastic bi-
level optimization problem that cannot be solved efficiently by computational al-
gorithms. The equivalent single-level MILP formulation of the nonlinear MPEC
problem is the following:

maximize
ΦDP

∑
v

∑
w

π(w, v)[
∑
t

(αt,wE
t
t,w − µa

t,wE
S
t + µb

t,wE
S
t

− µc
t,wPt − λt,vPt,w)− α1,wE

0
w]

subject to γ ≤ γt ≤ γ ∀t
1

nt

∑
t

γt = γ̂

|γt − γt−1|≤ ∆

constraints (1), (7a)− (7d), and (8).

(6)

being
ΦDP = {ES

t,w, Pt,w, γt, αt,w, µ
a
t,w, µ

b
t,w, µ

c
t,w, z

a
t,w, z

b
t,w, z

c
t,w, Xt,w}. In addition,

the expected value in (5) is changed by the summation on π(w, v), which means
the probability of occurrence of each demand scenario w and each spot price
scenario v. A scenario tree can be used to capture the uncertainties in the
model.

3.3 MILP problem formulatin

The lower-level optimization problem in (5), i.e. consumer decisions, are changed
by their Karush–Kuhn–Tucker optimality conditions, [43, 35]. KKT formulation
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applies here since the lower-level problems are convex in the continuous vari-
ables ES

t,w and Pt,w, and since the upper-level variable, γt, can be considered as
a parameter by the lower-level aggregation.

In addition to the primal feasibility restrictions (1), the KKT necessary
optimality conditions of the lower-level problem imply that,

γt − ηδαt,w + µc
t,w = 0 ∀t, w (7a)

αt,w − αt+1,w + µa
t,w − µb

t,w = 0 ∀t < nt, w (7b)

αt,w + µa
t,w − µb

t,w = 0 ∀t = nt, w (7c)

µa
t,w, µ

b
t,w, µ

c
t,w ≥ 0 ∀t, w (7d)

(ES
t,w − ES

t )µa
t,w = 0 ∀t, w (7e)

(ES
t − ES

t,w)µb
t,w = 0 ∀t, w (7f)

(Pt,w − Pt)µ
c
t,w = 0 ∀t, w (7g)

Products of Lagrange multipliers and constrained continuous functions in the
complementary slackness conditions, i.e, expressions (7e)-(7g), are equivalently
replaced by linear equations through Fortuny-Amat transformation [44], similar
to [35]. Then, (7e)-(7g) can be substituted by the following constraints.

−(ES
t,w − ES

t ) ≤M(1− zat,w) ∀t, w
µa
t,w ≤Mzat,w ∀t, w

−(ES
t − ES

t,w) ≤M(1− zbt,w) ∀t, w

µb
t,w ≤Mzbt,w ∀t, w

−(Pt,w − Pt) ≤M(1− zct,w) ∀t, w
µc
t,w ≤Mzct,w ∀t, w

zat,w, z
b
t,w, z

a
t,w ∈ {0, 1}

(8)

where M is a sufficiently large constant. This formulation introduces addi-
tional complexities by using binary variables zat,w, zbt,w y zct,w, nevertheless, now
all the restrictions are linear.

The term γtPt,w is non-linear, then the strong duality theorem on the lower-
level is employed in order to transform it into a linear expression. Therefore,
the bilinear term can be stated as

∑
t

γtPt,w =
∑
t

[αt,wE
t
t,w − µa

t,wE
S
t + µb

t,wE
S
t − µc

t,wPt]

−α1,wE
0
w

(9)

where E0
w is the initial condition of stored energy in the EV fleet. Expres-

sion (9) can be replaced in the objective function of problem (5). Finally, the
resulting optimization problem is stated in (6).
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4 Simulated Case Study

In this section, a simulated case study is presented to illustrate the proposed
model to control an EV fleet energy demand by means of the price signal.
Scenarios of energy consumption are built from historical data of vehicles from a
car-sharing service collected during the Italian project Teinvein, corresponding
to a fleet of small electric cars. The main characteristics of the EV fleet are
provide in Table 1. The simulation is performed for a planning horizon of 24 h
divided into hourly time steps.

Number of EVs 1000
Capacity of each EV 12 kWh
Maximum charging power of each EV 3 kW
Charging efficiency 90%
Initial condition of EV fleet 2000 kWh

Table 1: Data of EV.

For car-sharing activities, it is expected that the most frequent trips are
relatively short ones and the main activity is during the night or weekend,
when the availability of public transport is reduced. During workdays, the
number of trips is shortened due to the fact that most people are at work.
In practice, hourly energy consumption is below 1 kWh for each vehicle. Fig
4 presents the statistics of energy spent by the EV fleet in a day with the
previous characteristics, corresponding to the the first semester of 2018. 20
scenarios with the same probability of occurrence are considered to evaluate the
proposed model. The scenarios have been selected randomly from the data set.

Concerning the uncertainty faced by the aggregator when buying energy in
the spot market, 3 different spot prices are considered. These are denoted as
Spot1, Spot2 and Spot3 and correspond to actual energy prices in the Italian
day-ahead market during January 2020, note that these price signals follow a
duck curve [35]. The price signals λt,v are shown in Fig. 5 and vary from
e0.1/kWh to e0.39/kWh.

For the simulation, power bounds of the virtual battery are kept constant
along the day to ease the analysis, but they can be modified according to EV
fleet conditions, e.g., number of EVs connected to the grid. Energy bounds
were taken as the aggregated state-of-charge of the fleet. However, those limits
should be the results of studying the EV fleet behaviour as a previous step when
using the proposed model.

For this simulation, aggregator sells energy to consumers at an average price
20% more expensive than the purchase price, i.e., ((1/nt)

∑
t λt,v)1.2 = γ̂. Fur-

thermore, the maximum and minimum energy retail prices are established as
γ = γ̂+ γ̂(0.3) and γ = γ̂− γ̂(0.3). the maximum hourly price change is limited
to ∆ = 0.2(γ − γ). From the above, the aggregator problem is how to define
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retail prices, given the uncertainties on wholesale energy prices and driving pat-
terns of the EV aggregation, in order to maximize its profit.

The single-level mixed-integer linear programming problem (6) that results
from the bi-level program (5) is solved using FICO Xpress-Optimizer v29.01.10
under Julia 0.6.4 on a Windows-based personal computer. Additionally, in
order to evaluate the proposed model, the optimal fleet behaviour, when faced
to constant energy prices is considered, i.e, using the formulation (2) by replacing
the time-variant price γt by the fixed price γ̂, which is the average price agreed
between the parties.

Fig 5 presents the resulting optimal price signal for the proposed model.
The fixed price charged to consumers is e0.051/kWh. The Dynamic price γt is
most expensive during the first hours, between hours 1 to 10, with a value of
e0.057/kWh, Then, between hours 11 to 12 the price lowers to e0.051/kWh,
later at hours 13 to 21 the price is e0.045/kWh and finally, a price of e0.039/kWh
is fixed for hours 22 to 24.

Fig. 6 shows a envelope plot of the charging power for the considered scenar-
ios, given the price policy. Note that the fleet is incentivized to charge during
the first (early) hours, between hours 13 and 14 and after hour 21, when the
spot price is low. Fig. 7 shows a envelope plot of the energy stored by the fleet.
It can be seen that after the first 6 hours, when the fleet acquires energy to
respect the lower SoC limit, the stored energy oscillates, rising when the price
is low.

The expected profit for each pricing program is summarized in Table 2. Re-
sults with uncertainty in the spot prices and also assuming known day-ahead
prices are evaluated. The aggregator attains greater profit by employing the
proposed TOU contract than using a fixed price for all the scenarios. For this
simulation, the proposed model represents a profit improvement of 15.6%. Nev-
ertheless, this result can be improved by modifying the agreed parameters (∆,γ̂,
γ and γ) in the contract. Hence, this method can be a useful tool to design prices
for TOU programs, allowing EV fleet operators to encourage a change in the
energy consumption patterns of driver-owners by modifying retail prices.

Program Fixed price (e) Dynamic pricing (e)
Expected profit 160.51 185.56
spot1 345.31 375.22
spot2 275.77 299
spot3 283.13 318.75

Table 2: Expected profit.
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5 Conclusions

This article proposed an algorithm for optimal pricing decisions through a gami-
fication strategy. This algorithm is suitable for fleet managers of electric vehicles
in order to obtain optimal prices that maximize their profit, while at the same
time inducing behaviour on drivers, in order to reduce the impact on distribution
networks. The problem has been addressed using an MPEC programming al-
gorithm, since the relationship between agents has a hierarchical structure that
belongs to the so-called Stackelberg (or leader-follower) games. The formulation
allows to link the decisions of the electric vehicle fleet, modeled as a cluster (a
virtual battery), and the objectives of the aggregator to determine the optimal
price signals and load patterns. As a result, in the case of TOUs, the EV fleet
operator, while By maximising its profits, it gives owners of electric vehicles a
price incentive to shift their demand for electric charging to periods when the
aggregator can obtain better benefits than under a fixed price contract.

The proposed model does not require the derivation of utility functions or
price elasticity parameters from electric vehicle owners. On the contrary, the
behaviour of the electric vehicle fleet is represented as a dynamic model of a
virtual battery with a stochastic energy demand, characterised by a series of
energy consumption scenarios that can be estimated from electric vehicle usage
data not linked to the owner’s economic decisions.

Future extensions of this research may move in different directions. The
formulation may include other applications such as support for auxiliary services
or balancing markets. In addition, the model can be extended by adding network
constraints to model the demand for electric vehicle charging stations.
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Figure 2: Main features of the proposed bi-level model.

Figure 3: Decision-making process of the market agents.
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Figure 4: Energy demand for 1000 EV from car-sharing service in Italy.
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Figure 5: Considered energy prices.
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Figure 6: A envelope plot of EV Charging power considering all scenarios.
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Figure 7: A envelope plot of EV stored energy considering all scenarios.
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