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This Paper proposes a continuum-based approach for the propagation of uncertainties in the initial conditions and

parameters for the analysis and prediction of spacecraft reentries. Using the continuity equation together with the

reentry dynamics, the joint probability distribution of the uncertainties is propagated in time for specific sampled

points. At each time instant, the joint probability distribution function is then reconstructed from the scattered data

using a gradient-enhanced linear interpolation basedon a simplicial representation of the state space.Uncertainties in

the initial conditions at reentry and in the ballistic coefficient for three representative test cases are considered: a

three-state and a six-state steep Earth reentry and a six-state unguided lifting entry at Mars. The Paper shows the

comparison of the proposedmethodwithMonte Carlo–based techniques in terms of quality of the obtainedmarginal

distributions and runtime as a function of the number of samples used.

I. Introduction

T HE study and prediction of reentry trajectories is a challenging
and complex task. Several factors may influence the accuracy

of these predictions, such as the knowledge of the initial entry
conditions, the ballistic coefficient of the satellite, and the density
of the atmosphere. The uncertainties associated with these parame-
ters can affect the evolution of the reentry trajectory and influence
the prediction of several quantities of interest such as the impact
location and the mechanical and thermal loads on the spacecraft. It
is thus important to include statistical verification inside the mission
design process, considering the effects of uncertainties in assessing
possible off-nominal scenarios. Combining this analysis with opera-
tional constraints and safety margins can ultimately improve the
safety and robustness of mission designs. This type of statistical
analysis can be applied to several aspects of the reentry problem.
The design of crewed vehicles and their navigation algorithms can
strongly benefit from an uncertainty analysis given the strict require-
ments on the sustainable loads and on the landing location [1–5]. The
design of exploration probes and sample return missions can also
gain from uncertainty quantification to improve the robustness of the
mission [6–8], with the aim to increase the landing mass and pre-
cision, and to provide more robust designs for the thermal protection
and parachute deployment systems. Finally, even the destructive
reentry of satellites and the prediction of their reentry footprint, in
particular for uncontrolled reentries, can benefit from uncertainty
assessment. Until 2013, there had been an average of 93 uncontrolled
reentries per year [9], and with the increasing space activities of the
past few years, the frequency of reentering objects is destined to grow
rapidly. Despite these objects usually pose a marginal risk for people
on the ground, it is still necessary to verify their compliance with the
casualty risk regulations [10]. This ultimately means studying the
breakup of the spacecraft and the demise of its parts [11–13]. Con-
sidering the effects of uncertainties, it is possible to assess the demise
probability of specific components [14] and the statistical distribution
of the casualty area of surviving fragments.

The traditional procedure to assess uncertainties is based on aMonte
Carlo (MC) dispersion analysis, where, through a large number of
simulations over randomly sampled initial conditions and parameters,
the joint probability density function (PDF) is estimated through a
frequentist approach. This types of simulations provide a reliable way
to estimate the evolution of uncertainties given their straightforward
implementation, and they can effectively capture nonlinearities in the
system. However, in general, to obtain convergent statistics, the num-
ber of MC simulations must increase. Consequently, for multidimen-
sional state spaces and nonlinear dynamics, such as the ones associated
with reentry scenarios, they can become expensive [15,16]. Nonethe-
less, many space missions’ uncertainty analyses have been carried out
using aMonte Carlo approach. Examples are the mission design of the
Mars Pathfinder [6], of the Mars Science Laboratory [7] missions, and
of the future Mars2020 exploration mission [8]. Simulation software
such as theNASADynamics Simulator forEntry,Descent, andSurface
Landing (DESENDS) [17] uses a Monte Carlo–based dispersion
analysis. In addition, MC simulations have been extensively used for
the design verification of entry guidance algorithms [2,3,18–20]. In
these works, the performance, robustness, and reliability of the algo-
rithm is tested considering a dispersion in the initial conditions and
parameters of the reentry. The results of theMC simulations in terms of
mean and standard deviation are compared to the target for the landing
accuracy, and the number of occurrences for violation of specified
safety thresholds is considered. Also, destructive reentry codes such as
ESA DRAMA [13] perform reentry analyses using a MC approach
for the design and verification of satellite compliance to the casualty
risk regulations.
Instead of MC simulation, several other techniques have been

applied to the propagation of uncertainties [16], for example,
unscented transformation (UT), where only a few, deterministically
chosen, samples are propagated (the sigma points). From these sam-
ples, it is then possible to obtain a second-order approximation of the
first two moments of the probability distribution. Other methodolo-
gies are instead based on the creation of a surrogate model that can
more efficiently estimate the uncertainty when compared to MC [21–
23]. An example of such methodologies is polynomial chaos expan-
sion [24,25], where the inputs and outputs of a system are represented
via series approximation. They provide an efficient way to propagate
uncertainties building an explicit functional representation of the
output uncertainty with respect to the inputs. These techniques are
computationally efficient, even in high dimensions, even though they
rely on the estimation of the uncertainties through a frequentist
approach as MC does. Another common uncertainty propagation
technique is based on differential algebra (DA) [26], which allows
the computation of arbitrary order expansionwith respect to the initial
condition. DA can be used in conjunction with MC simulations,
substituting them with Taylor expansion. Gaussian mixture models
[16] can also be used to propagate uncertainties. In this method, the
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nonlinearity and non-Gaussian behavior of the probability density
function is captured by using multiple Gaussian distributions. How-
ever, the effects of nonlinearities have to be considered by possibly
splitting and merging the different components of the mixture.
The approach we propose uses the continuity equation to directly

propagate the probability density along with the dynamics of the
system, thus obtaining a systematic evolution of the probability density.
This methodology has been applied in the study of the dynamical
evolution and formation of stellar systems, planetary ring structures,
and interplanetary dust [27–29]. Additionally, it has been used for the
propagation of space debris fragments following a breakup of satellites
in orbit [30,31] and for the propagation of uncertainties in planetary
reentries [32–35]. Such a methodology is opposed to MC simulations
where the distribution is approximated through many realizations;
while with MC methods we propagate individual realization of the
initial PDF,witha continuum-based approach,wepropagate the ensem-
ble of realizations. When not only the first moments of the distribution
but also its whole shape is of interest are needed, MC simulations
require a large number of samples. Instead, the proposed continuum-
based propagation method allows the knowledge of the probability
density at specific points in the state space to enable a reconstruction
of the probability density function with a reduced number of samples.
The challenge of using a method based on the continuity equation

is the postprocessing of the data. As we are propagating a finite set of
initial points, with their probability density, it is then necessary to
reconstruct this density in the state space starting fromdiscrete values.
In [32], a reconstruction methodology has been proposed, which
replicates the binning process of MC simulations. For each bin, the
density is computed as the mean of the density values of the data
points contained in it. This method can be used if the PDF data are
uniformly distributed in each bin in all dimensions and if the enclosed
volumeof the scattered data in eachbin is equal [36].However, even if
the initial distribution of samples is uniform, its evolution in time does
not necessarily remain uniform, and the enclosed volume of the data
in each bin does not remain equal. Therefore, such a methodology
generates results which present poor agreement with corresponding
Monte Carlo simulations [32,36]. In addition, such a methodology
still uses a number of samples comparable to Monte Carlo methods.
We instead propose reconstructing the density using a simplex-based
linear interpolationmethodology [37] that uses the concept ofα shape
[38], which adapts to the evolution of the shape of the state space
volume. In addition, we increase the accuracy of the linear interpo-
lation by including the derivative information into the linear inter-
polation scheme using the reduced-order dual Taylor expansion [39].
The Paper presents three relevant test cases, which include uncer-

tainties in the initial conditions, in the ballistic coefficient of the satellite,
and in the atmospheric density. The first test case considers a strategic
reentry on Earth using a three-state dynamics, the second test case
expands the first one to a more complex dynamics, and the third test
case features the lifting reentry of a probe in Martian atmosphere. The
results are presented as one-dimensional and two-dimensionalmarginal
distributions of the relevant parameters. The distribution for derived
quantities of interest, such as the heat rate and the dynamic pressure, are
also presented. The Paper is organized as follows. Section II describes
the methodology for the propagation of the uncertainties using a
continuum-based approach. Section III describes themethodologyused
for the reconstruction of the probability density and for the computation
of the marginal probabilities. Section IV presents the application of the
density propagation and reconstruction procedure to relevant test cases.
Section V contains the discussion and the conclusions.

II. Uncertainty Propagation

Theproposedmethodologyuses the continuityequation topropagate
the initial joint probability distribution function related to the uncer-
tainties in the initial conditions and parameters and assess its evolution
throughout the reentry process under the influence of the reentry
dynamics. The expression for the continuity equations is [28]

∂n�x; t�
∂t

�∇f�x� � _n� − _n− (1)

where x is the vector of the state variables; n�x; t� is the joint PDF at

time t; f�x� represents the forces acting on the system and takes into

account slow, continuous phenomena such as gravity and atmos-

pheric drag; and _n� and _n− represent the fast and discontinuous

events (i.e., sources and sinks). For the case under examination, the

source and sink terms were neglected. Knowing the initial density

distribution n�x; 0�, Eq. (1) allows for the propagation of the density
evolution in time, in a system with the equation of the dynamics.

When applied to the propagation of uncertainties, the density repre-

sents the probability distribution. This is a partial differential equation

(PDE) with the PDF n�x; t� being the dependent variable. Such an

equation regulates the conservation of the total probabilitymass of the

joint PDF through its spatial–temporal evolution due to the forces

acting on the system. Equation (1) can be solved using the method of

the characteristics (MOC), where the partial differential equation is

transformed into a set of ordinary differential equations (ODEs). As it

is convenient to express the evolution of the reentry trajectory using

parameters such as the altitude, the relative velocity, and the flight-

path angle, we follow the approach to express the continuity equation

in the state space of the problem under examination, writing the

divergence in rectangular coordinates [28]. In the generic case of d
number of variables, Eq. (1) can be rewritten in rectangular coordi-

nates as follows

∂n
∂t

� ∂n
∂α1

vα1� · · · � ∂n
∂αd

vαd �
�
∂vα1
∂α1

� · · · � ∂vαd
∂αd

�
n � 0 (2)

where αi are the state variables and vαi are the corresponding forces.
The sink and source terms have been neglected in this case. Applying

themethodof characteristics, the PDEcanbe reduced to the following

system of ODEs:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

dt

ds
� 1

dα1
ds

� vα1�α1; : : : ;αd�

..

.

dαd
ds

� vαd�α1; : : : ; αd�

dn

ds
�

�
∂vα1
∂α1

� · · · � ∂vαd
∂αd

�
n�α1; : : : ; αd�

(3)

where s is the independent variable. In this Paper, the continuity

equation is applied to two sets of equations of motion. First, a three-

state representationmodels,which describes the evolutionof the reentry

through radius r, velocity v, and flight-path angle γ under the influence
of the planet gravity and the atmospheric drag. The dynamics of this

model is described in Eq. (4) and considers a planar motion over a

nonrotating planet,

8>>>>>><
>>>>>>:

_r � v sin γ

_v � −
1

2β
ρv2 − g sin γ

_γ �
�
v

r
−
g

v

�
cos γ � 1

2β

CL

CD

ρv

(4)

where ρ is the atmospheric density, g is the gravitational acceleration,

β � �m∕CDS� is the ballistic coefficient,CL is the lift coefficient,CD is

the drag coefficient, and S is the object cross-section. Applying the

MOC of Eq. (3) to this set of equations, the variation in time of the

probability density n is obtained as follows:

_n � −
�
∂_r
∂r

� ∂ _v
∂v

� ∂_γ
∂γ

�
n (5)
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Ifwewant uncertainties in additional parameters, other than reentry
states, to be considered, it is necessary to include them in the equations
of motion and add their contribution to the evolution of the density in
Eq. (5). For example, in the case under examination, we want to
consider an uncertainty over the ballistic coefficient β and include the
possibility of taking into account uncertainty in the atmospheric
density (through an atmospheric correction coefficient ξ). The result-
ing system of equations for the propagation of the characteristics
becomes as follows:8>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

_r � v sin γ

_v � −
1

2β
ρ�r; ξ�v2 − g�r� sin γ

_γ �
�
v

r
−
g�r�
v

�
cos γ � 1

2β

CL

CD

ρ�r; ξ�v

_β � 0

_ξ � 0

_n � −
�
v

β
ρ�r; ξ� � sin γ

�
v

r
−
g�r�
v

��
n

(6)

Therefore, the result is the augmented state (r, v, γ, β, ξ) to
be propagated. The second model considered in this Paper is a six-
state representation, which describes the three-dimensional transla-
tional reentry over a rotating Earth. For the case under examination,
we decided to express the equations of motion using the radius as
the independent variable, instead of the time (de facto obtaining a
five-state model). On one side, this allows showing the flexibility of
the continuum propagation, and on the other, it simplifies the repre-
sentation of the output of the propagation as, for example, it is more
convenient to extract information at the landing instant, which corre-
sponds to the final radius in the propagation. The set of equations of
motion is the following:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dλ

dr
� sin�χ�

r cos�φ� tan�γ�
dφ

dr
� cos�χ�

r tan�γ�
dv

dr
� −

vρ�r; ξ�
2β sin�γ� −

1

v

�
gr�r;φ� �

cos�χ�gφ�r;φ�
tan�γ�

�
� rω2

p cos�φ�
v

�
cos�φ� − cos�χ� sin�φ�

tan�γ�
�

dγ

dr
� αρ�r; ξ�

2 sin�γ� −
1

v2 tan�γ�
�
gr�r;φ� � cos�χ� tan�γ�gφ�r;φ� −

v2

r

�
� 2ω sin�χ� cos�φ�

v sin�γ� �

� rω2
p cos�φ�
v

�
cos�φ�
tan�γ� � cos�χ� sin�φ�

�

dχ

dr
� sin�χ� tan�φ�

r tan�γ� � 2ωp

v

�
sin�φ�
sin�γ� −

cos�χ� cos�φ�
cos�γ�

�
� sin�χ�

v2 sin�γ� cos�γ� �rω
2
p sin�φ� cos�φ� − gφ�r;φ�

�

dβ

dr
� 0

dξ

dr
� 0

dn

dr
� −

�
∂λ 0

∂λ
� ∂φ 0

∂φ
� ∂v 0

∂v
� ∂γ 0

∂γ
� ∂χ 0

∂χ
� ∂β 0

∂β
� ∂ξ 0

∂ξ

�
n

(7)

where λ is the longitude,φ is the latitude,v is thevelocity, γ is the flight-
path angle, β � �m∕CDS� is the ballistic coefficient, α � �CLS∕m�
is a modified lift coefficient, ξ is an atmospheric correction coefficient,

and gr and gφ are the radial and transversal components of the

gravitational acceleration, respectively. The expression for the deriva-
tive of the density as a function of r was not expanded for a better
readability. In this expression, the primes refer to derivatives with
respect to the radius. Also in this case, we have modeled the uncer-
tainties in the ballistic coefficient andatmospheric density by including
the coefficients β and ξ into the extended state of the problem.
Equations (6) and (7) must be integrated numerically, and the

integration can be performed using a standard ODE solver such as
Runge–Kutta. In this way, the time evolution of the density in the
state space can be obtained as a function of the considered indepen-
dent variable. As the solution for the reentry problem is not analytical,
it is necessary to sample the uncertainty distribution in the initial
states and to propagate the trajectory and the probability density for
each sample point.

III. Interpolation Method

Once the sampled initial conditions have been propagated using
Eq. (3), it is necessary to reconstruct the probability density in
the domain at each time step to obtain the total uncertainty and the
marginal distributions. The proposed approach is integrated with the
continuum propagation described in Sec. II to reconstruct the proba-
bility density from few samples, leveraging on the knowledge of the
value of the density that is propagated alongside the characteristics.As
canbe observed inFig. 6, during the evolution of the reentry trajectory,
not only does the density change and deform, but also the state-space
volume changes and deforms. This is why the method proposed in
[32], which performs a uniform binning to estimate the probability
density by averaging the value in each bin, provides inaccurate results
when the state space starts to deform. In our methodology, instead, we
follow the variation of the state space volume by creating a simplicial
(i.e., a generalization of the notion of triangle or tetrahedron to
arbitrary dimensions) representation and interpolating the scattered
data. Scattered data interpolation is a complex task and is even
more challenging when the considered data have more than three

dimensions as it is for the case under examination. Several techniques
exist to interpolate scattered data in one and two dimensions such as
spline interpolation [40], multivariate polynomial [41,42], and radial
basis function [43]. However, these techniques can be difficult to
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extend to arbitrary dimensions, or require regular grids. In this Paper,
we propose reconstructing the density using linear interpolation based
on theDelaunay triangulation [44] of the sampledpoints.We thus seek
to approximate a multivariate function f:X → RwithX ⊂ Rd, where
the elements ofX are denoted by x ≡ �x1; x2; : : : ; xd�. We propose a
simplicial-based interpolation given its possibility to be extended to
arbitrary dimensions and its capability of allowing for the direct
inclusion of derivative information to improve its accuracy [39].
Additionally, this methodology preserves the values at the nodes of
the triangulation. This is important as it allows the conservation of a
crucial information that is the value of the probability density at the
sampled points as provided by the continuum-based propagation.
This section is structured as follows. Section III.A describes the

linear interpolation methodology. Section III.B discusses the lim-
itations of the Delaunay triangulation and proposes a different
approach using α shapes. Section III.C proposes an improved
interpolation methodology. Section III.C describes the procedure
adopted to integrate the probability density and obtain the marginal
distributions.

A. Linear Interpolation

As previouslymentioned, the linear interpolationwe adopt is based
on a simplicial representation obtained through a Delaunay triangu-
lation, which is unique for a given set of points. Given its heritage,
uniqueness, and capability to be extended to arbitrary dimensions,
it has been selected in this Paper to construct the simplical complex
(i.e., the union of the simplices forming the triangulated state space)
from the propagated scatter data. The construction of the Delaunay
triangulation has been carried out using the Python packageDelaunay
of the scipy [45] library. Each of the data points in the considered state
space (e.g., r, v, γ, and β) represents the coordinates of a vertex V of
the simplicial complex. At the same time, the probability densities
relative to each vertex are the data values of the function f to be
interpolated. In general, the simplicial-based linear interpolation can
be expressed as

L�x� �
XN
i�1

λi�x�fi (8)

where N is the number of vertices of the simplex (i.e., its dimension-
ality),L�x� is the linear interpolation at a point x inside the considered
simplex, λi�x� is the ith barycentric coordinate of the point x, and fi is
the value of the function (the density in our case) at the ith vertex.
Once the barycentric coordinates of the vertices of the simplex are
found, the linear interpolation of Eq. (8) can be performed. In other
words, the linear interpolation is obtained through aweighted average
of the value of the function at the simplex vertices, with the weights
being the barycentric coordinates of the vertices (i.e., the distances of
the vertices form the barycenter of the d-dimensional simplex).

B. Alpha Shapes

A drawback of Delaunay triangulation is that it is based on the
convex hull of a set of points. Therefore, if the reconstructed shape
is concave, additional unwanted triangles will be generated. For

example, Fig. 1a shows a concave set of test points, which also
contains a hole. It can be observed from Fig. 1b that the Delaunay
triangulation generates simplices for the entire convex hull and fills
the hole inside the set of points with additional simplices, which can
compromise the accuracy of the interpolation.
Therefore, we introduce the concept of the α shape [38]. The α

shape Cα�V� of a set of points V ⊂ Rd is a subset of the Delaunay
triangulation DT �V�. The objective of the α shape is to eliminate
from the Delaunay triangulation all the excess simplices that are
formed when a shape is not convex. As these simplices tend to be
elongate, it is possible to use a test based on the radius of the
circumhypersphere (the equivalent of the circum-radius in d dimen-
sions) σT to prune triangles that are deemed too elongated by setting
a threshold on the radius of the circum-hypersphere. Specifically, a
simplexΔT belonging to the Delaunay triangulation also belongs to
the α shape if 1) σT < α and the hypersphere of radius σT is empty or
2) ΔT is a face of another simplex in Cα�V�, where α is a hyper-
parameter, which has to be selected by the user. We present a
possible way to select α in Sec. III.B.1. The first of the presented
conditions is referred to as the alpha test. Following this definition
and exploiting the properties of the Delaunay triangulation, it is
possible to build the α shape through the following steps as
described by Edelsbrunner [38]:
1) Compute the Delaunay triangulation of V, knowing that the

boundary of the α shape is contained in it.
2) Determine Cα�V� by inspecting all the simplicesΔT ∈ DT �V�;

if the circum-hypersphere σT is empty and σT < α, we acceptΔT as a
member of Cα�V�, together with all its faces.
3) All d-simplices of Cα�V� make up the interior of the α shape.
Given the aforementioned procedure, theα shape can be constructed

starting from theDelaunay triangulation and removing all the simplices
that do not pass the alpha test. For ad-simplex belonging to aDelaunay
triangulation, the circum-hypersphere is empty by definition [44];
therefore, a simplex belongs to the α shape Cα�V� if σT < α. Therefore,
the test only requires the computation of the radius of the circum-
hypersphere for a generic d-dimensional simplex that is [46]

σT � R �
������������������
−
CM−1

11

2

r
(9)

Applying theα-shape algorithm to the set of points of Fig. 1awith an
α value of 0.25, we get the α shape of Fig. 2, thus improving the shape
reconstruction with respect to the Delaunay triangulation of Fig. 1b.
The interpolation using the Delaunay triangulation of Eq. (8) can

be directly extended to the α shape, the only difference being that the
simplices used are those belonging to the α shape and not to the
Delaunay triangulation. To give an example of the linear interpolation
using α shape, it is possible to associate a weight to each point of
Fig. 1a. For example, we can assume that

f�xi� � y2i (10)

To test the interpolation technique, we randomly select ten points
from the set, remove them, and generate the α shape; we then inter-
polate the function at the coordinates of the ten test points (Fig. 3a).

a) b)

Fig. 1 Example of Delaunay triangulation for a concave set of points. a) the set of scattered points; b) the resulting Delaunay triangulation.
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Finally,we check the rms error between the interpolated values and the
actual value of the function at these test points. Figure 3b shows the
results of this test for the ten test points, highlighting the rms percent
error. The average error is 2.17%, while the maximum is 11.89%.

1. Alpha Value Estimation

The value of α in the construction of the α shape is a hyper-
parameter, which determines the simplices that will be removed from
the initial Delaunay triangulation and, therefore, how closely the α
shapewill resemble the shape of the actual state space (Sec. III.B). To
determine the α value, it is possible to perform a k-fold cross-vali-
dation, combined with a stochastic search algorithm. Specifically, we
use a differential evolution (DE) search method [47] as it proved
effective in the optimization of tuning parameters and hyperpara-
meters [48]. In thek-fold cross-validation, the available set of points is
subdivided into k folds. One of the k folds is then held out and used as
validation set, while the other k − 1 folds are combined into a training
set. In this case, the points of the k − 1 folds are used to construct theα
shape: then, the interpolation at the points of the remaining fold is
carried out. As we are interested in providing the best shape approxi-
mation for our dataset, we consider two conditions:
1) If any of the test points lies outside the α shape constructed with

the training data, the value of α is rejected.
2) If all the test points are within the α shape, we compute the

overall volume as the sum of the volumes of the simplices.
We repeat this procedure holding out a different fold each time. The

output is then the average of the scores obtained for each fold.
Throughout this Paper, the selected number of folds has been K � 5.
The result of the k-fold cross-validation depends on the value of α; we
apply a DE algorithm to find the value of α that minimizes the volume
of theα shape computed following the previous points. Specifically,we
use the differential evolution function of the Python scipy.optimize
library [45]. Differential evolution is a stochastic direct search method
in which a vector of parameters of size Np, the population size, is

evolved for a specified number of generations Ng to find a global

optimal solution. The initial population is randomly chosen inside the
provided bounds, and a uniform distribution for the parameters in the
search space is assumed. In our case, this translates into selecting a
value of αi inside the interval (αmin, αmax). The new parameters vectors
are generated using the best1bin strategy [49]. For this Paper, the

mutation rate has been set to ηm � 0.5, and the recombination rate
has been set to ηr � 0.7, which are both typical values. The population
size has been set toNp � 40, and the number of generations has been

set toNg � 60. The presented strategy, however, can become compu-

tationally cumbersome when the dimension of the problem and/or the
number of points increases. For example, obtaining the alphavalues for
the test case of Sec. IV.A takes around 60 s on the laptop used for the
simulations in the Paper. This computational time can be too long with
respect to theotheroperations performed.Possiblemitigation strategies
include but are not limited to: use of the same α value for several
snapshots until the state space does not deform considerably; use of
the α value of the previous snapshot as initial value for the current one
to improve convergence; increase the parallelization; reduce the num-
ber of k folds in the cross-validation. For the cases in which this
procedure is deemed impractical, alternative procedures can be used
to select theαvalue. For example, the distances between each point and
its nearest neighbor can be evaluated. Then, the value of α can be
selected as the average, maximum, minimum, or median value among
these distances [50]. For example, the minimum value will tend to
discard more elongated triangles but can also exclude parts of the tails
of the distribution. The selection among this value can be performed by
testing them on selected points, similarly to the cross-validation pre-
viously described. In addition, they can be used as starting values for
the differential evolution algorithm.

C. Gradient Enhanced Interpolation: Reduced Dual Taylor
Expansion

As shown in Fig. 3b, a direct application of the linear interpolation
methodology can result in relative errors larger than 10% for selected
points. We can expect that with an increase in the number of dimen-
sions of theproblemand complexity of the state space also the accuracy
of the interpolation may degrade. An error in the interpolation directly
maps into an error in the computation of the integral of the probability
density and therefore worsens the approximation of the marginals,
especially if large errors concentrate in high-density areas. Therefore,
we propose a novelmethodology that integrates supplementary deriva-
tive data into the presented interpolation [Eq. (8)] scheme to improve
the accuracy of the approximation. The method we propose replaces
the value of the function at the simplex vertices fi with its reduced dual
Taylor expansion [39]. The procedure applies to all schemes that are
based on functionvalues at discrete nodes, provided the derivative data
are available at the same nodes as the function values. This character-
istic perfectly fits the interpolation procedurewe propose, allowing for
its extension and enhancement. The nth-order reduced dual Taylor
expansion of the mth kind Dmn

x is defined as [39]

Dmn
x �f� ≔

X
jκj≤n

1

κ!
Cmn
jκj �x − :�κf�κ��:� (11)

with

Cmn
jκj ≔

�
m� n
m

�−1�m� n − jκj
m

�
(12)

where Cmn
jκj are the reduction coefficients. The only difference

between a standard dual Taylor expansion and Eq. (11) is exactly

a) b)

Fig. 3 Interpolation example. a) interpolated function and selected interpolation points; b) rms percent error at the interpolation points.

Fig. 2 Example of α shape for the set of test points.
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these coefficients. The modified expression can be used to raise
the order of generic multivariate approximation schemes, provided
they use a polynomial approximation of data at specified nodes
and that the derivative information is available at these nodes. The
implementation of Eq. (11) in our linear approximation scheme
is straightforward: we just need to replace the input samples of f
with the corresponding samples of Dmn

x �f�, which can be obtained
using the supplementary derivative data. The interpolation scheme of
Eq. (8) is then replaced by

~L�x� �
XN
i�1

λi�x�Dmn
x �f��xk� (13)

The approximation order will then be raised fromm tom� n [39].
The presented procedure perfectly adapts to the chosen methodology
for the propagation of uncertainties (Sec. II). In fact, as we already
compute the Jacobian of the dynamics, it is of little effort and compu-
tational cost to include the expressions for the derivative of the density
with respect to the integration variables and return it as an additional
output of the density propagation. Equation (14) provides an example
for the dynamics of Eq. (6),

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

∂n
∂r

� −
�
v sin γ

r2
−
∂g�r�
∂r

cos γ

v
−
∂ρ�r; ξ�

∂r
v

β

�
n

∂n
∂v

� −
�
g�r� cos γ

v2
−
sin γ

r
−
ρ�r; ξ�

β

�
n

∂n
∂γ

� −
�
g�r� sin γ

v
−
v cos γ

r

�
n

∂n
∂β

� −
vρ�r; ξ�

β2
n

∂n
∂ξ

� −
v

β

∂ρ�r; ξ�
∂ξ

n

(14)

With this procedure, we obtain at each node the required informa-
tion for a direct application of Eq. (13). To demonstrate the improve-
ment introduced by the gradient-enhanced interpolation, the test case
of Fig. 3a is performed again, this time using the reduced dual Taylor
expansion. For the function of Eq. (10), the derivativeswith respect to
x and y are 8>>><

>>>:
∂f
∂x

� 0

∂f
∂y

� 2y

(15)

Including this information, we can perform the interpolation for
the same test points. Figure 4 shows the resulting rms percent error,
which is close to zero. The introduction of the derivative information
has thus strongly improved the results of the linear interpolation.
It has to be noted that this is a particular case: the interpolated function
is quadratic [Eq. (15)], and with the reduced dual Taylor expansion,

we introduce a second-order approximation, whichmatches the order
of the function to be interpolated.

D. Marginalization

The density reconstruction using alpha shapes and the reduced dual
Taylor expansion can be used to obtain the marginal densities of the
relevant variables. In our application, this allows for a better under-
standing of the reentry under uncertainties, predicting how they influ-
ence the evolution in time of the reentry velocity, altitude, flight-path
angle, and derived quantities such the dynamic pressure and heat rate.
Given the generic d-dimensional state space Ps � fx1; x2; : : : ; xdg,
the one-dimensional and two-dimensionalmarginals can be computed
as

mxm �
Z
Ps\fxmg

n�x1; : : : ; xd�dx1 : : : dxm−1dxm�1 : : : dxd (16)

mxmxn�
Z Z

Ps \fxm;xng
n�x1;:::;xd�dx1 :::dxm−1dxm�1dxn−1dxn�1 :::dxd

(17)

which is an integration of the probability density over all the dimen-
sions in the state space, except the ones of the marginal axes. These
expressions for the computation of the marginals apply to continuous
functions. However, for the case under examination, only a discrete
representation of the probability density is available through the
interpolation procedure described in the previous sections. The com-
putation of the marginals is here applied to the snapshots obtained
through integration of Eq. (3), in other words, the scattered data in the
sate space at each time step separately. As the procedure is similar for
both one-dimensional and two-dimensional marginals, for a clearer
explanation, we focus here on the computation of one-dimensional
marginals. To do so, it is necessary to adapt Eq. (16) to scattered data.
In addition, it is necessary to consider the nature of the data of the
problem and, specifically, the evolution of the state space geometry
with time.As shown for example by Fig. 6, during the reentry process,
the state space tends to suffer from a substantial deformation. We can
thus obtain elongated state spaces, which are difficult to interpolate
altogether, even when α shapes are employed. In addition, this strat-
egy can reduce memory usage issues that can arise when generating
the α shape in high dimensions. Consequently, we decided to over-
come this issue by using a binning strategy to compute the marginals.
First, we select the axis along which the marginal must be computed
xm. Then, this axis is subdivided into Nb equally distributed bins,
whose width is given by

sb � max�xm� −min�xm�
Nb

(18)

In this way, slices of the original set of points are constructed to
obtain a setB containing theNb subsets of the scattered data in which
xm is subdivided,

B � fx ∈ Vjxb;i ≤ xm ≤ xb;i�1∀i ∈ 1; : : : ; Nbg (19)

where xm is thevalue of themth coordinate of the pointx andxb;i is the
coordinate of the ith bin edge. For each subset of points contained in
B, an α shape is constructed to perform the interpolation and compute
the integral of the density relative to the considered bin. We then
compute themarginal probability for each bin dividing the integral by
the width of the bin so that the marginal is given by

mxm �
�
W�Bi�
sb

∀Bi ∈ B

�
(20)

whereW�Bi� is the integral of the probability density relative to the ith
set of points Bi obtained as expressed by Eq. (19). At this point, it is
important to outline the computational procedure for this integral. For
the sakeof clarity, let us consider a two-dimensional example forwhich

Fig. 4 RMSpercent error for the interpolation enhancedby the reduced
dual Taylor expansion.
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Fig. 5a shows a sample distribution of scattered datawith an elongated
state space. Suppose we are interested in the marginal distribution
relative to x1. For each bin subdivision, as highlighted in Fig. 5a, an α
shape is created using the points inside the bin. However, if we only
use the points strictly contained inside the bin, the triangulation will
exclude a portion of the volume of the state space, with a consequent
underestimation of the integral. Therefore, each bin is expanded using
buffer widths on both sides (Fig. 5b). In this way, the expanded bin B 0

i
allows for a triangulation, which fully includes the original bin.
Once this extended α shape has been created, the interpolation is

performed. The interpolating points are the barycenters of the sim-
plices of the α shape so that the integral of the density inside the
extended bin is

W�B 0
i � �

XNsi

k�1

n�xGk
�vk (21)

where n�xGk
� is the interpolated value of the probability density at the

barycenter of the kth simplex xGk
as obtained using Eq. (13) of the

gradient-enhanced interpolation schemedescribed inSec. III.C,Nsi is

the number of simplices contained inside the extended bin B 0
i , and vk

is thevolumeof thekth simplex. The integral computed usingEq. (21)
refers to the extended bin. It is thus necessary to rescale this value.We
do not know with precision the volume of the state space contained
inside the bin.However, itwill be contained inside thevolume of theα
shape constructed with the initial bin Cα�Bi� (Fig. 5a) and the one
constructed with the extended bin Cα�B 0

i � (Fig. 5b). Therefore, the
integral is scaled with the average between these two volumes as
follows:

W�Bi� � W�B 0
i �
Mean�vCα�Bi�; vCα�B 0

i ��
vCα�B 0

i �
(22)

Repeating this procedure for each bin in the set B allows for the
computation of the one-dimensional marginal. For the computation
of the two-dimensional marginals, the procedure is analogous, with
the binning performed over the two dimensions of the marginals
(xm, xn).

IV. Test Cases

This section presents a series of relevant test cases to the problem
under examination, applying the propagation methodology described
in Sec. II and the reconstruction methodology outlined in Sec. III to
planetary entry caseswithdifferent dynamical,gravitational, andatmos-
pheric models. In this way, we show the applicability of the continuum
propagationwithmodels of different complexity. The results in termsof
marginal distributions are compared with Monte Carlo simulations in
terms of accuracy and execution time. In addition, for selected cases, the
marginals of derived quantities of interest such as the dynamic pressure
and the heat rate are computed, exploiting the already derived marginal
distributions of the propagated variables. Finally, we use the derived

marginals to assess the compliance of the mission to relevant con-
straints.

A. Three-State Steep Earth Reentry

The following section features a so-called strategic reentry [51],
which represents a vehicle with a high ballistic coefficient on a
steep, high-energy trajectory. The aim of these types of reentry is to
more precisely pinpoint the impact location on Earth. The test case is
performed using the three-state dynamics of Eq. (6). For themodeling

of the atmosphere, a simple exponential model is adopted [Eq. (23)],
while for the gravitational acceleration, an inverse square model is
considered [Eq. (24)]. The expressions for the two models are

ρ�r� � ρ0 exp

�
H2 − �r − Rp�

H1

�
(23)

g�r� � μp
r2

(24)

where ρ0 is a reference atmospheric density,H1 andH2 are constants
related to the atmosphere of the planet, and μp is the gravitational

parameter of the planet. The initial conditions of the reentry together
with their uncertainties and the parameters used for the models are
summarized in Table 1. The uncertainties have been modeled with
a Gaussian distribution so that the values of the initial conditions of
Table 1, h0, v0, γ0, and β0, represent the mean of a multivariate

Gaussian.
For the case under examination, the uncertainties affect the initial

state of the satellite at the reentry interface r, v, and γ and the ballistic
coefficient β. No uncertainty in the atmosphere is considered for this
case, so the ξ coefficient is neglected. We decided to consider the
ballistic coefficient as it can influence the shape and evolution of the
reentry trajectory and the prediction of the landing location. In addi-
tion, the exact quantification of the ballistic coefficient at reentry can

a) b)

Fig. 5 Examples of α-shape construction for a) a bin and b) an extended bin.

Table 1 Initial conditions and relevant parameter for the three-state
strategic reentry on Earth

Parameter Symbol μ σ

Initial velocity, km∕s v0 7.2 0.05

Initial flight-path angle, deg γ0 −30.0 0.1

Initial altitude, km h0 125 2

Ballistic coefficient, kg∕m2 β0 10,000 500

Earth equatorial radius, km Rp 6378.1 — —

Earth gravitational parameter, m3∕s2 μp 3.986 × 1014 — —

Reference atmospheric density, kg∕m3 ρ0 1.215 — —

Atmospheric scale height, km H1 8.3 — —

Reference altitude, km H2 0 — —

Lift-to-drag ratio CL∕CD 0 — —
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be difficult as it depends on the mass, cross-section, and drag coef-
ficient of the spacecraft. The mass of the spacecraft at disposal may
not be completely known, as the exact amount of residual propellant
can be difficult to assess. The cross-sectional area of the satellite
as well as even the exact value of the drag coefficient may be also
uncertain. Following the procedure outlined in Sec. II, once the initial
uncertainty distribution has been defined, this is sampled, and each
sample is propagated usingEq. (6). In this case, we draw 750 samples.
The result of the propagation using the continuity equation for
selected snapshots (time instants, counted in seconds, after the starting
epoch of the simulation) is summarized in Fig. 6.
The pair plot of Fig. 6 shows the projection of the sampled points

for the snapshot at time t � 30 s. Along the main diagonal, the value
of the density n associated to each sample is presented for each
variable: the diagonal plot in the first column shows the distribution
of the samples in r and the associated density value, the one in the
second column refers to the velocity v, the one in the third column
refers to the flight-path angle γ, and the one in the last column gives
the density distribution as a function of the ballistic coefficient β.
The off-diagonal two-dimensional plots show the relation between

different couples of variables. The color map of the two-dimensional
plots is associated to the magnitude of the density of each point. It is
possible to observe how the state space, which started from a Gaus-
sian structure, suffered a substantial deformation as the time passed.
The deformation represents one of the challenges in reconstructing
the probability density for the entire state-space volume.

1. Comparison

Figures 7a–7c show the one-dimensional marginals obtained with
the density-based approach (DB) and theMC for the snapshot at time
t � 24 s. In this comparison, we have used 750 samples for the DB
method and 750 (shaded histogram) and 5000 (dashed histogram)
samples for the MC method.
To better compare the obtained marginal, we measure the differ-

ence between the distributions obtained with the DB and MC meth-
ods. To do so, we introduce two metrics commonly used in statistics
to compare probability distributions that are the Hellinger distance
ΔH and the firstWasserstein distanceΔW . TheHellinger distance and
the first Wasserstein distance between two PDFs P�x� andQ�x� are
defined as

a) b) c)

Fig. 7 DB vs MC one-dimensional marginals comparison at t � 24 s: a) altitude, b) velocity, and c) flight-path angle. DB: marginals with 750 samples.
MC: marginals with 750 and 5000 samples.

Fig. 6 Pair plot of the probability density propagation for the strategic reentry at two different snapshots at t � 30 s.

800 TRISOLINI AND COLOMBO

D
ow

nl
oa

de
d 

by
 P

O
L

IT
E

C
N

IC
O

 D
E

 M
IL

A
N

O
 o

n 
A

pr
il 

20
, 2

02
1 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

52
28

 



ΔH�P;Q� �
���������������������������������������������������
1

2

Z �∞

−∞

	 ����
P

p
−

�����
Q

p 

2
dx

s
(25)

ΔW�P;Q� � inf
π∈Γ�P;Q�

Z
kx − yk dπ�x; y� (26)

whereΓ�P;Q� is the collection ofmeasures withmarginalsP andQ.
The Hellinger distance is a form of divergence measuring the differ-
ence between two distributions and always lies between 0 and 1. The
Wesserstein distance can be interpreted as the amount ofwork needed
to transform one distribution into the other. Figures 8a and 8b show
the values of the Hellinger andWesserstein distances, respectively, as
a function of time (i.e., different snapshots fitting) for the variable v,
comparing the DB and MC distributions with 750 to a reference
distribution that is the MC marginal obtained with 5000 samples.
It is possible to observe that the DB method shows a better

performance in both metrics from the initial states until about 28 s
into the reentry. From that point on, theMCmethod performs slightly
better. This is probably due to the characteristics of the simulations; in
fact, after 30 s, some of the samples reach the ground and are thus no
longer used in the interpolation, and therefore a loss of performance
can be expected (as shown by the Hellinger distance). On the other
hand, it is surprising that the MC method considerably improves in
both metrics when fewer points are available. The comparison after
this instant might be less accurate, given that also the reference
distribution obtained with 5000 samples suffers from a proportional
reduction in the number of points available. Nonetheless, we show in
Table 2, the comparison between the average value and the standard
deviation over all the snapshots of the Hellinger and Wesserstein
distances for r, v, and γ for the DB and MC methods.
It can be observed that both metrics are, on average, lower for the

DB method as opposed to the MC method for the same number of
samples, and the standard deviation is also smaller in all instances,
showing that the accuracy of the proposedmethod is competitivewith
MC using an equivalent sample size. A comparison of the computa-
tional effort for the strategic test case is presented in Table 3 for the
DB case with 750 samples and the MC case with 750 and 5000
samples. The computational times have been subdivided into propa-
gation time that is the time needed to propagate the trajectories and
the marginalization time that is the time needed to reconstruct the
marginal distribution from the scattered samples. The simulations

were run on a Windows laptop equipped with an Intel Core i7-
1065G7 @ 1.3 GHz processor and 16 GB of RAM.
Figure 9 shows a visual comparison between the two-dimensional

marginals in altitude and velocity for two distinct snapshots (t � 8 s
and t � 32 s), obtained with the DB approach using 750 samples
(Figs. 9a and 9d) and the MC approach using 750 and 5000 samples
(Figs. 9b–9f), respectively.
A feature that can be observed in the obtained marginals (Figs. 7

and 9) is that the DB approach tends to produce more localized
distributions. On one hand, theDBmethodology uses the actual value
of the probability density to obtain the marginals, while Monte Carlo
estimates them andmay underpredict or overpredict the distributions.
However, the reconstructedmarginalswith theDBmethod are only as
good as the fitting procedure used and the integration performed. The
marginalization procedure proposed in Sec. III.C together with the
interpolation presented in Sec. III.C introduces some simplifications
and is limited to the envelope of the state space defined by the sampled
points,which are then used to construct the α shape. This featuremust
be monitored as it may arise from a lower accuracy that can be
obtained with the DB method at the boundaries of the distribution
where a lower density of samples is available, an issue that might be
mitigated by a more spatially efficient sampling technique.
Figure 10 shows the relative difference between the mean value

predicted by the DB method with 750 samples and the MC method
with 5000 samples at each snapshot for the three variables of interest
r, v, and γ. It can be observed fromFig. 10 that the difference between
the mean value as predicted by the MC and the DB methods remains
below 1% for both the radius and flight-path angle, while it increases
up to 8% for thevelocity in the last part of the trajectory. This behavior
confirms that in the last part of the trajectory, when fewer samples
are available (in the last instant, only 110 samples out of 750 are
available), the performance deteriorates as expected.

Table 2 Comparison of mean and standard deviation of the Hellinger and Wasserstein distances for the considered states

r v γ

Methodology μΔH
σΔH

μΔH
σΔH

μΔH
σΔH

DB 0.1354 0.0327 0.0986 0.0313 0.0967 0.0064
MC 0.1679 0.0623 0.1889 0.0840 0.1195 0.0095
Methodology μΔW

σΔW
μΔW

σΔW
μΔW

σΔW

DB 3.12 × 10−6 8.20 × 10−7 9.95 × 10−5 5.06 × 10−5 4.80 × 10−1 1.02 × 10−1

MC 4.93 × 10−6 1.32 × 10−6 1.52 × 10−6 9.52 × 10−5 6.94 × 10−1 1.64 × 10−1

a) b)

Fig. 8 Variation of a) theHellinger distance andb)Wasserstein distance in time for the velocity. Both distances compare the 750 samplesmarginals of the
DB and MC methods to the 5000 MC samples.

Table 3 Run-time comparison between the DB andMCmethods for
the strategic test case

Case
Propagation

time, s
Marginalization

time, s
Total
time, s

DB �Np � 750� 8.2 1.2 9.4

MC �Np � 750� 8.2 0.01 8.21

MC �Np � 5000� 74.0 0.06 74.06
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Figure 11 shows instead the difference between the standard
deviation predicted by the DB method with 750 samples and the

MC method with 5000 samples for each snapshot. The results show
that the standard deviation predicted by the DB method follows the
one estimated with the MC method. It also confirms what could be

observed in Figs. 7 and 9 with the DB method tendency to under-

predict the tails of the distributions.

2. Mechanical and Thermal Loads Compliance

During reentry assessments, it is not only of interest to predict the

uncertainties in the position and velocity of the spacecraft but also to

understand how they transfer to other relevant quantities such as the

dynamic pressure and the heat rate. We compute these quantities

using the expressions

�q � 1

2
ρ�h�v2 (27)

_Q � �FqK

��������������
0.3048

rn

s ����������
ρ�h�
ρSL

s �
v

7924.8

�
3.15

(28)

where K � 1.99876 × 108 W∕m2 is a constant, rn is the curvature

radius at stagnation point in meters, ρSL is the air density at sea level

in kilograms/meters cubed, and �Fq is an averaging factor that

depends on the shape of the object, its motion, and the reentry regime.

Fig. 10 Evolution of the relative difference between the expected value
predicted by the DB method (750 samples) and MC method (5000
samples) for r, v, and γ.

a) DB method with 750 samples b) MC method with 750 samples c) MC method with 5000 samples

d) DB method with 750 samples e) MC method with 750 samples f) MC method with 5000 samples

Fig. 9 DB vs MC two-dimensional marginals in h-v. Top row: snapshot time t � 8 s. Bottom row: snapshot time t � 32 s.

a) b) c)

Fig. 11 Evolution of the standard deviation predicted by the DB method (750 samples) and MC method (5000 samples) for a) r, b) v, and c) γ.
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The expression for the heat rate is a simplified version of the Detra–

Kemp–Riddell correlation (DKR) [52], where we have omitted

the term related to the stagnation point enthalpy. The DKR correla-

tion is commonly used to predict the heat rate for hypersonic entries

in Earth’s atmosphere [13,53,54]. It is applicable to continuum flows

so that it is less accurate at higher altitudes; however, for this

demonstrative example, it has been used to compute the heat rate

for the entire trajectory.
If we select the characteristics of the spacecraft, in other words, the

curvature radius at the stagnation point and the averaging factor, both

Eqs. (27) and (28) are only a function of the altitude and the velocity.

We can thus exploit the previously computed marginal distributions

in h and v to directly obtain information on the dynamic pressure and

the heat rate during reentry. In fact, we can apply a transformation and

scale the density accordingly. For example, in the case of the heat rate,

we have

8><
>:
φ�h; v� � v

ψ�h; v� � �FqK

��������������
0.3040

rn

r ����������
ρ�h�
ρSL

r �
v

7924.8

�
3.15 (29)

When we apply this transformation, we need to scale the density

accordingly, which can be accomplished by dividing the density in the

original variables by the determinant of the Jacobian of the trans-

formation as follows:

n�v; _Q� � n�h; v�

��������
∂φ
∂h

∂φ
∂v

∂ψ
∂h

∂ψ
∂v

��������

−1

(30)

With an equivalent procedure, we can also obtain the marginals for
the dynamic pressure. Figures 12a and 12b showexamples for both the
dynamic pressure and the heat rate for the test case under examination.
The heat rate has been obtained considering a spherical shape with a

1 m radius. The corresponding averaging factor is �Fq � 0.234 [14].

These two-dimensional marginals can then be integrated along v to
obtain the one-dimensional marginals for the dynamic pressure and
heat rate. We can combine them together and obtain the evolution in
time of themarginal probability for both the dynamic pressure and the
heat rate. Figures 13a and 13b show this time evolution. Each plot
also features a threshold (in red). These values can be set by the user
and defined to check different scenarios, for example, the limits in
dynamic pressure and heat rate that a reentry capsule can withstand.

For this test case, there is a threshold of 68kPa and77 W∕cm2 [55] for
the dynamic pressure and heat rate, respectively. The top part of the
plot, represents the probability at each time step of crossing the limit.
Initially, no part of the dynamic pressure and heat rate distributions
crosses the thresholds. As time passes, the distributions shift toward
higher dynamic pressures and heat rates so that parts of the distribu-
tion cross the threshold, increasing the probability. In the final states,
the probability density starts to reduce again. This happens because
some of the initial samples reach the ground before others and when
they do their contribution to the total probability weight is removed.

B. Six-State Steep Earth Reentry

The example presented in the following section is an extension of
the test case in Sec. IV.A in which a six-state propagation is used
instead [Eq. (7)] and the gravity and atmosphere models have an
increased complexity. Thegravitationalmodel used takes into account
the earth oblateness J2 effect [56], and the atmospheric model is the
1976 U.S. Standard Atmosphere [57]. To use the U.S. Standard
Atmospheremodel into the continuity equation, a spline interpolation

a) b)

Fig. 12 Two-dimensional DB marginals of a) velocity vs dynamic pressure and b) velocity vs heat rate at time t � 32 s.

a) b)

Fig. 13 Marginal evolutions in time: a) dynamic pressure and b) heat rate. In red, specific thresholds. On top, the probability in time of crossing the
threshold.
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of the density has been performed using the UnivariateSpline class of
the scipy Python package. The UnivariateSpline class has the advan-
tage of providing the derivative information that can be used directly
into the equations of motion when needed. As previously mentioned,
the uncertainties in the atmosphere can be included in the continuum
approach. The procedure adopted here is to introduce a correction
coefficient to scale the value of the density provided by the selected
model as

ρ�r; ξ� � ξ ρ̂std76�r� (31)

where ξ is the atmospheric correction coefficient and ρ̂std76�r� is
the spline representation of the atmospheric density as provided by
the 1976 U.S. Standard Atmosphere model. More complex models
can be considered,which includemore than one uncertain parameters.
The models must be represented with differentiable functions and all
the uncertain parameters must be included in the augmented state
space. For the case under examination, the uncertainties have been
considered in all the initial states λ, φ, v, γ, and χ and in the atmos-
pheric correction coefficient ξ, while no uncertainty in the ballistic
coefficient has been included. Table 4 summarizes themeanvalue and
standard deviation for the considered uncertain states and the value of
the remaining parameters necessary for the reentry simulation.
As is possible to observe, in this case, the uncertainties in the initial

conditions have a smaller and more realistic standard deviation with

respect to the ones presented in Table 1. The largest uncertainty is
represented by the atmospheric correction coefficient, which intro-
duces a 5% standard deviation in thevalue of the atmospheric density.
The uncertainty in the radial position has been removed as it is now
the independent variable of the integration. This can allow setting a
radius (altitude) value for the reentry interface and exclude the radius
from the uncertainties. The presented test case is intended to show the
applicability of the continuum propagation to a realistic reentry
scenario, which considers the full dynamical representation, includes
more realistic and accurate gravitational and atmospheric models,
and takes into account the uncertainty in the atmospheric properties.
The six-dimensional distribution of the initial uncertainty is then
sampled, and each sample is propagated until the surface of the Earth
is reached. Figure 14 shows the projections of the distribution of 1000
sampled points at the end of the propagation (Earth impact). For the
sake of readability, the distribution in the atmospheric correction
coefficient ξ is omitted; however, as it is a coefficient, its derivative
is zero [Eq. (7)], and the distribution at the final instant is the same as
the initial one. On the main diagonal, we can observe the magnitude
of the probability density associated to each sampled point.
It is interesting to observe how the distribution for this six-state

variation of the strategic test case is considerably more regular and
maintains a more Gaussian-like behavior throughout the reentry
process when compared to its three-state counterpart (Fig. 6). The
difference is due to the different uncertainties in the initial conditions,
which are much more pronounced for the test case in Sec. IV.A. The
different independent variable (from t to r) may also have contributed
to the different shape of the state space.

1. Comparison

Figure 15 shows the comparison between the one-dimensional
marginals obtained with the DB and the MCmethods for the relevant
state variables. The comparison is between theDBmarginals obtained
with 1000 samples and the corresponding MC marginals obtained
with 1000 (the green shaded histogram) and 50,000 samples (the
black dashed histogram) for the final propagation instant, which
correspond to landing.
The marginals show a similar behavior with respect to their three-

state counterparts (Fig. 7): the distributions obtained with 1000
Monte Carlo samples show a more erratic behavior for all the states,
especially in the areas around of the peak of the distribution,while the

Fig. 14 Landing snapshot for the six-state steep entry test case.

Table 4 Mean and standard deviation for the initial conditions of the
augmented state space and values of the relevant parameters

Parameter Symbol μ σ

Initial longitude, ° λ0 0 0.2

Initial latitude, ° φ0 0 0.2

Initial velocity, km∕s v0 7.2 0.036

Initial flight-path angle, deg γ0 −30 0.15

Initial heading angle, deg χ0 45 0.225

Atmospheric correction ξ 1 0.05

Initial altitude, km h0 125 ——

Ballistic coefficient, kg∕m2 β0 10000 ——

Lift coefficient, m2∕kg α 0 ——
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corresponding DB marginals show a more regular behavior. How-

ever, even in this case, it is possible to observe the feature of the DB
marginals when compared to the 50,000 Monte Carlo that is the
presence of peaks and smaller tails, which in turn results in a smaller
standard deviation in the prediction of the states at the landing instant.
To better compare the quality of the distribution reconstruction with
both the DB and the MC methods, a comparison using the metrics
introduced in Sec. IV.A (Hellinger distance andWasserstein distance)
is performed. Figure 16 shows this comparison for three selected
states (latitude, velocity, and heading angle). In the comparison, the
distances have been computed taking as reference distribution the
Monte Carlo simulation with 50,000 samples. In case of the DB
methodology, the results for 50,000 samples are not present as the
memory requirements were too high for the laptop used in this Paper.
The results of the comparison show that the marginals obtained

with the DB method consistently perform better with respect to their
MC counterparts with the same number of samples according to both
the proposed metrics. However, some notable features can be iden-
tified: the Hellinger distance shows in all three comparisons a wors-
ening in the performance of the DBmethod when passing from 5000

to 10,000 samples. This feature is confirmed also by the Wasserstein
distance for the latitude marginal. The reason behind this behavior
probably resides in the methodology used to obtain the marginal
distribution as outlined in Sec. III.Cwhen combinedwith the increas-
ing requirements for computational resources due to the growing
number of points; in fact, to limit thememory usage, a higher number
of bins has been used, leading to a lesser performance in the estima-
tion of the marginals. On the other hand, the Wasserstein distance
(Figs. 16b,16d and 16f) shows that the DB marginals obtained with
1000 samples have a better or comparable result with respect to the
10,000MC simulation. A similar trend can be observed in two out of
three comparisons of the Hellinger distance, where the heading angle
case has a more pronounced difference between the 1000 DB and the
10,000MC simulations. Another interesting aspect, when comparing
the results of Fig. 16 with the results of the previous test case Fig. 8
is that in the last instant of the six-state case the DB method still
performs better then the MC, while for the three-state case, it has a
worse performance. This feature is probably related to the fact the in

this case, by introducing the radius as an independent variable, all the
samples aremaintained in the snapshot until the end, while in the case
of Sec. IV.A, they are removed when they reach the ground, thus
reducing the number of samples available for the fitting. A final
comparison is provided for the run time of the code as a function of
the number of points as shown in Fig. 17. The run time has been
normalizedwith respect to the run time of the 50,000MC simulations
so that all the other figures are a fraction of this reference time.
Similarly to Sec. IV.A.1, the run times include the propagation time
of the trajectory and the fitting time. As expected, for the same
number of points, the DB method is always more time consuming
as the fitting procedure requires more time than the histogram gen-
eration. However, it is also possible to observe that the DB method
with 1000 samples requires about 1∕4 and 1∕7 of the time required
by the 5000 and 10,000 sample MC methods, respectively, with a
performance that is comparable to or worse than the one of the DB
method, as shown in Fig. 16. In addition, Fig. 17 shows the ratio
between the marginalization time and the propagation time for the
DB method, which oscillates between 40 and 60%.

C. Six-State Mars Reentry

The third test case features a six-state Mars reentry, whose propa-
gation is again performed using Eq. (7). The initial conditions and the
other relevant reentry parameters are based on the Mars Science
Laboratory (MSL) mission [26,58], and they are summarized in
Table 5. Themodified lift coefficient,α � 0.001 m2∕kg, corresponds
to a CL � 0.18 of a spacecraft with mass m � 2200 kg and cross-
section S � 12.9 m [58].
As is possible to observe, in this case, we have considered a lifting

entry with Gaussian uncertainties in the initial longitude, latitude,
velocity, and flight-path angle together with the ballistic coefficient
and the atmospheric correction coefficient.Thegravitymodel forMars
is an inverse exponential in this case, equivalent to the one adopted in
Sec. IV.A. The atmospheric density as a function of the altitude has
been obtained from the curve fitting of the MSL data and has the
expression [26]

ρ�h� � expfc0 � c1h� c2h
2 � c3h

3 � c4h
4g (32)

a) b) c)

d) e)

Fig. 15 DB vs MC one-dimensional marginals comparison at landing instant for 1000 samples and 50,000 samples.
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where c0 � −4.343, c1 � −9.204 × 10−5, c2 � −1.936 × 10−11,

c3 � −7.507 × 10−15, and c4 � 4.195 × 10−20. Again, the uncer-
tainty in the atmospheric density is implemented following the pro-
cedure outlined by Eq. (31), introducing the atmospheric correction
coefficient ξ. Figure 18 shows the projections of the snapshot at
the landing instant for the Mars test case, where we have excluded
the ballistic coefficient for a better readability. We can observe that,
differently from the previous test case (Fig. 14), the effect of the
nonlinear dynamic is more pronounced and this translates into a more
deformed state space, particularly in the couplingbetween thevelocity,

the flight-path angle, and the atmospheric correction coefficient (the

ballistic coefficient has a similar dependency).

1. Comparison

Figure 19 show the one-dimensional marginals obtained with

the DB and MC methods for the velocity and the flight-path angle

at the landing instant. The DB marginal has been obtained with

1000 samples, while the MCmethod shows the results obtained with

Fig. 17 Run-time comparison between theDBandMCmethodology. In
orange, the fraction between the interpolation and the propagation times
for the DB method.

Table 5 Mean and standard deviation for the initial conditions of the
augmented state space and values of the relevant parameters

Parameter Symbol μ σ

Initial longitude, ° λ0 −90.07 0.5

Initial latitude, ° φ0 −43.9 0.5

Initial velocity, km∕s v0 5.505 0.004

Initial flight-path angle, deg γ0 −14.15 0.023

Ballistic coefficient, kg∕m2 β 125.0 3.5

Atmospheric correction ξ 1 0.05

Initial altitude, km h0 126 — —

Initial heading angle, deg χ0 4.99 — —

Lift coefficient, m2∕kg α 0.001 — —

Mars equatorial radius, km Rp 3397 — —

Mars gravitational parameter, m3∕s2 μp 4.283 × 1013 — —

Mars rotational rate, rad∕s ωp 7.095 × 10−5 — —

a) Hellinger distance for b) Wasserstein distance for

c) Hellinger distance for d) Wasserstein distance for

e) Hellinger distance for f) Wasserstein distance for

Fig. 16 Variation of the Hellinger and Wasserstein distances between the DB and MC methods as a function of the number of samples for the landing
snapshot.
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1000 samples (green shaded histogram) and 50,000 samples (black
dashed histogram). The results show a good agreement of the DB

method with the 50,000 samplesMC simulation taken as a reference.
However, one can still see the discrepancy around the tails of the
distribution, with amore erratic behavior and a tendency to reproduce

lower values of the marginal probability, as already seen in Figs. 7
and 15. Figure 20 instead shows the comparison between the two-
dimensionalmarginals obtainedwith theDB andMCmethods for the

landing location coordinates expressed in longitude and latitude.
A quantitative comparison between the obtainedmarginals is again

performed exploiting the metrics introduced in Sec. IV.A, in other
words, the Hellinger and Wasserstein distances. The comparison is
performed by computing the average and standard deviation of the

Hellinger and Wasserstein distances over time for different numbers

of sample points. The distances are computed, taking as reference
the results obtained with the MC simulation with 50,000 samples.
Figure 21 shows this comparison for the velocity and the flight-path
angle as a function of the number of points. The solid lines represent
themeanvalue, and the shaded area represents the standard deviation.
The Hellinger distance (Figs. 21a and 21c) shows a regular behavior
in both the considered variables for the DB method, with a constant
improvement in performance when going from 500 to 5000 points.
Aworsening of the approximation happens instead for 10,000 points,
as was the case for the Earth reentry test case (Fig. 16). In addition,

it is possible to observe that, on average, the DB method shows
a better performance with respect to the MC method, except for
the 10,000 samples case, and a smaller standard deviation. The
Wasserstein distance (Figs. 21b and 21d) shows a similar behavior

Fig. 18 Pair plot of the landing snapshot for the six-state unguided Mars entry test case.

a) b)

Fig. 19 DB vsMCone-dimensionalmarginals comparison at landing instant for theMars reentry test case: a) velocitymarignal and b) flight-path angle.

DB method with 1000 samples and MC method with 1000 and 50,000 samples.
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up to 5000 samples, where the DB method performs better than the

MC. However, after the 5000 samples, a worsening can be observed,

especially in the case of the flight-path angle. We also notice a

considerably higher standard deviation for both the DB and MC

methods. Contrary to theHellinger distance, theWesserstein distance

is not a value ranging between 0 and 1, and its value changes through

time alongside the change inmagnitude of the probability density. For

this reason, in this comparison the value at each snapshot of ΔW has

been normalized so that the average over time could be performed.

The results obtained for the two-dimensional marginals can also

be compared using the Hellinger distance and are shown in Table 6.

The results shows how the Hellinger distance for the DBmethod with

1000 samples is comparable with the ones of the MC method with

10,000 samples, confirming the trendobserved in theone-dimensional

marginals and in previous test cases.A similar trend is also observed in

the performance of the DB method, with an improvement passing

from 1000 to 5000 samples, and then a worsening at 10,000 samples.

Again, Fig. 22 provides a final comparison between the simulation

times for the DB and MC methods. Also in this case, the computa-

tional times have been normalized with respect to the 50,000 MC

simulation. As expected, the behavior closely matches the one of

a) Hellinger distance for b) Wasserstein distance for

c) Hellinger distance for d) Wasserstein distance for

Fig. 21 Comparison of the average Hellinger and Wasserstein distances as a function of the number of samples for the variables v and γ.

Table 6 Comparison of Hellinger distance for the λ-φ marginal at
landing between DB and MC methods

Number of points

Method 1000 2000 5000 10,000
DB 0.12518 0.10061 0.08712 0.0983
MC 0.27565 0.25616 0.16781 0.11713

Fig. 22 Run-time comparison between theDBandMCmethodology. In
orange, the fraction between the interpolation and the propagation times
for the DB method.

a) b) c)

Fig. 20 DB vs MC two-dimensional λ-φmarginals comparison at landing instant for the Mars reentry test case: a) DB method with 2000 samples and
b) MC method with 2000 and c) 50,000 samples.
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Sec. IV.B, while the fraction of computational time devoted to the
marginalization compared to the propagation shows a slightly less
stable trend: higher fractions of the computational time are occupied
by the marginalization procedure for a smaller number of samples.

2. Parachute Deployment Probability

Similarly to the test case of Sec. IV.A, in which we analyzed the
probability of crossing the thresholds of dynamic pressure and heat
rate, in this case, we consider a relevant problem in planetary entry
(particularly on Mars) that is the deployment of a parachute to
decelerate the probe in the final stage of the reentry. For the parachute
deployment, the main variables taken into account are the dynamic
pressure and the Mach number. Particularly, the dynamic pressure is
limited to 220 ≤ �q ≤ 880 N∕m2, and the Mach number is limited to
1.2 ≤ M ≤ 2.2 [58]. The dynamic pressure can be computed again
using Eq. (27), while the Mach number has the expression

M � v

vs
(33)

where vs is the speed of sound in theMartian atmosphere. Similarly to
the atmospheric density profile, the speed of sound is considered only
a function of the altitude and is obtained from a fitting of MSL data.
The expression of the speed of sound as a function of the altitude
is [26]

vs�h� � 223.8� c1h� c2h
2 � c3h

3 (34)

wherec1�−0.2×10−3, c2�−1.588×10−8, andc3�1.404×10−13.
Equations (27) and (33) and the deployment boundaries in Mach
number and dynamic pressure previously introduced can be combined
to obtain the velocity limits within which both the limitations are
satisfied. Using these boundaries with the one-dimensional marginals
in velocity, we can find the probability of being compliant with the
parachute deployment limitations by integrating the velocitymarginal
within the boundaries. The procedure can be repeated for different
snapshots to obtain the evolution of the compliance probability as
a function of the altitude. Figure 23 shows the evolution of the
compliance probability for the final portion of the trajectory. We can
see a full compliance within the altitude range 3–7 km.
Mission planning and design for planetary entries can benefit from

such analyses, and they give a robust procedure for selecting the
parachute deployment time given the state of the spacecraft under the
effect of initial uncertainties.

V. Conclusions

This Paper presents a novelmethodology to propagate uncertainties
using a continuum approach and a procedure to reconstruct these
uncertainties and obtain the marginal probabilities of interest. The
propagationmethodology has been applied to relevant reentry dynam-
ics including both three-state and six-state dynamics and proved
capable of including uncertainties in the state variables and in relevant

parameters such as the ballistic coefficient and the atmospheric den-
sity. The procedure to include this uncertainties, however, requires an
extension of the state space of the ODE so that the inclusion of a large
number of uncertainty may end up being difficult to achieve at the
current stage of development. The reconstruction methodology has
been applied to representative test cases to derive the probability
marginals for the quantities of interest. The test cases were represen-
tative of four-dimensional and six-dimensional state spaces and
dynamics with different level of nonlinearity. The DBmethod showed
the capability to obtain the marginal distribution up to a six-dimen-
sional state space that also showed a substantial nonlinear behavior
(Figs. 6 and 18). The results were compared with the corresponding
Monte Carlo simulations for different number of samples, both in
terms of difference between the obtained marginal distributions and
simulation times. For the test case of Sec. IV.A, the DB method with
750 samples shows better performance in terms of the Hellinger and
Wasserstein distances with respect to theMCmethod for the first part
of the reentry trajectory until about 28 s into the descent (Fig. 8).
Instead, in the last part, the performance of the MC method slightly
surpasses the one of the DB method, reaching a comparable perfor-
mance at the final instant. For the test case of Sec. IV.B, theDBmethod
results in a better performancewith respect to theMCsimulationswith
an equivalent number of samples, except for the case with 10,000
samples for the latitude variable (Figs. 16a and 16b). The DBmethod
also shows a similar or betterWasserstein distance with 1000 samples
when compared with the MC method with 5000 and 10,000 samples,
while it has a worse performance when 750 samples are considered.
The same trend can also be observed for the Hellinger distance for the
latitude and velocity variables (Figs. 16a and 16c), but not for the
heading angle (Fig. 16e). For the final test case of Sec. IV.C, the DB
method showed better or comparable performance than the MC
method in approximating the two-dimensional marginals as shown
inTable 6. For the one-dimensionalmarginals, theDBmethod showed
lower Hellinger distances when compared to theMCmethod with the
same number of samples, except for the case with 10,000 samples
(Fig. 21). In addition, the DB method with as low as 750 samples
shows, on average, a lower Hellinger distance than theMCmethod up
to 5000 samples (Figs. 21a and 21c). For the same comparison over a
one-dimensional marginal, the Wasserstein distance shows a similar
behavior, with the DBmethod performing, on average, better than the
MC method for number of samples ranging from 750 to 5000 and
instead losing the comparison for 10,000 samples (Figs. 21b and 21d).
The computational time of the DB method is always greater than the
MC when the same number of samples is used because the margin-
alization procedure requires more computational time (Figs. 17 and
22). However, this increase in time can, in some cases, be offset by
using a lower number of samples to obtain a comparable level of
approximation. The visual inspection of the obtained marginal prob-
abilities showed a trend of the DB method to underpredict the tails
of the distributions with respect to the MC method as confirmed by
the results of Fig. 11. This trend may be due to the lower number of
samples available in these regions of the distributions, thus producing
a less accurate reconstruction. In addition, another trend resulting
from the presented analyses is the loss of performance of the DB
methodwhen a larger number of samples is used (i.e., 10,000 samples
in this Paper). This is a limitation of the introduced marginalization
technique, which requires the definition of bins; if these bins are too
small, the volume approximated by the triangulation may be inaccu-
rate. However, a finer binning is usually required when the number of
samples points increases (especially in higher dimensions) to manage
the memory usage of the triangulation algorithm. This can limit the
applicability of the reconstruction methodology to high-dimensional
spaces. Still, the methodology has good performance when lower
number of samples is used, and this is also where it is most applicable
and appealing.
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