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Abstract: Module-level distributed maximum power point tracking (DMPPT) represents an attractive solution for photovoltaic 
systems installed in dense urban areas, where panels are often subject to different solar irradiance levels. Model-based (MB) MPPT 
algorithms are particularly suitable for the purpose: they enable good steady-state accuracy and fast dynamics thanks to an underlying 
parametric model of the panel. The target of the present paper is deeply investigating the estimation of the model parameters, and the 
collection of the training database, since they heavily affect overall performance. In this work, parameter values results by maximizing 
energy production considering the training database; under some simplifications, it leads to a weighted least squares problem that can 
be easily solved. One of the main advantages is the robustness in the presence of identification data which have been collected under 
partially shadowed conditions. Moreover, the possibility to gather the training database by running a perturb and observe MPPT is 
investigated and tested for the first time. Energy production is allowed also during this stage, thus opening the way to a periodic update 
of the parameters in order to follow degradation and time drift of the module. Experimental results show that performance is virtually 
the same as that obtained by computing parameters from a large set of volt-ampere characteristics. 
 

1. Introduction 
The last two decades have been characterized by an 

increasing awareness about the impact of pollution and global 
warming, and their potentially catastrophic consequences on 
agriculture, human health, water supply and economy. The 
vast majority of the scientists agree that the ongoing climate 
change is mostly caused by anthropogenic greenhouse gas 
emissions, such as carbon dioxide. Governments and 
intergovernmental organizations committed to reduce these 
emissions, also through financial incentive policies. 

As far as electricity production, we have experienced a 
huge increase of the impact of generation from renewable 
energy sources. Among them, photovoltaic (PV) systems 
have played a primary role [1]. The main reason is their 
modularity: they can be easily installed and scaled up from 
residential applications to multi-MW solar parks. In order to 
quantify their proliferation, on April 20th 2020, 40% of 
electricity production in Germany was solar-generated [2], an 
impressive figure especially when compared to the 22% 
provided by coal and nuclear plants during the same day [3]. 

A major drawback of PV systems is their low conversion 
ratio, which is below 20% [4] mostly because of the poor 
efficiency of PV modules (or panels). Optimizing energy 
production and cost effectiveness is mandatory especially in 
the present scenario, since governments have generally 
reduced their incentives [5]. However, a major role in overall 
efficiency is also played by the power electronics converters 
which are required in order to interface the modules with the 
ac grid. In particular, they allow setting the operating point 
on the volt-ampere characteristics of the panels in order to 
maximize power output for given environmental conditions 
(mostly temperature and solar irradiance level) thanks to a 
maximum power point tracking (MPPT) algorithm. Because 
of its importance, it is not surprising that this topic is widely 
studied in order to balance out simplicity, steady-state 
accuracy and dynamic performance, namely the capability to 
follow the maximum power point (MPP) even during the fast 

variations of the irradiance level which may occur. The 
simplest MPPT techniques, which are still largely employed, 
include fractional open circuit voltage, perturb and observe 
(P&O) [6] and incremental conductance method [7]. These 
two last techniques are extremely similar [8], and they 
approach the MPP by periodically applying a positive or 
negative voltage  perturbation to the modules; increasing its 
magnitude leads to faster dynamics at the expense of a wider 
oscillation around the MPP once it has been reached. In order 
to overcome this issue, adaptive step algorithms have been 
proposed [9], [10]. Many different MPPT techniques and 
implementations can be found in the literature [11]-[14], for 
example based on sliding mode control [15], [16], fuzzy logic 
[17], [18], model predictive control [19], artificial neural 
networks [20] as well as several other approaches. 

Grid-tied PV systems are typically made of strings of 
series-connected PV modules; one or more strings (thus 
composing a PV array) feed a dc/dc or a dc/ac converter. 
Assuming that all the modules are identical and the solar 
irradiance on the panels is uniform, the power-voltage curve 
of the array shows a clearly identifiable MPP and 
(theoretically) no other inflection points. Unfortunately, in 
practical applications the curve may exhibit local maxima: 
PV panels have some degree of mismatch between their 
electrical characteristic, and, most important, they may be 
subject to different irradiance levels. In this case, the 
employed MPPT algorithm may converge to a local 
maximum without reaching the MPP, thus resulting in a 
significant decrease of energy production [21]. In the 
literature several MPPT techniques have been specifically 
developed to deal with this issue [22]-[25]. However, it is 
worth noting that even if the string or array is working at its 
global MPP, output may be significantly lower with respect 
to that achieved if all the modules were operating at their 
individual MPPs. Studies show that in a real-world scenario, 
this loss may be between 3 and 16% in case of nonuniform 
irradiance on the panels [26]. 

The problem of mismatched operating conditions over the 
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different panels is exacerbated by the proliferation of small-
scale, urban PV installations. Modules are often subject to 
different irradiance levels, either because of shadowing due 
to the complex landscapes in cities, or different orientations. 
In order to optimize energy production under these 
conditions, many authors have proposed to implement 
distributed maximum power point tracking (DMPPT) by 
dividing the PV array into sub-sections [27], [28]. In this 
respect, module-level DMPPT is becoming attractive, and it 
can be enabled thanks to the employment of microinverters 
[29], [30] or module-integrated dc-dc converters [31]-[33]. 
Some works investigated also subpanel [34] and cell-level 
DMPPT, but the inherent cost and complexity hardly make it 
as viable options for commercial applications in a near future 
[26]. 

In principle, the same algorithms employed for the 
conventional, string-level MPPT could be adopted also to 
implement module-level DMPPT. However, the electrical 
behavior of a single PV panel can be accurately represented 
with simple parametric models receiving cell temperature and 
irradiance level as inputs [35], [36], which are assumed to be 
uniform over the module itself. For this reason, different 
MPPT techniques based on a model of the PV panel have 
been proposed in the literature. The underlying model allows 
predicting the location of the MPP for given environmental 
conditions, and this result in good steady state accuracy and, 
in particular, exemplary dynamic performance. In general, 
these techniques require measuring both the panel 
temperature and the solar irradiance level [37], [38]: 
unfortunately this needs an expensive radiation sensor for 
each module, or few modules. In some cases, solar radiation 
is indirectly obtained from the short circuit current of the 
module [39]. 

In order to overcome this limitation, the authors of the 
present work have studied a model-based (MB) MPPT 
algorithm that requires measuring the solar radiation only 
during the estimation of the model parameters, but not during 
regular operation [40], [41]. Furthermore, [42] proposes an 
innovative, iterative MB-MPPT method that allows 
completely avoiding the measurement of solar radiation level; 
comparison with other, well-known algorithms show the 
effectiveness of the approach [43]. As for the other MB 
techniques, it requires a preliminary identification of the 
parameters before it can be put in operation. This stage has 
vital importance, since the quality of the parameters estimates 
directly affects performance. Identification data is 
represented by a proper set of volt-ampere curves, which 
should be measured under different environmental conditions 
according to the assumptions of the underlying model. During 
the collection of the training dataset, energy production is 
interrupted. Parameter estimates are obtained with the least 
squares approach, namely minimizing the mean squared error 
of the predicted MPP voltage. 

The target of the present paper is deeply investigating and 
improving the model identification process, in order to 
achieve maximum efficiency. In this work, parameters are 
obtained as the result of an optimization problem, aimed at 
maximizing energy production considering the identification 
dataset. Having introduced proper approximations, the 
solution corresponds to a weighted least squares estimate 

having a closed-form expression [44]. Performances will be 
compared to those achieved by using parameters obtained 
with the conventional method. Experimental results highlight 
the robustness of the new approach with respect to 
identification data collected under partial shadowing, as it 
may happen in practical applications. 

For the first time this article scouts the possibility to 
estimate model parameters from data collected during the 
execution of a simple P&O MPPT algorithm with a coarse 
voltage perturbation step. In this way, energy is delivered to 
the grid even during the training stage, and thus it opens the 
way to a periodic retuning of the parameters in order to follow 
aging and time-drifts of the PV modules. Experimental results 
show that efficiency is on par with that obtained as long as 
parameters are computed using the volt-ampere curves. 

2. Iterative Model Based MPPT algorithm 
Let us consider a PV panel connected to its own power 

electronics converter which permits controlling the output 
voltage; this enables the implementation of module-level 
DMPPT. For the purpose, [42] proposes an iterative MB-
MPPT algorithm that allows avoiding a direct measurement 
of solar irradiance. The target is having available an estimate 
of the MPP voltage VMP which, in turn, can be used as the 
reference value Vref for the module voltage controller. The 
approach starts from a well-known analytical expression [45] 
that allows obtaining VMP as a two-variable function of the 
module temperature Tp and of the solar radiation G, assumed 
to be uniform over the panel. After some approximations and 
manipulations, it is possible to write: 

 ( ) ( )2
ref MP 0 1 p 2 MP 3 MPln lnV V A AT A I A I= + + +  (1) 

where IMP is the module current at MPP while A0÷A3 are 
parameters depending on the behavior of the specific panel. 
Of course, this expression cannot be directly employed in 
order to obtain VMP: while Tp can be easily measured, IMP is 
unknown. Therefore, let us substitute IMP with Im, which is the 
measured module current in the operating point: 

 ( ) ( )2
ref 0 1 p 2 m 3 mln lnV A AT A I A I= + + +  (2) 

of course, since Im is in general different from IMP, the 
reference voltage Vref of the controller is not equal to VMP. 
However, if Vref is updated iteratively using (2) with the new 
measured current Im (converter and module dynamics is 
neglected) and module temperature Tp, it rapidly converges in 
the neighborhood of VMP. During the first iteration a 
measurement of the module current is not available. In this 
case, Vref is initially set to: 

 ref 0 1 pV A AT= +  (3) 

2.1. Model identification 
MB-MPPT algorithms operate thanks to a priori 

knowledge about the behavior of the panel, which is 
represented by a proper model. The adopted approach which 
has been discussed in the previous section is based on a four-
parameter model expressed by (1); before starting the 
operation, A0÷A3 have to be properly estimated during a 
preliminary training stage. It is worth noting that (1) is linear 
in the parameters: Im and Tp are known, thus Vref is a linear 
combination of A0÷A3. Let us suppose having available a 
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database made of N observations of panel current and voltage 
at MPP together with the corresponding temperature, which 
have been collected under different environmental 
conditions. The generic nth observation is characterized by 
the triplet of values VMP

[n], IMP
[n], Tp

[n]. Assuming that (1) 
holds true, the following system of equations can be written 
using the matrix notation: 
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

   

 (4) 

Now the target is evaluating the model parameters which 
are the components of the column vector A. Assuming that 
matrix F has full column rank, (4) represents an 
overdetermined system of equations. Under this assumption, 
an estimate ALS of A can be obtained by using the Moore-
Penrose inverse of F: 

 ( ) 1

LS MP
T T−

=A F F F V  (5) 
T indicates matrix transpose operator and ALS represents the 
least-squares (LS) estimate of A, which is the solution of the 
unconstrained minimization problem: 

 MParg min −
A

V FA  (6) 

where || || denotes the L2 (or Euclidean) norm. Therefore ALS 
contains the model parameter estimates that minimize a cost 
function represented by the L2 norm of the vector containing 
the deviations between the N measured MPP voltages and the 
corresponding model predictions. However, this cost function 
is not directly connected with the goal of a MB-MPPT, which 
is maximizing energy production for given environmental 
conditions. Instead, this correspond to the minimization of a 
different cost function Φ: for a given time interval [t0, t1] it is 
defined as the difference between the energy EMP produced 
by ideally tracking the actual MPP, and Ee, namely that 
generated by operating at the maximum power point voltages 
predicted by the model: 

 MP eE EΦ = −  (7) 
Φ can be easily rewritten in terms of power. For the 

purpose, let us introduce P(V,t) as the power-voltage 
characteristics of the module corresponding to the 
environmental conditions in the time instant t and PMP(t) as 
the generated power at the MPP in the same instant. It results: 

 ( ) ( )( )
1

0

MP MP,e , ,
t

t

P t P V t t dt Φ = − ∫ A  (8)  

where VMP,e(A,t) is the MPP voltage in the time instant t 
predicted by the model (1) defined by the parameter vector A. 
As aforementioned, an estimate of A can be obtained from 
the minimization of Φ, but a continuous-time expression as 
(8) is obviously not suitable for practical applications. Let us 
suppose that the N observations in the training database refer 
to evenly-spaced time instants over the considered interval 
[t0, t1]. Under this assumption, a discretized expression of Φ 
can be easily derived; therefore model parameters can be 
obtained by solving: 

 [ ] [ ] [ ]( )MP
1

arg min
N

n n n

n
P P

=

 − ∑
A

F A  (9) 

where F[n] is the nth row of matrix F, while 
PMP

[n]=VMP
[n]IMP

[n]. However, the estimation problem is still 
troublesome, since it contains P[n](V), which is the power-
voltage curve of the module corresponding to the nth 
observation. The predicted MPP voltage is hopefully rather 
close to the actual value: in this respect, a second order 
approximation of P[n](V) in the neighborhood of the actual 
MPP voltage VMP

[n] can be employed. Reminding that by 
definition its first-order derivative is zero at VMP

[n], the 
previous approximation leads to: 

 [ ]( ) [ ] [ ] [ ] [ ]( )2

MP MP
n n n n nP P W V− −F A F A  (10) 

where: 

 [ ]
[ ] ( )

[ ]
MP

2

2

1
2 n

n
n

V

d P V
W

dV
= −  (11) 

Using (10) into (9) leads to a different formulation of the 
optimization problem to be solved: 

 [ ] [ ] [ ]( )2

MP
1

arg min
N

n n n

n
W V

=

−∑
A

F A  (12) 

Let us introduce W as an N×N diagonal matrix whose nth 
diagonal entry is W[n]: 
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 (13) 

Using matrix notation (12) can be rewritten as: 
 ( )1/2

MParg min −
A

W V FA  (14) 

The corresponding solution AWLS is the weighted least 
squares (WLS) estimate of the model coefficients using W as 
the weighting matrix. Now the problem is obtaining the 
diagonal entries W[n] of matrix W. Assuming that for the 
generic nth observation the curve P[n](V) have been acquired, 
W[n] can be estimated by means of a local polynomial fitting 
of the curve in the neighborhood of VMP

[n]. The clear 
drawback of this solution is that additional data have to be 
measured, stored and processed, thus the complexity of the 
identification procedure increases significantly. 

An alternative solution starts from the observation that the 
second-order derivative of the curve P(V) around VMP is 
approximatively proportional to PMP [44]. Thanks to this 
observation, reminding that the WLS solution is not affected 
by scaling the weight matrix, W can be substituted in (14) 
with another N×N diagonal matrix PMP whose nth diagonal 
entry corresponds to PMP

[n]. 
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Therefore, the WLS estimate of A results: 

 ( ) 1

WLS MP MP MP
T T−

=A F P F F P V  (16) 
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Thanks to this simplification, computing the WLS solution 
requires the same identification data as the LS estimate. In 
particular, it is no longer necessary to acquire and store the 
P(V) curve for each training point, but only the MPP voltage, 
current and the corresponding panel temperature. 

2.2. Database Collection 
According to the previous considerations, computing the 

model parameters requires N triplets of measured MPP 
voltage, current and module temperature (that is VMP

[n], IMP
[n], 

Tp
[n], n∈{1,…,N}) collected under different environmental 

conditions and resulting in a full-column rank matrix F. It is 
evident that the quality of the training data may significantly 
affect the estimated parameters and thus the performance of 
the MB-MPPT algorithm. For best results, model parameters 
should be identified by using a training dataset that somehow 
includes the environmental conditions which may occur 
during typical operation. Furthermore, data should be 
collected according to the underlying assumptions of the 
model, e.g. solar radiation is assumed to be uniform over the 
panel. 

A first possibility to gather these data is collecting N volt-
ampere characteristics of the module and measuring the 
corresponding temperatures. From each curve, the maximum 
power point voltage and current can be accurately extracted 
by means of proper techniques. This approach, which is the 
most intuitive choice also adopted in previous papers [40]-
[44], suffers from several limitations. First of all, it requires 
hardware having this capability, but most important, the panel 
cannot produce deliver energy to the grid when training data 
is collected. 

An attractive alternative is building the database by 
operating the module with a simple MPPT technique which 
does not require a knowledge base, thus enabling energy 
production even during this stage. The reached operating 
points are periodically stored in the database. 

The well-known P&O algorithm [6] can be favorably 
adopted for the purpose. Basically a voltage perturbation ΔV 
is applied to the module voltage and the corresponding 
variation ΔP of the power output is measured. If ΔP is 
positive, it means that the module voltage is moving towards 
the MPP, thus in the next sampling instant another voltage 
perturbation having the same sign as before is superimposed. 
Otherwise, if ΔP is negative, the sign of the voltage 
perturbation is reversed, since it indicates that the previous 
perturbation was bringing the module voltage away from the 
MPP. Under steady-state conditions, the module voltage 
oscillates around the MPP voltage; the amplitude of this 
oscillation corresponds to the amplitude of the voltage 
perturbation. A critical aspect of the P&O method is selecting 
the magnitude of the voltage perturbation. In particular, a 
large voltage perturbation allows effective tracking rapidly 
changing conditions, but the steady state efficiency is 
jeopardized. Conversely, a small voltage perturbation trades 
dynamic performance for steady-state accuracy; furthermore, 
it becomes more sensitive with respect to measurement noise. 

When the database is collected by running the P&O 
algorithm, MPP current and voltage are unavoidably affected 
by the perturbation step, which acts similarly to an additive 

noise contribution. The resulting performance degradation 
must be assessed. Furthermore, having not available the 
shape of the volt-ampere curve, it becomes more difficult to 
recognize (and possibly discard) identification data that have 
not been collected according to the model assumptions, in 
particular during partially shaded conditions. Therefore, the 
parameter estimation algorithm should be robust with respect 
to this somewhat corrupted data. 

3. Experimental Setup 
The first target is comparing the performance which can 

be achieved by the iterative MB-MPPT algorithm when 
parameters are estimated by using either the LS or the WLS 
approach. After that, it will be quantified the additional loss 
which occurs as long as the training dataset is obtained by 
running a P&O MPPT algorithm instead of acquiring the 
whole volt-ampere curves. 

A commercial PV module made of 72 125 mm × 125 mm 
mono crystalline silicon cells has been employed. Rated 
power is 180 W under standard test conditions (1000 W/m2 
solar radiation intensity, 25°C cell temperature, 1.5 air mass 
coefficient), which is reduced to 130 W when considering 
nominal operating cell temperature and 800 W/m2 irradiance 
level. Nominal short circuit current is Isc=5 A, while open 
circuit voltage is Voc=40 V. The panel has been connected to 
a test system that allows controlling its operating point on the 
V-I characteristics while performing the required 
measurements. Part of it is located on the roof of the building, 
part in our lab. Since it is not possible to take a comprehensive 
picture of the setup, its architecture is depicted in Fig. 1 for 
the sake of clarity 

.  

Fig. 1. Experimental setup 

Panel temperature and solar radiation have been monitored 
by means of a Pt100 and a Kipp & Zonen CMP21 class A 
pyranometer which have been connected to the PC installed 
in our lab by using Advantec ADAM 4000 series sensor 
interfaces. The output terminals of the module are connected 
to a custom-built linear electronic load, located in the lab, 
which allows controlling the voltage according to a reference 
value Vref. The panel voltage is scaled down thanks to a 
resistive divider in order to be properly acquired, while a 
closed-loop Hall effect sensor (LEM LA25NP connected in 
order to have 5 A nominal current) allows current 
measurement. The reference voltage for the electronic load is 
provided by a National Instruments NI-9263, 16 bit 100 kS/s 
voltage output module. Panel voltage and current signals have 
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been acquired with a National Instruments NI-9215 voltage 
input module having simultaneous sampling capability, 16-
bit resolution and 100 kS/s maxim rate per channel. The 
measurement process and the control of the electronic load 
have been managed by a PC running a proper LabView 
Virtual Instrument. A picture of the setup is reported in Fig. 
2: it is conceived to monitor up to 4 PV modules 
simultaneously, so it comprises 4 electronic loads and an 
adequate number of analog input channels in order to monitor 
their currents and voltages. Of course, only the leftmost 
electronic load has been employed for the purpose of this 
work. 

 
Fig. 2. Electronic load and data acquisition system 

The previously described experimental setup allows 
acquiring the volt-ampere characteristics of the module by 
imposing a proper voltage ramp as the reference voltage for 
the electronic load. 100 ms ramp-up time and 100 kHz 
sampling rate have been employed. Solar radiation and 
temperature can be considered as constant during this short 
time interval. Every minute, 10 V-I curves have been recorded 
(the operation takes about 1 s) together with the 
corresponding module temperature and solar irradiance level. 

4. Experimental Results 
Data acquisition has been performed during a clear, sunny 

day and N = 490 blocks of 10 volt-ampere curves have been 
acquired. The generic nth block (n=1…N) is characterized by 
a corresponding value of panel temperature Tp

[n] and solar 
irradiance level G[n], which has been saved for monitoring 
purposes but it is not required by the considered algorithms. 
Voltage and current waveforms have been processed with 
proper FIR filters in order to reduce the impact of 
measurement noise. These filters have been specifically 
designed in order to preserve the shape of the acquired V-I 
characteristics. After filtering, considering the last filtered V-
I curve of each nth block, the corresponding P-V 
characteristics has been computed. The MPP has been 
accurately located by means of a smoothing spline; the 
maximum power value PMP

[n] and the corresponding voltage 
and current values (VMP

[n] and IMP
[n], respectively) are easily 

obtained. PMP
[n] is the theoretical maximum power that can be 

produced under given conditions, achieved by an ideal 
MPPT: therefore it represents the performance benchmark for 
MPPT algorithms. Fig. 3 reports its time evolution over the 
considered day, together with the solar irradiance level. 

 
Fig. 3. Trend of maximum power and of the corresponding 
solar irradiance level 

The plot of the maximum power exhibits a jagged trend in 
the leftmost part: it is due to partial shadowing caused by a 
nearby building. 

4.1. Impact of the estimator and partial 
shadowing 

Having available N triplets of values VMP
[n], IMP

[n] and Tp
[n] 

which have been obtained from experimental data as 
discussed in the previous subsection, the model parameters of 
the MB-MPPT algorithm can be estimated with either the LS 
and the WLS approach. The obtained values for A0÷A3 are 
reported in TABLE I. It can be clearly noticed that numerical 
values resulting from the two estimators exhibit significant 
differences. 

TABLE I 
ESTIMATED PARAMETERS 

Estimator A0 [V] A1 [V K-1] A2 [V] A3 [V] 
LS 36.105 -0.0673 -1.24 -0.921 

WLS 37.281 -0.124 -0.699 -1.22 
 

After that, the collected curves have been employed to run 
the iterative MB-MPPT algorithm with the parameters 
obtained with both of the approaches. In particular, the ten 
curves of each block have been used to emulate the execution 
of the algorithm, as if it were running with a 100 ms time step. 
For the generic nth block, the module voltage reached by the 
algorithm in the last curve is Va

[n] (that is the predicted MPP 
voltage), while Pa

[n] represents the corresponding power 
output. Ideally, Va

[n] should be VMP
[n] so that Pa

[n] should be 
equal to PMP

[n]; of course Pa
[n]≤ PMP

[n]. The initial module 
voltage has been set as that reached at the end of the previous 
block. 

First of all, the target is comparing the tracking capabilities 
of the MB-MPPT algorithm when the parameters have been 
obtained with the LS and WLS estimator. For the purpose, the 
absolute value of the difference between the actual and 
predicted MPP voltages has been computed in each block: 

 [ ] [ ] [ ]
MP a MP

n n nV V V∆ = −  (17) 

Fig. 4 reports the achieved results. 
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Fig. 4. Difference between actual and predicted MPP voltage: 
parameters estimated with LS and WLS approach 

A significant peak can be immediately noticed just before 
9 am; here, the difference between the MPP voltage predicted 
by the algorithms and the actual one is extremely large, 
exceeding 20 V with respect to the 40 V rated open circuit 
voltage. When comparing Fig. 3 to Fig. 4, it becomes evident 
that this peak occurs because of partial shadowing. Some of 
the volt-ampere characteristics which have been collected 
under these conditions are reported in Fig. 5, while the 
corresponding P(V) curves are shown Fig. 6. 

 
Fig. 5. V-I curves acquired under partial shadowing 

 
Fig. 6. P-V curves acquired under partial shadowing 

 
Multiple local maxima are clearly noticeable in in the P(V) 

characteristics: the assumptions which the MB-MPPT 
algorithm is based on are not met; therefore weak 
performance is expected in this case. 

Now, let us focus on the part of the day when partial 
shading is much less severe, thus after 9 am. In particular, Fig. 

7 compares the actual MPP voltages with those reached by 
the MB-MPPT algorithm using either the parameters 
estimated with the LS or the WLS approach. It can be noticed 
that the if the parameters are obtained with the WLS 
estimator, the MB-MPPT algorithm allows a better tracking 
of the MPP voltage, either at the beginning and in the middle 
part of the day, thus when solar irradiance level is maximum 
and hence also power output. In the final part of the day, using 
the parameters obtained with the LS or WLS approach leads 
to similar results. 

 
Fig. 7. Comparison between predicted and theoretical MPP 
voltage: parameters estimated with LS and WLS approach 

Accurate tracking of the MPP voltage is not the final goal 
for a MPPT algorithm: on the contrary, it is maximizing 
energy production during a typical day. In this respect, a very 
significant performance indicator is represented by the 
cumulative energy loss with respect to ideal conditions 
(operation always perfectly tied to the actual MPP, thus 
power output equal to PMP). Assuming constant 
environmental conditions between two blocks of curves, the 
cumulative energy loss ΔEe

[n] can be simply computed as: 

 [ ] [ ] [ ]( )e MP a
1

n
n i i

i
E P P t

=

∆ = − ∆∑  (18) 

where Δt is the time interval occurring between the 
acquisition of two blocks of 10 characteristics (namely 60 s). 
Using (18), the expression of ΔEe,r, that is the cumulative 
energy loss in relative value, can be obtained as: 
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=

=

∆ = −
∑

∑
 (19) 

The better performance achieved as long as the parameters 
are estimated with the WLS approach is immediately evident 
from Fig. 8: at the beginning of the day, losses are about 
0.3%, while they exceed 1% if the parameters are obtained 
with the LS estimator. 
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Fig. 8. Cumulative energy loss in relative value: parameters 
estimated with LS and WLS approach 

In case of severe partial shadowing, performance is poor 
in both cases, since relative loss approaches 20%. Once we 
move away from partial shadowing conditions, as expected 
relative loss decreases, and once again the MB-MPPT 
algorithm with parameters obtained by adopting the WLS 
estimator achieves higher efficiency. At the end of the day, 
using the WLS estimates results in 0.12% total energy loss, 
which is about one third lower with respect to that obtained 
when parameters are computed with the LS estimator 
(0.17%). 

As pointed out during the introduction, partial shadowing 
has a detrimental effect on PV energy production, with 
significant decrease of overall efficiency. Furthermore, when 
computing the parameters of the MB-MPPT using a training 
database that includes operating conditions which do not 
comply with the assumption of the model (such as under 
partial shadowing), the quality of the estimates may degrade. 
Therefore, it would be interesting to have available a simple 
method to detect and discard these data. 

A simple solution starts from the observation that data 
collected under partial shadowing are characterized by MPP 
voltages which are considerably different with respect to 
those predicted by the model (1) using MPP currents and 
panel temperatures. Therefore, model parameters have been 
initially estimated from the whole database. After that, the 
differences between actual and predicted MPP voltage have 
been computed. When this difference exceeds in magnitude a 
threshold value (e.g. 1.5 V) the corresponding data is flagged 
as outlier and thus removed from the identification set. 
Finally, parameters have been estimated on the refined 
database. TABLE II reports the new values of A0÷A3 
computed with both the LS and WLS approach. 

TABLE II 
ESTIMATED PARAMETERS, TRAINING DATA UNDER PARTIALLY SHADED 

CONDITIONS HAVE BEEN DISCARDED 
Estimator A0 [V] A1 [V K-1] A2 [V] A3 [V] 

LS 36.688 -0.146 -0.588 -1.22 
WLS 37.600 -0.143 -0.488 -1.36 

 
When comparing TABLE I with TABLE II, it is worth 

noting that the WLS estimates are rather similar in both cases. 
On the contrary, parameters obtained by adopting the LS 
approach are more heavily affected by the presence of 
training data which have been collected under partial 

shadowing. Furthermore, when training data obtained in 
partially shaded conditions is discarded, parameters 
computed with the LS approach becomes much closer with 
respect to those obtained with the WLS estimator. 

Once again, let us consider these new estimates of the 
parameters and let us evaluate the performances achieved by 
the iterative MB-MPPT algorithm in this case. Of course 
partial shadowing conditions have to be included as long as 
energy production is evaluated. Cumulative energy loss have 
been computed and compared, in relative value, with those 
obtained with the previous parameters (Fig. 8). Results are 
reported in Fig. 9. 

 
Fig. 9. Relative cumulative energy loss, parameters estimated 
with LS and WLS approach. Training data include 
(continuous lines) or discard (dashed lines) points acquired 
under partially shaded conditions 

The most significant result is that, once having removed 
the data collected under partial shadowing, the efficiency 
reached by the MB-MPPT is very similar when either the LS 
or the WLS estimates of the parameters are employed. In 
particular, relative losses are about 0.12%, which is virtually 
the same value achieved also by estimating the parameters 
with the WLS approach over the whole dataset (namely 
including also the curves collected under partial shading). 
Hence, this clearly shows that the proposed WLS estimator is 
extremely robust with respect to a dataset containing values 
that have been measured under partial shading conditions, 
and thus not in agreement with the hypothesis of the model. 
On the other hand, adopting the LS estimator may result in 
similar performance when it is employed in conjunction with 
a method that allows removing data points which have been 
measured under partial shadowing. The drawback is that it 
leads to increased computational complexity. Finally, it is 
worth highlighting that when the parameters are computed on 
the refined dataset with the WLS estimator, Fig. 9 shows 
higher efficiency at very low solar irradiance levels 
(beginning of the day). However, the impact is marginal and 
not noticeable as long as the overall energy production during 
a day is considered. 

4.2. Impact of database collection 
As highlighted in Section 2.2, the most straightforward 

way to build the dataset that is required for estimating the 
parameters of the MB-MPPT algorithm is collecting a proper 
amount of volt-ampere curves of the module under different 
operating conditions, together with the corresponding 



8 
 

temperature. MPP voltage and current values can be easily 
extracted from the curves. The straightforward drawback is 
that energy production is not possible when curves are 
measured. Furthermore, measuring and processing the curves 
increases hardware requirements. 

For this reason, it is extremely interesting to evaluate the 
performance achieved if the database is collected by 
executing a MPPT which does not requires a knowledge base, 
and by periodically saving the operating points. In this way, 
electricity is effectively produced also as long as the training 
set is built, thus increasing overall efficiency. 

A P&O MPPT is considered for the purpose: similarly to 
the MB-MPPT, the algorithm operation is emulated using 
experimental data. In particular, the 10 curves in each block 
have been considered as the panel characteristics in 10 
execution steps of the P&O algorithm, thus running with 100 
ms sampling time (that is a typical value in practical 
implementations). The module voltage and current reached in 
the last characteristics of each block are stored in the database 
as estimate of MPP voltage and current, respectively. For 
each block, the initial panel voltage is supposed to be that 
reached at the end of the previous one. This permits obtaining 
another identification dataset having the same size as that 
used before. 

Selecting the amplitude of the voltage perturbation ΔV has 
key importance for P&O algorithms, and in this case it also 
affects the quality of the training dataset. A smaller step 
clearly results in better accuracy under steady-state 
conditions. The MPP voltage values stored in the new 
database can be considered as corrupted by a zero-mean 
noise, whose magnitude corresponds to ΔV. However it is 
worth highlighting that a small value of ΔV leads to a slower 
tracking. Under rapidly changing conditions, slow dynamics 
means that the database may include a significant number of 
voltage and current measurements which are not in the 
neighborhood of the actual MPP. In order to avoid this 
situation, coarse values of perturbation step have been 
employed: 2.5% of Voc and 1% of Voc. 

Considering these two values of ΔV, two different training 
datasets have been obtained. Parameters of the MB-MPPT 
have been estimated with both the LS and WLS approach, and 
the obtained results are reported in TABLE III. 

TABLE III 

ESTIMATED PARAMETERS, TRAINING DATA OBTAINED BY RUNNING A P&O 
MPPT ALGORITHM WITH TWO DIFFERENT VALUES OF PERTURBATION STEP 

ΔV/Voc Estimator A0 [V] A1 [V K-1] A2 [V] A3 [V] 

1% 
LS 35.999 -0.0589 -1.28 -0.947 

WLS 37.146 -0.114 -0.705 -1.28 

2.5% 
LS 35.864 -0.0421 -1.36 -1.04 

WLS 36.930 -0.0930 -0.681 -1.45 
 
From the previous table it appears that the values of the 

parameters obtained using the same estimator but the two 
different datasets which have been built by running the P&O 
MPPT are rather close to each other. Conversely, differences 
between LS and WLS estimates are much more significant in 
this respect. As explained before, the perturbation step 
introduces disturbances in both the MPP current and voltage 
values in the training database. MPP currents appear in the 
matrix F as arguments of logarithmic functions; therefore, the 
disturbance is expected to have rather small impact on F. As 
aforementioned, the voltage perturbation step can be modeled 
as additive uniform independent noise which is superimposed 
to the actual value of the vector VMP. However, it is 
reasonable that it has a slight impact on the parameter values, 
since the LS estimator is robust with respect to zero mean, 
independent additive noise. Therefore, it is not surprising that 
parameter values are rather close with respect to those 
reported in TABLE I, thus computed using the training 
database obtained from the V-I curves. Hence, good results 
are expected when these new parameter values are used in the 
MB-MPPT algorithm. 

First of all, it is interesting to compare the panel voltages 
reached by the MB-MPPT employing all the different 
parameter estimates (database obtained from the V-I 
characteristics or from the P&O MPPT algorithm, LS and 
WLS estimators) with the actual MPPT voltage. Results are 
shown in Fig. 10 starting from about 9 am, in order not to 
show operation under severe partial shadowing. 

Using the P&O MPPT algorithm in order to build the 
training set does not significant degrade achieved 
performance. In particular, when considering the smaller 
voltage step, the module voltages are extremely close to those 
reached as long as the identification database has been 
obtained from the V-I curves. 

When comparing the LS and WLS estimates, the 

 
Fig. 10. Voltage reached by the MB-MPPT algorithm when the training dataset is obtained from V-I curves (dashed lines) or 
by running a P&O MPPT (continuous lines). ΔV/Voc=1% (upper graph) and ΔV/Voc =2.5% (lower graph) 
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considerations carried out in the previous case still hold true: 
using the WLS approach to compute the parameters allows a 
more accurate MPP voltage tracking, in particular at the 
beginning and during the central part of the day. LS and WLS 
parameter estimations lead to virtually the same accuracy in 
the rightmost part of the graph. 

Furthermore, the cumulative energy loss in relative value 
(ΔEe,r) defined as in (19) has been computed for all the 
different cases; Fig. 11 and Fig. 12 show results when the 
P&O step is respectively ΔV/Voc = 1% and ΔV/Voc = 2.5%. 

 
Fig. 11. Relative cumulative energy loss for LS and WLS 
parameter estimates, ΔV/Voc = 1% 

 
Fig. 12. Relative cumulative energy loss for LS and WLS 
parameter estimates, ΔV/Voc = 2.5% 

Both figures clearly indicate that using the P&O MPPT 
algorithm to build the training dataset instead of measuring 
the V-I curves have negligible impact on achieved efficiency. 
Moreover, it is interesting to highlight that also a rough 
perturbation step still provides remarkable results, thus 
highlighting the robustness of the estimates. 

Finally, the cumulative energy loss ΔE defined as in (18) 
has been computed for the MB-MPPT algorithm using all the 
considered parameter estimates. Results after 9 am are 
summarized in Fig. 13. The figure highlights the higher 
efficiency reached by the MB-MPPT algorithm as long as the 
WLS estimates are employed: energy loss is always well 
below that obtained using the LS parameters estimations. At 
the end of the day, loss is 1.05 Wh with respect to 1.33 Wh 
(which is 27% higher) for a daily energy production of 868.3 
Wh. This denotes the key importance of the method which is 
adopted to estimate the parameters in order to guarantee the 
best performance. Conversely, efficiency barely changes if 
the training dataset is built running a P&O MPPT or by 

measuring the V-I characteristics. However, the first choice 
have several advantages such as enabling energy production 
even during the training stage and opening the way to an 
adaptive update of the parameters in order to follow drift and 
degradation of the module. 

 
Fig. 13.Cumulative energy loss 

5. Conclusion 
This work deals with the performance optimization of a 

previously developed iterative MB-MPPT, which can be 
favorably exploited for module-level DMPPT. It enables 
good steady-state efficiency and fast tracking, but results 
strictly depend on the parameters of the underlying model. 
These parameters have to be estimated by collecting proper 
identification data before the MB-MPPT is put in operation; 
electricity generation is not generally possible during this 
stage, since it requires measuring volt-ampere characteristics 
of the module under different conditions. When the training 
database contains data measured under partial shadowing, the 
efficiency of the MB-MPPT algorithm is significantly 
reduced. However, the impact can be heavily mitigated by 
estimating the parameters with a proper WLS approach, as 
shown in this work. Furthermore, identification data can be 
produced also by running a simple P&O algorithm with a 
coarse perturbation step. In this way, energy is delivered to 
the grid even as long as the training database is built; 
experimental results show that there are no noticeable 
drawbacks in terms of achieved performance when the 
parameters of the MB-MPPT are estimated from this data. 
Finally, it may open the way to an adaptive update of the 
parameters of the MB-MPPT algorithm in order to achieve 
best performance even in case of drift, aging and degradation 
of the PV module. 
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