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Abstract
This paper re-considers a recent analysis on the so-called Couplet–Heyman problem
of least-thickness circular masonry arch structural form optimization and provides
complementary and novel information and perspectives, specifically in terms of the
optimization problem, and its implications in the general understanding of theMechan-
ics (statics) of masonry arches. First, typical underlying solutions are independently
re-derived, by a static upper/lower horizontal thrust and a kinematic work balance,
stationary approaches, based on a complete analytical treatment; then, illustrated
and commented. Subsequently, a separate numerical validation treatment is devel-
oped, by the deployment of an original recursive solution strategy, the adoption of
a discontinuous deformation analysis simulation tool and the operation of a new
self-implemented Complementarity Problem/Mathematical Programming formula-
tion, with a full matching of the achieved results, on all the arch characteristics in
the critical condition of minimum thickness.

Keywords Symmetric circular masonry arches · Couplet–Heyman problem ·
Minimum thickness · Structural form optimization · Purely rotational collapse mode

1 Introduction

This work further investigates the issue of (symmetric) circular masonry arch form
optimization (Couplet–Heyman problem), in the quest of a least-thickness evaluation
under uniform self-weight (Figs. 1 and 2). The modern framing of such a problem
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Fig. 1 Sketch of a symmetric circular masonry arch subjected to self-weight (of specific weight per unit
volume γ ) with all involved characteristic parameters (d: out of-plane depth of the arch)

Fig. 2 Five-hinge purely rotational collapse mode, with abutment-hinge reactions V and H (opposite of
weight of half-arch and horizontal thrust)

relies in the contemporary contributions by Jacques Heyman [1–6] and the recent
revisitation in earlier companion work [7], with therein extensive references, also to
various historical and development perspectives on the subject.

The present investigation belongs to a research project by the authors on the statics
of masonry arches [7–14], where the following treatments have been attempted: ana-
lytical [7, 14]; analytical–numerical, accompanied by a Discrete Element Method
(DEM) investigation, through an available Discontinuous Deformation Analysis
(DDA) tool [8, 9, 15–17], and including reducing friction effects and resulting mixed
collapse modes [10, 11]; analytical–numerical, by an innovative Complementarity
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Problem/Mathematical Programming formulation, truly accounting for finite friction
implications [12, 13]. This shall be framed within the relevant, updated literature,
specifically considering the issue of minimum thickness evaluation [18–42], and ded-
icated attempts to reveal further and independent/complementary information on the
analytical treatment, with additional separate validation in terms of numerical results.

Specifically, in the least-thickness collapse evaluation, classical Heyman
solution [3] is shown to constitute a sort of approximation of the true solution (here
labelled as “CCR” [7]), in Heyman assumption of self-weight distribution along the
geometrical centreline of the arch, while Milankovitch solution [43–45], as a corner-
stone of thrust-line-like analysis, in view of form optimization [46–52], may as well be
derived, in the consideration of the real self-weight distribution along the arch, though
at the price of a recorded increasing complexity in the explicit analytical handling of
the governing equations (now analytically resolved to a very end in [14]).

The analysis makes reference to the classical three Heyman hypotheses of masonry
structure behaviour (no tensile strength; infinite compressive strength; no sliding fail-
ure) and refers just to the potential development of a purely rotational collapse mode
(as at infinite friction). Given the value of half-opening angle α of the (symmetric)
circular masonry arch, the following three basic arch characteristics are sought, in the
least-thickness condition of incipient collapse: angular inner-hinge position β from
the crown; thickness t to radius r ratio η � t/r and non-dimensional horizontal thrust
within the arch h � H/(w r), w � γ t d where H is the horizontal thrust, w � t d
the specific weight per unit length of geometrical centreline of the arch, γ and d
the constant specific weight per unit volume and out-of-plane depth of the arch.
Alternatively [7, 14], one may also make reference to intrinsic non-dimensional hor-
izontal thrust ĥ � η h=H/(γ d r2), defined at given material (γ ) and geometrical
properties (d, r) of the circular masonry arch to be optimized (critical η still to be
sought).

The paper is organized as follows. First, Sect. 2 provides a basic framing, with all
the main governing equations, specifically concerning equilibrium and tangency con-
ditions, for the line of thrust (locus of pressure points) within the least-thickness arch.
Then, Sect. 3 derives alternative analytical solution approaches to deliver “correct”
CCR solution [7] vs. “approximate” Heyman solution [3], through a “Coulomb’s
static approach” based on the so-called upper and lower horizontal thrusts, and a
“Mascheroni’s kinematic approach”, based on thework/power balance at incipient col-
lapse,with least-thickness condition consistently statedwithin that.A representation of
“accurate”Milankovitch solution [43–45] is then also recalled, and the response of the
mechanical system illustrated, in terms of the three achieved solutions. Subsequently,
Sect. 4 develops a further validation part by a separate numerical treatment, where:
first, a recursive determination of angular inner-hinge position is developed; second,
a final DDA validation is deployed, completing that earlier presented in [8, 9]; third,
an original self-implemented Complementarity Problem/Mathematical Programming
computational strategy is adapted and operated, to deliver the final arch characteristics
in terms of all kinematical (β), geometrical (η) and statical (h, ĥ) quantities. A full
matching between numerical results and analytical outcomes is recorded, in showing
the validity of the three solution instances in terms of least-thickness masonry arch
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Fig. 3 Statics and kinematics of a symmetric rotational collapse mechanism of a circular arch supporting
only its own weight

form optimization and relevant collapse evaluation. Finally, some concluding remarks
and perspectives of the study are outlined in closing Sect. 5.

2 Basic Mechanical System Equations

2.1 Equilibrium Condition

At incipient (assumed) purely rotational collapse, in the least-thickness condition, the
equilibrium of the (symmetric) circular masonry arch (thus, of the half-arch) shall be
imposed. From the rotational equilibrium of upper portion AB around inner-hinge B,
one has (Fig. 3):

H ·
[

r +
t

2
−
(

r − t

2

)
cosβ

]
� W1 ·

[(
r − t

2

)
sin β − x1

]
(1)
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where, in Heyman assumption of a uniformly distributed self-weight along the geo-
metrical centreline of the arch, weight W1 of the upper portion of the half-arch is
obtained as

W1 �
∫ β

0
γ td︸︷︷︸

w

r dϕ � w r [ϕ]β
0 � w r β (2)

and the centre of gravity of the upper portion of the half-arch is located at following
horizontal distance x1 from the vertical axis of symmetry (and vertical distance y1

from centre O):

x1 �
∫

V1
γ x dV∫

V1
γ dV

�
∫ β

0 γ td r rsin ϕ dϕ∫ β

0 γ td r dϕ
� r

[cosϕ] 0β

[ϕ]β
0

� r
1 − cosβ

β
(3)

y1 �
∫

V1
γ y dV∫

V1
γ dV

�
∫ β

0 γ td r r cosϕ dϕ∫ β

0 γ td r dϕ
� r

[sin ϕ]β
0

[ϕ]β
0

� r
sin β

β
(4)

By substituting Eqs. (2–3) into rotational equilibrium Eq. (1), and shifting to non-
dimensional quantities η � t/r and h � H/(w r), one obtains a first equilibrium relation,
(for instance) in terms of h:

h � h 1 � (2 − η) β sin β − 2(1 − cosβ)

2 + η − (2 − η) cosβ
(5)

Now, from the rotational equilibrium of total half-arch AC around hinge C at the
shoulder extrados, one gets a second equilibrium condition (Fig. 3):

H ·
[

r +
t

2
−
(

r +
t

2

)
cosα

]
� W ·

[(
r +

t

2

)
sin α − xW

]
(6)

where W (W� W1 + W2) is the total weight of the half-arch, with half-angle of
embrace α, acting at horizontal distance xW from crown A. Given Eqs. (2)-(3), one
has:

W � w r α , xW � r
1 − cosα

α
(7)

and, by substituting Eq. (7) into rotational equilibrium Eq. (6) one gets a second
equilibrium relation in terms of h and η:

h (2 + η) � (2 + η) α
sin α

1 − cosα︸ ︷︷ ︸
A � α cot

α

2

− 2 � A(2 + η) − 2 (8)

This equilibrium relation is again linear in h (and η), and also linear in group
A(α) � αcot α/2, inserting the explicit dependence on half-opening angle α
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Fig. 4 Functional dependence of A � α cot(α/2) on α, with indication of stationary (on β) and limit param-
eters of present CCR solution

(see plot in Fig. 4). It may linearly be solved with respect to h (or η, or even
A � αcot α/2), by obtaining

h � h 2 � A − 2

2 + η
� (2 + η) α sin α − 2(1 − cos alpha)

(2 + η) (1 − cosα)
(9)

Equilibrium Eqs. (5) and (9) constitute a system of two static equations, which may
be condensed in a single one, by eliminating h, as h1 � h2, to get the following single
limit equilibrium equation:

(2 − η)β sin β − 2(1 − cosβ)

2 + η − (2 − η) cosβ
� A − 2

2 + η
(10)

2.2 Tangency Condition

Now, beside equilibrium, an optimality condition, in the least-thickness condition,
shall also be set for the masonry arch, as the tangency condition of the line of thrust
at haunch intrados B, according to the textual description in Heyman words [1–5].

However, Heyman [3] seems to have actually analytically stated this tangency
condition in terms of the resultant thrust force [6], corresponding to a simplification,
in the analysis, leading to a beautiful “linear algebraic problem” [7], as shown below.

123



Journal of Optimization Theory and Applications (2020) 187:707–757 713

Since the angle of inclination of the thrust force in B to the horizontal is such that
its tangent is given by ratio W1/H, which shall then coincide with the local inclination
of the inner circle of the intrados profile, from Eq. (2) and relation H � w r h, one has

W1

H
� β

h
� tan β (11)

leading to the following tangency equation for Heyman solution:

h�hH � β cot β (12)

To get instead the true tangency condition of the line of thrust (locus of pressure
points) at intrados B, one shall first derive its analytical representation, e.g. in terms
of eccentricity e(β)=M/N of the centres of pressure with respect to the centreline of
the arch (e taken positive from centreline towards centre O of the circular arch).

Towards that, one first gets a slightly modified and more general version of equilib-
rium relation (1), by the rotational equilibrium of any upper portion of the half-arch
with respect to the centre of pressure at eccentricity e, at a general position β along
the half-arch:

H ·
[

r +
t

2
− (r − e) cosβ

]
� W1 · [(r − e)sin β − x1] (13)

By solving this equilibrium relation with respect to eccentricity e (or to non-
dimensional eccentricity −1 ≤ ê � 2e/t ≤ 1), again in terms of non-dimensional
variables η � t/r and h � H/(wr), one derives the equation expressing the line of
thrust as the locus of the centres of pressure of the resultant thrust force:

ê(β) � 2e(β)

t
� 2β sin β − 2(1 − cosβ) − h (2 + η − 2 cosβ)

η (β sin β + h cosβ)
� num ê(β)

den ê(β)
(14)

Eccentricity function ê(β) in fractional form inEq. (14), displaying built-in property
ê(0) � −1 at the crown (β � 0), depends on both η and h. By further posing h � h2,
Eq. (9), which would automatically set ê(α) � −1 also at the arch shoulder (β � α),
one obtains the final expression of the eccentricity of the line of thrust passing from
crown A and shoulder C, at any given value of α (thus of A � α cot α/2) and η:

ê(β) � 2e(β)

t
� 2 (2 + η) (β sin β − (1 − cosβ)A) − η ((2 + η)A − 2 cosβ)

η (2 + η) (β sin β − (1 − cosβ)A) + η ((2 + η)A − 2 cosβ)
(15)

In the critical, least-thickness condition, the line of thrust touches intrados B where
the hinge at the haunch forms:

e(β ) � t

2
or ê(β ) � 1 (16)

and, at the same time, becomes tangent to the intrados of the arch. Thus, function e(β)
has to display a stationary point at the haunch section (where e= t/2), i.e. the first-
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Fig. 5 CCR solution. Functional dependence of functions f , g, f 2 − 2 g S + S 2 on β

order derivative of eccentricity e(β) with respect to angular inner-hinge position β

must (there) vanish:

e′(β ) � 0 or ê′(β ) � 0 (17)

Thus, Eq. (17) has to hold, at the haunch, together with Eq. (16). By expanding,
e.g. the derivative of the fractional non-dimensional form of e one has:

ê′(β) � num′
ê denê − numê den′

ê

den2
ê

� num′
ê − ê den′

ê

denê
(18)

Thus, stationary condition (17) leads to:

ê(β ) � num′
ê(β )

den′
ê(β )

� 2

η

(β sin β)′ − (1 + h) sin β

(β sin β)′ − h sin β
� 1 (19)

since the tangency condition has to hold at haunch B, where ê � 2e/t � 1, and one
gets the tangency condition expressed in terms of h as follows:

h � he � (2 − η) ( sin β + β cosβ) − 2 sin β

(2 − η) sin β
�

h H︷ ︸︸ ︷
β cot β − η

2 − η
(20)

where term f � (β sin β)′ � sin β +β cos β is involved (see Fig. 5 and later discussion).
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This shows that assuming he � hH , as taken by Heyman, leads to an approximation
of true tangency condition h � he. This might look reasonable until η keeps small. All
this makes the correct solution slightly more involved than the former, and leading to
shift from a “linear” to a “quadratic algebraic problem” [7].

Finally, the governing system of the least-thickness masonry arch optimization
problem for a self-weight distribution along geometrical centreline may be stated, in
terms of h, as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h � h1 � (2 − η) β sin β − 2(1 − cosβ)

2 + η − (2 − η) cosβ

h � h2 � A − 2

2 + η
Heyman/CC R

h � he � (2 − η) ( sin β + β cosβ) − 2 sin β

(2 − η) sin β
�

h H︷ ︸︸ ︷
β cot β − η

2 − η
δCC R

(21)

where A � α cot α/2 (Fig. 4) and δCCR is an on/off control flag allowing to shift from
Heyman (δCCR � 0) to CCR solution (δCCR � 1).

The first two equations, eliminating h, as h1 � h2, set the equilibrium relation,
Eq. (10), the third equation, i.e. Eq. (20), sets the tangency (optimality) condition, in
a shift between Heyman and CCR solutions. These equations will be the subject of a
further separate analytical treatment in the following section.

3 Alternative Analytical Derivation and Interpretation

Now, further, independent and reconcilingways to derive the least-thickness condition,
leading to same results, are here presented, namely: a “Coulomb’s static approach”,
based on the so-called upper and lower horizontal thrusts and a “Mascheroni’s kine-
matic approach”, based on the balance of virtual work (or power).

3.1 Coulomb’s Static Approach

An alternative way of deriving the least-thickness condition could be based on a
“Coulomb’s static approach”, according to the terminology adopted in Sinopoli et
al. [22]. Specifically, reference is here made to the original derivations presented in
Blasi and Foraboschi [19], which account for the explicit determination of the “upper”
and “lower” horizontal thrusts. In practice, according to Coulomb’s view, it is stated
that, towarrant equilibrium, the horizontal thrust should take values that are in between
the minimum and maximum values that the horizontal thrust could assume. Such two
limit values can be obtained as described below.

Lower horizontal thrustHmin(β)� HL � H1 is theminimumvalue of the horizontal
thrust, applied to the extrados at crown A, which corresponds to impose the rotational
equilibrium of any upper portion of the half-arch, of variable half-opening β, with
respect to intrados inner-hinge B. In practice, this coincides with earlier-mentioned
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value H1 in Sect. 2. Upper horizontal thrust Hmax(β) � HU is the maximum value
of the horizontal thrust, applied to the extrados at shoulder C, which corresponds to
impose the rotational equilibrium of any lower portion of the half-arch, of variable
(α−β) opening, with respect to intrados inner-hinge B.

With reference to Fig. 3, and following the same type of earlier-explained deriva-
tions, the lower and upper horizontal thrustsmay be determined by the above-described
equations of rotational equilibrium as follows:

HL � H1 �
W1 ·

[(
r − t

2

)
sin β − x1

]
(

r +
t

2

)
−
(

r − t

2

)
cosβ

(22)

HU � W · [(r + t
2

)
sen α − (r − t

2

)
sin β

] − W2 · x2B(
r − t

2

)
cosβ − (r + t

2

)
cosα

(23)

where:

W1 � wrβ , W2 � wr (α − β) , W � W1 + W2 � wr α ;

x1 � r
1 − cosβ

β
, x2 � r

cosβ − cosα

α − β
, x2B � x2 −

(
r − t

2

)
sin β (24)

Thus, in usual non-dimensional form (η � t/r, h � H/(wr)), one has:

hL � h1 � (2 − η) β sin β − 2 (1 − cosβ)

(2 + η) − (2 − η) cosβ
� num hL

den hL

(25)

h U � (2 + η) α sin α − (2 − η) β sin β − 2(cosβ − cosα)

(2 − η) cosβ − (2 + η) cosα

� num h U

den h U

� num h2 − num hL

den h2 − den hL

(26)

where the quantities at the numerators and denominators in the fractional forms have
been introduced, and use has been made of Eq. (9), stating the rotational equilibrium
of the total half-arch with respect to shoulder hinge C, also re-written as well below
in fractional form:

h 2 � A − 2

2 + η
� (2 + η) α sin α − 2(1 − cosα)

(2 + η) (1 − cosα)
� num h2

den h2
(27)

Equation (25) confirms that hL corresponds to same value h1 earlier derived in
Eq. (5); thus hL � h1 and, through h1, previously, use was already made of the lower
thrust. Equation (26) represents an additional expression of the non-dimensional hor-
izontal thrust, which is alternative to that of h2, Eq. (27), earlier accounted for. This
could be used to write the second ruling equilibrium equation in an alternative way.

Notice that, instead of what is happening for h2, the dependence on α only through
group A is not apparent in Eq. (26). However, it is straightforward to show that, based
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on the last relation that has been written in Eq. (26), stating the two equilibrium
equations as h � hL and h � hU , i.e. stating equilibrium as hU � hL , is equivalent
to state it as hL � h2, as previously done. Similarly, stating equilibrium as hU � h2

is also equivalent to state hL � h2. Thus, hU could be used instead of h2, which is
dependent only on A, with same results. Finally, stating equilibrium as hL � h2, like
previously done, is also equivalent to state hU � h2.

In practice, out of three equilibrium-linked horizontal thrusts hL � h1, h2, hU , any
of the three equivalent equilibrium conditions below, based on two of them, could be
employed to state the equilibrium equation:

hL � h2 ⇔ hL � hU ⇔ h2 � hU (28)

Notice that, here, all three thrusts hL , h2, hU depend on η. Thrust hL � h1 depends
only on angular position β; h2 only on angular position α; hU on both angular positions
α and β.

As debated by Blasi and Foraboschi [19], see Figures 7 and 8 in their paper, hL(β)
and hU (β), as a function of β, respectively, provide lower and upper bounds for h.
Since such two curves depend on η, at a given value of α in hU , they may turn out as
follows: detached, providing, with a positive minimum relative distance (clearance), a
measure of the “margin of safety” for the arch; intersecting, with a negative minimum
relative distance, at same quote hL � hU � h2, denouncing a sub-critical condition;
tangent to each other at a zero relative distance, at a point where hL � hU � h2, locating
the true critical least-thickness condition.

Also, since three curves hU (β), hL(β), h2, the latter corresponding to a horizontal
line at constant quote h2, intersect, if it happens, at same quote h2, disregarding the
values of β corresponding to hU � hL , the intersection between hU and hL occurs
at constant h, i.e. with �h � 0. Thus, in the limit of the tangency condition at the
minimum thickness, curves hU (β) and hL(β) are both stationary at the point where hL

� hU , i.e. their local tangent is horizontal, as that of constant h2. This states the critical
condition as zero first-order derivative with respect to β, hL

′ � 0 or hU
′ � 0, where

equilibrium Eqs. (28) hold. At such stationary points of hU (β) and hL(β), one has
hmin � hL � h1 and hmax � hU , with positive clearance hmax − hmin >0 in over-safe
condition hmax >hmin, negative clearance hmax − hmin <0 in sub-critical condition
hmax <hmin and no clearance hmax − hmin � 0 in critical condition hmax � hmin.

Now, it is quite straightforward to show, from the fractional forms reported in
Eqs. (25)–(26), that the stationary conditions on either hL or hU , or even the condition
of mutual tangency hL

′ � hU
′, as adopted by Blasi and Foraboschi [19], at hL � hU ,

lead to the same tangency condition as analysed earlier for the line of thrust, which
was stated in terms of h � he, Eq. (20), through the definition of the line of thrust.
Indeed, at the stationary points of hL and hU :

hL,U
′ � num hL,U

′ − hL,U den hL,U
′

den hL,U

� 0 ⇒ hL,U � num hL,U
′

den hL,U
′ (29)

where
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num he � num hL
′ � − num hU

′ � (2 − η) (β sin β)′ − 2 sin β �
� (2 − η) (sin β + β cosβ ) − 2 sin β � (2 − η) β cosβ − η sin β

den he � den hL
′ � − den hU

′ � (2 − η) sin β

(30)

Also, alternative condition hL
′ � hU

′, at hL � hU , from (29) to (30), leads to:

h′
L � h′

U at hL � hU

⇒ he � num he

den he

� num hL
′

den hL
′ � den hU hL + den hL hU

den hU + den hL

� hL � hU (31)

Thus, all the tangency conditions above are equivalent to h � he, as earlier directly
stated on the line of thrust:

h′
L � 0 ⇔ h′

U � 0 ⇔ h′
L � h′

U

⇔ h � he � (2 − η) (β sin β)′ − 2 sin β

(2 − η) sin β
� β cot β − η

2 − η
(32)

This actually signals the easiest way to account for the tangency condition of the
line of thrust at the intrados hinge. Once determined from equilibrium, the simpler
expression of lower thrust hL � h1 (dependent just on β), its stationary condition
hL

′ � 0 at h � hL , immediately leads to tangency condition h �he, without even the
need of passing through the definition of the line of thrust and of its e(β) eccentricity
(Sect. 2.2).

In conclusion, given four thrust equations h � hL � h1, h � hU , h � h2, h � he, any
of the four possible systems with three of them would equivalently lead to a correct
least-thickness solution representation:

⎧⎨
⎩

h � hL � h1

h � h2

h � he

⇔
⎧⎨
⎩

h � hL � h1

h � hU

h � he

⇔
⎧⎨
⎩

h � hU

h � h2

h � he

⇔
⎧⎨
⎩

h � hL � h1

h � hU

h � h2

(33)

These systems could be taken for a numerical solution of critical parameters
β, η, h at given half-angle of embrace α. The solutions of the first three systems,
involving tangency condition h � he, are expected to be more efficient than that of the
last system, based just on equating three thrusts hL � h1, hU , h2. However, this latter
system based just on three equilibrium relations, despite not explicitly accounting for
the tangency condition, could be used as well for the final solution. The first system is
still probably the simplest, also conceptually. As stated above, this corresponds to set
the equilibrium relation as equilibrium condition hL � h2 and the stationary condition
as either tangency condition e′ � 0 or hL

′ � 0.
All the above-outlined considerations can be inspected in the plots of horizon-

tal thrusts hL � h1, hU , h2 depicted in Figs. 6, 7, 8, and 9, which, respectively,
show the thrust functions depending on β, for the two reference cases of α � 90°
and α � 140°, in comparison for Heyman and CCR solutions. As commented in [7],
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Fig. 6 Plot with non-dimensional thrusts hU , hL , h2 of the full semi-circular arch (α � π /2) according to
Heyman solution: the three lines slightly intersect

Fig. 7 Plot with the non-dimensional thrusts hU , hL , h2 of the full semi-circular arch (α � π /2) according
to present CCR solution: the three lines are truly tangent

for the corresponding plots of the eccentricity of the line of thrust, this clearly shows
Heyman solution to turn out sub-critical. Indeed, the three lines of hL , hU , h2 cross
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Fig. 8 Plot with the non-dimensional thrusts hU , hL , h2 of the arch with α � 7 π /9 according to Heyman
solution: the three lines clearly intersect

Fig. 9 Plot with the non-dimensional thrusts hU , hL , h2 of the arch with α � 7 π /9 according to present
CCR solution: the three lines are truly tangent

within a fork of two values of β that surround the true value of β determined by CCR
solution (which is almost in the middle), correctly leading, instead, to a true tangency
condition. In Figs. 6, 7, 8, and 9, curve he(β) is as well reported, which is useful to
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Fig. 10 Heyman vs. CCR solution. Functional dependence of A, η, h on β
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Fig. 11 CCR solution. Functional dependence of β, η, h on A � α cot(α/2)
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represent the stationary, thus tangency, condition, by locating the stationary points of
curves hU (β) and hL(β). Also, the plots of CCR solution show that the direct use of
tangency condition h � he shall numerically become more effective, since the cutting
over hU (β), hL(β), h2 is sharper than that going through the quite flat stationary points
at the solution of system h � hL , h � hU , h � h2.

Also, it is confirmed that curves hL(β) ed hU (β) turn out quite flat near the common
stationary point in the critical condition, which locates correct angular position β of
the inner-hinge. Thus, as noted by Heyman in quoting Coulomb’s observations, it is
clear that even approximate estimations of angular inner-hinge position β might lead
to fairly correct values of h (and also of β). For this reason, despite missing the correct
estimate of β, as instead obtained by CCR solution, Heyman solution still appears
quite acceptable in engineering terms (at least for under-complete arches).

3.2 Mascheroni’s Kinematic Approach

An additional, independent way of deriving the least-thickness condition could be
based on a “Mascheroni’s kinematic approach”, following again the terminology
adopted in Sinopoli et al. [22]. Indeed, the below reported solution is derived from
an alternative kinematic approach, based on the principle of virtual work (or power),
which is written with reference to the purely rotational rigid-body five-hinge collapse
mechanism of the arch (see Figs. 2 and 3).

Referring to the potential three-hinge rigid-body kinematic chain of the half-arch
in Fig. 3, one takes the external virtual work (or power) equation, to state equilibrium
at incipient collapse:

L̇e � 0 (34)

i.e., explicitly, for any nonzero angular rotations ψ and ϕ (or velocities ψ̇ and ϕ̇):

L̇e � − W1 · (x1 − xΩ1

)
ψ̇ − W2 ·

[(
r +

t

2

)
sin α − x2

]
ϕ̇ � 0 (35)

where, given Eqs. (2)–(3) and (24), W1 � wrβ and W2 � wr (α − β, are the
weights of the two portions of the half-arch separated by inner haunch hinge B
(thus, with total weight of the half-arch W � W1 + W2 � wrα), acting at abscissas
x1 � r (1 – cos β)/β and x2 � r (cos β – cos α)(α−β) � x2B+(r− t/2) sin β from
the vertical axis of symmetry at the crown; x�1 is the horizontal distance of the centre
of rotation Ω1 of the upper portion of the half-arch with respect to crown A and x2B

is the horizontal distance from the line of action of W2 to point B. Equation (34), i.e.
explicitly (35), is evidently a way to state equilibrium at the virtual rotational collapse
mechanism that may develop.

The kinematic chain is a one-degree-of-freedom system. The relation between two
angular velocities ψ̇ and ϕ̇ in Fig. 3 can be obtained by imposing that the horizontal
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velocity of inner-hinge B is the same for the two portions of the arch. Thus, one obtains
the following kinematic link:

[(
r − t

2

)
cosβ −

(
r +

t

2

)
cosα

]
ϕ̇ �

[(
r +

t

2

)
−
(

r − t

2

)
cosβ

]
ψ̇ (36)

Moreover, abscissa x�1 can as well be determined, by imposing that the vertical
velocity of inner-hinge B is the same for the two portions of the arch, by obtaining:

[(
r +

t

2

)
sin α −

(
r − t

2

)
sin β

]
ϕ̇ �

[(
r − t

2

)
sin β − xΩ1

]
ψ̇ (37)

namely:

xΩ1 ψ̇ � −
[(

r +
t

2

)
sin α −

(
r − t

2

)
sin β

]
ϕ̇ +

[(
r − t

2

)
sin β

]
ψ̇ (38)

By substituting Eq. (38) into virtual work (or power) Eq. (35) and by making use
of relation (36) and explicitly of W � W1 + W2, x2 � x2B+(r− t/2) sin β, one has, in
view of relations (22)-(23), for lower and upper thrusts HL and HU :

L̇e[(
r + t

2

)− (r − t
2

)
cosβ

]
ψ̇

� L̇e[(
r − t

2

)
cosβ − (r + t

2

)
cosα

]
ϕ̇

� HL − HU � 0

(39)

Thus, stating L̇e � 0 as equilibrium condition is fully equivalent to state it as
HL � HU , namely the same equilibrium condition found from previous Coulomb’s
static approach. In other words, and in non-dimensional terms, L̇e � 0 is equivalent
to assume an equilibrium condition in the form hL � hU :

L̇e � 0 ⇔ hL � hU (40)

A second relation, which indirectly expresses the tangency condition of the line of
thrust at intrados B, can be obtained by setting to zero the derivative with respect to β

of the external virtual work (or power):

L̇ ′
e � ∂ L̇e

∂β
� 0 (41)

This comes from the following consideration: if the line of thrust has to turn out
tangent to the intrados at haunch B, it should also not that much deviate from the
circular intrados curve in the surroundings of B. As a consequence, equilibrium should
be warranted also for small variations of point B, thus of angular position β, and this
holds true if also the angular derivative of the external virtual work (or power), at
intrados B, vanishes.
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Given obtained Eq. (39), alternative stationary condition (41), becomes equivalent
to:

L̇ ′
e � (H ′

L − H ′
U

) ·
[(

r +
t

2

)
−
(

r − t

2

)
cosβ

]
ψ̇

+ (HL − HU ) ·
(

r − t

2

)
sin β ψ̇ � 0 (42)

Thus, at L̇e � 0, i.e. at HL � HU , L̇e
′ � 0 is equivalent to HL

′ � HU
′, i.e. one

of the equivalent ways to set the tangency condition according to earlier Coulomb’s
static approach. In other words, and in non-dimensional terms:

L̇ ′
e � 0 ⇔ h′

L � h′
U (43)

so that system {L̇e � 0, L̇e
′ � 0} formed by Eqs. (34) and (41) is wholly equivalent

to system {hL � hU , hL
′ � hU

′} earlier obtained by Coulomb’s static approach. Thus,
the two approaches are fully equivalent, and both lead to the same solution (as earlier
derived), as it could be checked by independent numerical evaluations of the various
solving systems that have been here derived.

3.3 Discussion on Heyman and CCR Solutions

Classical Heyman solution, directly solved from governing system (21), for
δCCR � 0, finally leads to [3]:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AH � β cot β
2β cosβ + sin β cos2 β + sin β

2β cosβ + sin β cos2 β − sin β cosβ

ηH � 2
(β − sin β)(1 − cosβ)

β (1 + cosβ)

hH � β cot β, ĥH � ηH hH � 2 cot β
(β − sin β)(1 − cosβ)

(1 + cosβ)

(44)

corresponding to a “linear algebraic problem”, with achieved monotonic trends of
solution triplet A(β), η(β), h(β) as a function of β.

Instead, for CCR solution (δCCR � 1), by eliminating in turn couples η and
h, A and h, A and η, from original system (21), three quadratic equations in A(β), η(β),
h(β) can be obtained. All this shows that correct CCR solution turns out “quadratic”
in solution parameters A, η, h (or ĥ), as opposed to “linear” Heyman solution. As
a consequence of that, parameters A(β), η(β), h(β) (or ĥ(β)) become double-valued
functions of inner-hinge position β. The following “quadratic algebraic problem” in
A, η and h (or ĥ) is then obtained [7]:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S(2g − S) A2 − 2 f g A + g2 � 0 ;

( f + g) η2 − 4 (g − S) η + 4 (g − f ) � 0 ;

2S h2 − 2( f − S) h + g − f � 0,

( f + g) S ĥ2 − 2(g − f ) ( f + S) ĥ + 2(g − f )2 � 0

(45)

where functions f (β), g(β) have been defined as follows:

f � f (β ) � (β sin β)′� sin β + β cosβ = S + β C ,

g � g(β ) = f (β ) cosβ + β sin2 β � β + sin β cosβ = β + S C

where S � S(β ) � sin β , C � C(β ) � cosβ, wi th link βS2 + C f − g � 0
(46)

As noticed, function f spontaneously comes from the derivative term inherited in
the expression of he, Eq. (20). Functions f and g, with link βS 2+C f – g=0, turn out
to be useful to express the solution in compact form. Notice that g ≥ 0 for β ≥ 0;
also, g – f=(1 – cos β)(β – sin β) ≥ 0 and f+g=(1+cos β)(β+ sin β) ≥ 0 for β ≥ 0.
Functions f (β) and g(β) both vanish at β � 0. They are jointly represented in Fig. 5.

Different ways to rewrite the first of Eqs. (45) similarly to Heyman formula (44)a,
with term A isolated on the right-hand side, could be the following:

2 f g − g2/A

S (2g − S)
� A ,

2 f g

S (2g − S) + g2/A2 � A

g2

2 f g − S (2g − S)A
� A ,

g2 + S (2g − S)A2

2 f g
� A (47)

though obviously there now appears a dependence on A, thus on α, also on the left-
hand side of the equation (thus inspiring possible recursive evaluations, as treated in
the next section).

Similarly, for the sake of completeness, the following expressions could as well be
written for η:

4 (g − S) − 4(g − f ) /η

f + g
� η ,

4 (g − S)

f + g + 4 (g − f ) /η2
� η

4 (g − f )

4(g − S) − ( f + g) η
� η ,

4 (g − f ) + ( f + g) η2

4 (g − S)
� η (48)

and for h:

2 ( f − S) − (g − f ) /h

2S
� h ,

2 ( f − S)

2S + (g − f ) /h2 � h

g − f

2 ( f − S) − 2S h
� h ,

g − f + 2S h2

2 ( f − S)
� h (49)
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or for ĥ:

2 (g − f )
f + S − (g − f ) /ĥ

( f + g) S
� ĥ ,

2 (g − f ) ( f + S)

( f + g) S + 2 (g − f )2/ĥ2
� ĥ

2 (g − f )2

2 (g − f ) ( f + S) − ( f + g) S ĥ
� ĥ ,

2 (g − f )2 + ( f + g) S ĥ2

2 (g − f ) ( f + S)
� ĥ (50)

The solution of CCR system (21), for δCCR � 1, or of quadratic system (45) can
then be obtained in compact form, by explicitly solving for triplet (A, η, h):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ACC R � g
f ±√ f 2 − 2g S + S2

S(2g − S)
;

ηCC R � 2
g − S ∓√ f 2 − 2g S + S2

f + g
;

hCC R � f − S ±√ f 2 − 2g S + S2

2 S
,

ĥCC R � η h � (g − f )
f + S ±√ f 2 − 2g S + S2

S( f + g)

(51)

where the signs in front of the square root terms are sorted out in triplet (+,–, +) or
in triplet (–, + ,–), i.e. with sorting (A+,η−, h+) and (A−,η+, h−). Non-dimensional
horizontal thrust ĥ can then be determined as well by the product of η and h (and
sorted out in the same way as that of h). Notice that A(β), thus α(β), η(β) and h(β),
or ĥ(β), are two-valued functions of β, i.e. there are two values of A, thus of α, η and
h, or ĥ, that correspond to same inner-hinge position β. Term f 2 − 2 g S+ S2 is ≥ 0
for 0 ≤ β ≤ βCCR

sβ (Fig. 5), where βCCR
sβ is the root of f 2 − 2 g S+ S2 � 0, assuring

that the solution turns out real-valued in that range of β.
A direct graphical confrontation between Heyman and CCR solutions can be appre-

ciated in Fig. 10, where triplet A, η, h is represented by analytical plots as a function of
angular inner-hinge positionβ. This representation in terms ofβ allows to highlighting
the differences between the two solutions. This is mainly due to the dissimilar trends
experienced on the estimated hinge position. Indeed, the trends of A, η, h are mono-
tonic (single-valued) for Heyman solution and non-monotonic (double-valued) for
CCR solution, with a very appreciable deviation in terms of β, especially at increasing
half-opening angleα (decreasingA), alreadywhen approaching complete semicircular
arch case α � A � π /2 and more and more when α goes beyond that (thus the greatest
differences are revealed for over-complete arches with half-angles of embrace larger
than 90°). Despite that, since as stated by Heyman, the hinge position is somehow
an internal ingredient in the solution, in engineering terms, the final differences on
η and h at variable angle of embrace are rather limited [7]. In the plots in Fig. 10, the
trends for β small, corresponding to small angles of embrace α, which turn out the
same for Heyman and CCR solutions, are as well represented.

A further detailed representation of CCR solution is provided in Fig. 11, where
triplet β, η, h is depicted as a function of A, by analytical parametric plots, with

123



728 Journal of Optimization Theory and Applications (2020) 187:707–757

Fig. 12 Analytical plot of the line of thrust for CCR solution at α � 7π /18 � 70° (A � 1.74481)

indication of typical characteristic values of the various involved parameters, with a
nomenclature introduced in [7].

The true appearance of the line of thrust that develops within the arch in the crit-
ical least-thickness condition is also analytically represented for CCR solution by
the polar plots reported in Figs. 12, 13, 14 and 15, for some characteristic values
of the half-angle of embrace, including: a reference case for α <90°, i.e. α � 70°;
the characteristic case of αCCR

sβ that corresponds to the stationary condition of curve

βCCR(α) [7, 14]; another taken over-complete reference case, i.e. α � 140°; limit
case α � αCCR

l of CCR solution, leading to a vanishing horizontal thrust [7]. The
plots make apparent the increasing thickness that the arch shall display to warrant
self-standing equilibrium, at increasing opening angle, with a corresponding decrease
in non-dimensional horizontal thrust h (and actually a bell-shaped trend of intrinsic
non-dimensional horizontal thrust ĥ, going through a maximum [7, 14]). The lines of
thrust start to “bend” for an α that is around that leading to the stationary condition
on β and reach, in the limit configuration, a theoretical profile that gets to the intrados
on the vertical axis of symmetry at the crown.This corresponds to a precarious, inverted
pendulum equilibrium configuration, that is achieved by a resultant self-weight of the
half-arch that is exactly vertically aligned on the underlying bearing hinge at the shoul-
der, with a zero transverse horizontal thrust (h � 0) and inner-hinge that disappears,
by pulling-back to zero (β � 0), with a released section at the crown (giving rise to
an overturning mechanism, at infinite friction [13]). In such a limit case, according to
CCR solution, the thickness of the arch becomes equal to its radius (η � 1).
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Fig. 13 Analytical plot of the line of thrust for CCR solution at α � αsβ � 2.23031 � 127.788°
(A � A sβ � 1.09292). Widest angular inner-hinge position from the crown
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Fig. 14 Analytical plot of the line of thrust for CCR solution at α � 7π /9 � 140° (A � 0.889347)
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Fig. 15 Analytical plot of the line of thrust for CCR solution at α � Al � 2.64839 � 151.742°
(A � Al � 2/3). Limit case of zero horizontal thrust
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3.4 Generalization to Milankovitch Solution

So far, the assumption of Heyman uniform self-weight distribution along the geo-
metrical centreline of the arch was considered. Instead, due to the curvature of the
circular arch and to the resulting wedged-shape of each ideal infinitesimal chunk of
the continuous arch, it appears that its centre of gravity is slightly radially displaced,
at radial distance rG a bit larger than radius r:

rG �
∫

dV γρ dV∫
dV γ dV

�
∫ dϕ

0

∫ r + t/2
r − t/2 γρ

dV︷ ︸︸ ︷
ρ dρ dϕ d∫ dϕ

0

∫ r + t/2
r − t/2 γ ρdρdϕ︸ ︷︷ ︸

d A

d
� γ d dϕ

∫ r + t/2
r − t/2 ρ2dρ

γ d dϕ
∫ r + t/2

r − t/2 ρ dρ

� γ td rdϕ r
(
1 + η2/12

)
γ td︸︷︷︸

w

r dϕ

� r
(
1 + η2/12

)
(52)

where Milankovitch [43–45] multiplicative correction factor (1 + η2/12) appears and
comes then to affect the various governing equations (at growing resulting η).

Specifically [7], for equilibrium relations:

h � h 1 � h L � (2 − η) β sin β − 2(1 − cosβ)
(
1 + η2/12

)
2 + η − (2 − η) cosβ

(53)

h � h 2 � A − 2

2 + η

(
1 + η2/12

)
� (2 + η) α sin α − 2(1 − cosα)

(
1 + η2/12

)
(2 + η) (1 − cosα)

(54)

eccentricity relations:

ê(β) � 2e(β)

t
� 2β sin β − 2(1 − cosβ)

(
1 + η2/12

)− h (2 + η − 2 cosβ)

η (β sin β + h cosβ)
(55)

ê(β) � 2e(β)

t
� 2(2 + η) (β sin β − (1 − cosβ)A) − η

(
(2 + η)A − 2 cosβ

(
1 + η2/12

))
η(2 + η) (β sin β − (1 − cosβ)A) + η

(
(2 + η)A − 2 cosβ

(
1 + η2/12

))
(56)

and tangency condition:

h � he � (2 − η) (β sin β)′ − 2 sin β
(
1 + η2/12

)
(2 − η) sin β

�
h H︷ ︸︸ ︷

β cot β +

(
1 − 2

2 − η

(
1 + η2/12

))

(57)
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leading to final Milankovitch governing system:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h � h1 � (2 − η) β sin β − 2(1 − cosβ)
(
1 + η2/12

)
2 + η − (2 − η) cosβ

h � h2 � A − 2

2 + η

(
1 + η2/12

)
Milankovi tch

h � he � (2 − η) ( sin β + β cosβ) − 2 sin β
(
1 + η2/12

)
(2 − η) sin β

�
h H︷ ︸︸ ︷

β cot β +

(
1 − 2

2 − η

(
1 + η2/12

))

(58)

then configurating a more involved “cubic algebraic problem” [7]:

S2(3g − 2S) A3 + 3 (g − f ) g S A2 − 3 f g2 A + 2g3 � 0 ;

S η3 + 3 ( f + g) η2 − 12 (g − S) η + 12 (g − f ) � 0 ;

6S2 h3 − 3S (3 f − g − 2S) h2 − 3 (g − f )( f − 2S) h + 2 (g − f )2 � 0,

2S3ĥ3 − 3(g − f )( f + g + 2S)Sĥ2 + 6(g − f )2( f + 2S)ĥ − 8(g − f )3 � 0 (59)

Explicit analytical closed-form representations of the solution of such a cubic
algebraic problem are now newly provided in [14]. Minimal differences between
Milankovitch and CCR solutions may be appreciated at increasing opening angle of
the arch, mainly for over-complete arches (Fig. 16).

Finally, similarly to previous Figs. 12, 13, 14 and 15, Fig. 17 represents a resuming
analytical representation of the line of thrust on the true arch profile in the crit-
ical least-thickness condition, for a taken reference case of over-complete arches
(α � 140°). Thereby, the salient differences between Heyman, CCR andMilankovitch
solutions may be appreciated, all together, as: line of thrust actually going out of
the arch profile for Heyman solution; line of thrust truly tangent to the intrados at
the haunch for CCR and Milankovitch solutions; quite near representations for CCR
and Milankovitch solutions; different angular inner-hinge positions, drastically dis-
similar for Heyman solution; different resulting thickness estimates, with Heyman
visibly being sub-critical and CCR just slightly under-conservative with respect to
Milankovitch solution; positioning of the resulting self-weight resultant for CCR
(and Heyman) solution, as opposed to the true location completely accounted for
by Milankovitch solution.

Further illustration on the characteristics of the mechanical system, for the three
solutions, is available in [7, 14], including for the returning and bell-shaped trends of
intrinsic non-dimensional horizontal thrust ĥ � ηh, with diverging differences forHey-
man solution in the dependencies on β and minimal differences in the dependencies
on A and α. Specific aspects of the stationarity of these curves are analytically treated
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Fig. 16 CCR vs. Milankovitch solution. Functional dependence of A, η, h, on β
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Fig. 17 Analytical plot of the lines of thrust for Heyman, CCR and Milankovitch solutions at
α � 7π /9 � 140°(A � 0.889347)
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in [14], by explicit closed-form solutions, referring to the case of the symmetric circu-
lar masonry arch of “maximum horizontal thrust” and of “widest angular inner-hinge
position”.

4 Numerical Validation

Independent, numerical-validation approaches are here outlined, for a confrontation to
the analytical outcomes and for a further illustration of the symmetric circularmasonry
arch characteristics, in the optimality condition of minimum thickness.

4.1 Recursive Evaluation of Angular Inner-Hinge Position

4.1.1 Heyman Solution

The numerical solution of transcendental Eq. (44)a for angular inner-hinge position
β is quite straightforward (especially in inverse form A(β) � α cot α/2, at given β).
However, a recursive procedure could promptly be devised, e.g. for a further root
refinement of a guess that could be taken, for instance, from a proposed root fit of the
solution [7].

Table 4 reports a possible convenient way of doing that, which requires origin
solutions that are not much on the left of the correct one or, more precisely, that
are on the right of a singularity point that may arise when the denominator term in
the recursive form, which is a function of β and A, becomes zero. Despite this little
limitation (which is promptly over-passed by the very good estimate provided by the
above-commented good fit), convergence turns out quite fast and, most important, over
all the range of the admissible values of A. Indeed, the recursive proposal reported
in Table 4 allows for a fast convergence on both extremes of the values of A, being
actually slower in the usually considered range of half-angles of embrace that are lower
than π /2. Other proposals might work better in this range but would display a slower
convergence on the opposite side or might have no singular points but achieve a much
slower convergence for the different values of A. So, the presented option constitutes
a reasonable compromise to handle all the possible cases.

Briefly, the adopted recursive formula that has been reported on top of Table 1 has
been obtained as follows. Take Eq. (44)a, isolate a pivoting βp term and solve with
respect to that. Different possibilities arise, which can be checked right away for a
possible recursive convergence. The chosen one has originated from the following
choice (for compactness, again, S � sin β, C � cos β):

β
2βp C/S + C2 + 1

2βp + S C − S
� A (60)

Also, to further improve the convergence rate, additional splits of the pivoting term
have been attempted and optimized through numerical trials by the following proposal:

β
12 βpC/S − 10β C/S + C2 + 1

6βp − 4β + S C − S
� A (61)
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Table 1 Recursive determination of inner-hinge position for classical Heyman solution

Heyman solution

β (rad) β0 � √
3 (2 − A)1/2

(
1 − 1/6 (2 − A)2/3

)

βiter �
β
(
10β C − S (1 + C2)

)
− S (4β + S (1 − C)) A

6 (2β C − S A)

�
β
(
10β C − S (1 + C2 + 4 A)

)
− S2(1 − C) A

6 (2β C − S A)

A � 0.8
(α � 144.89°)

A � 1.2
(α � 120.641°)

A � π /2
(α � 90°)

A � 1.7
(α � 75.7286°)

A � 1.8
(α � 62.1408°)

β0 1.54027 1.32668 1.02712 0.877826 0.730445

βiter 1.53965 1.32048 1.02683 0.880251 0.734241

1.53968 1.32004 1.02678 0.880752 0.735138

– 1.32001 1.02677 0.880859 0.735364

– – – 0.880883 0.735421

– – – 0.880888 0.735435

– – – 0.880889 0.735439

– – – – 0.735440

(A � α cot(α/2); S � sin β, C � cos β)

which, by solving with respect to βp, leads to the following expression, finally useful
towards a recursive evaluation of root β in Heyman solution:

βH
iter � β

(
10β C − S (1 + C2)

)− S (4β + S(1 − C)) A

6(2β C − S A)
(62)

This expression has been used to generate the recursive estimations reported in
Table 1, for five given values of A (A � α � π /2 and two values on the right and on
the left of that). Starting from simple fitting guess [7]:

βH
0 � √

3 (2 − A)1/2
(
1 − 1 /6 (2 − A)2/3

)
(63)

a few iterations turn out enough to recover the correct recursive estimate of root β.

4.1.2 CCR Solution

Expressions (47) on A could numerically be used for a recursive determination
of the value of A at given pre-peak 0 ≤ β ≤ βsβ . Specifically, the first two rela-
tions in the first line of Eq. (47) would lead to root values A+ ≥ Asβ and the second
two to root values A− ≤ Asβ . Indeed, as it has been illustrated, according to Eq. (51)a,
function A(β) is double-valued, at a given value of 0 ≤ β ≤ βsβ . To let successfully
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Table 2 Recursive determination of inner-hinge position for CCR solution

CCR solution

β (rad) β0 � 3/2 (A − 2/3)1/4 (2 − A)1/2

βiter � 2 f g A − S(2g − S)A2

g
− SC

� 2 f A − 2 S A2 +
S2A2

g
− SC

A � 0.8
(α � 144.89°)

A � 1.2
(α � 120.641°)

A � π /2
(α � 90°)

A � 1.7
(α � 75.7286°)

A � 1.8
(α � 62.1408°)

β0 0.992925 1.14653 0.958254 0.828346 0.692143

βiter 0.987877 1.10609 0.949403 0.835149 0.704036

0.985842 1.12372 0.951533 0.835444 0.708010

0.985005 1.11687 0.951050 0.835453 0.709242

0.984659 1.11969 0.951161 – 0.709614

0.984515 1.11856 0.951136 – 0.709726

0.984456 1.11902 0.951142 – 0.709759

0.984431 1.11883 0.951140 – 0.709769

0.984420 1.11890 0.951141 – 0.709772

0.984416 1.11887 – – 0.709773

0.984414 1.11889 – – –

0.984414 1.11888 – – –

0.984413 – – – –

(A� α cot(α/2); f � S +βC, g � β + SC, S � sin β, C � cos β)

run the recursive iteration in all four cases reported in Eqs. (47), initial roots A0 should
be chosen as defect estimates for the A+ root and as excess estimates for the A− root.

Similarly, Eqs. (48) and (49) could be used as well for a recursive determination
of η and h, with above comments applying in the same way. However, recall that the
role of η is inverted, as opposed to that of A and h, since the triplets have to be sorted
out in orders (A+,η−, h+) and (A−,η+, h−). The estimate of ĥ � ηh might either go
through similar resolutions of Eqs. (50) or directly by the product of the found η and
h estimates.

A root recursive estimate of angular inner-hinge position β that works quite well
on all sides of the solution branches is provided in Table 2, similarly to what reported
in Table 1 for Heyman solution. It is based on the first expression in the second line
of Eq. (47), which can lead to:

βCC R
iter � 2 f g A − S(2g − S)A2

g
− S C � 2 f A − 2 S A2 +

S2A2

g
− S C (64)
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Starting from easy-to-remember CCR fitting guess [7]

βCC R
0 � 3 /2 (A − 2 /3)1/4 (2 − A)1/2 (65)

which one could derive for CCR solution based on the trends experienced for α small
(A near 2) and α near αCCR

l (A near 2/3), see Fig. 4, a good refinement is achieved
in not many iterations (in general terms, a bit more than for the previous Heyman
recursive evaluation).

4.1.3 Milankovitch Solution

As above, Table 3 presents a recursive strategy for refining angular hinge position β

in Milankovitch solution, according to expressions

βM
iter � −2g3 + 3 f g2A + 3 f g S A2 + S2(2S − 3g)A3

3g S A2 − S C

� f − S A +
2S2A

3g
+

f g

S A
− 2g2

3 S A2 − S C (66)

starting from an appropriate fitting guess, such as [7]

βM
0 � 1.53

(
A − (

√
3 − 1)

)1/4
(2 − A)1/2 (67)

leading to a reasonable convergence on all branches of the solution characteristics.
Overall, the number of iterations may become the highest, among the three solution

instances, due to the increasing complexity in, respectively, dealingwithHeyman,CCR
and Milankovitch solutions (appreciate the global increasing height of represented
Tables 1, 2 and 3).

4.2 DDA Least-Thickness Results

A least-thickness self-standing evaluation of the masonry arch may be elaborated
by using Discrete Element Method (DEM) quasi-static simulations of discrete vous-
soir arches [36–38]. To provide an independent numerical validation of the achieved
analytical results, an available Discontinuous Deformation Analysis (DDA) tool was
adopted in [8, 9], to deliver the estimates of the critical thickness and the appear-
ance of the corresponding collapse mode (notice that the five-hinge purely rotational
collapse mode is assumed from scratch, in the analytical analysis, while in such a
case is numerically evaluated, out of the analysis). Here, further complementary and
completing results are reported. On the description of the employed methodology,
and the framing in the competent literature, see [9]. The adopted DDA computational
tool was freely taken from the web (sourcefoce.net, “DDA for Windows”, Limerick
version 1.6), as developed from researchers at theUniversity ofBerkeley (see [15–17]).

Symmetric discretized arches with four blocks (with radial joints), at variable half-
opening anglesα between 60° and 140°, each 10° (thus encompassing under-complete,
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Table 3 Recursive determination of inner-hinge position for Milankovitch solution

Milankovitch solution

β (rad) β0 � 1.53 (A − (
√
3 − 1))1/4(2 − A)1/2

βiter � −2g3 + 3 f g2A + 3 f g S A2 + S2(2S − 3g)A3

3g S A2 − S C

� f − S A +
2S2A

3g
+

f g

S A
− 2g2

3 S A2 − S C

A � 0.8
α � 144.89°)

A � 1.2
α � 120.641°)

A � π /2
α � 90°)

A � 1.7
α � 75.7286°)

A � 1.8
α � 62.1408°)

β0 0.868039 1.10660 0.952287 0.833663 0.701014

βiter 0.871698 1.11656 0.951160 0.834688 0.704407

0.872697 1.11292 0.950966 0.835115 0.706500

0.872962 1.11429 0.950932 0.835291 0.707782

0.873032 1.11378 0.950926 0.835364 0.708563

0.873051 1.11397 0.950925 0.835395 0.709038

0.873056 1.11390 – 0.835407 0.709326

0.873057 1.11393 – 0.835412 0.709500

– 1.11392 – 0.835414 0.709606

– – – 0.835415 0.709709

– – – 0.835416 0.709732

– – – – 0.709746

– – – – 0.709755

– – – – 0.709760

– – – – 0.709763

– – – – 0.709765

– – – – 0.709766

– – – – 0.709767

– – – – 0.709767

– – – – 0.709768

(A � α cot(α/2); f � S + βC, g � β + SC, S � sin β, C � cos β)

semicircular complete and over-complete arches) are DDA analysed, at given inner-
joint position, for which the minimum thickness is numerically estimated (alias, the
minimum thickness still preventing, or the maximum thickness still inducing, arch
collapse). At each given value of α, a target value of angular inner-joint position β is
assumed, on the basis of the derived analytical solution (CCR solution is here taken for
reference). For each arch, three analyses have been performed, for that value of β and
for two fork, inferior/superior values of β, as±0.5° that value of β, as to reveal and
confirm a possible maximum trend of η at variable β, as it should be in denouncing
the critical least-thickness condition [9].
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Table 4 Summary of numerical DDA result on critical thickness, with comparison to CCR andMilankovitch
solutions

α

(°)
β DDA
(°)

η � t/r DDA β

CCR
(°)

η CCR β M
(°)

η M

β inf βmean βsup β inf βmean βsup

60 39.0 39.5 40.0 0.02577 0.02578 0.02577 39.5 0.0228482 39.5 0.0228489

70 44.4 44.9 45.4 0.04700 0.04689 0.04672 44.9 0.0412576 44.9 0.0412613

80 49.5 50.0 50.5 0.07325 0.07316 0.07307 50.0 0.0686352 50.0 0.0686505

90 54.0 54.5 55.0 0.11060 0.11140 0.11180 54.5 0.107426 54.5 0.107478

100 58.0 58.5 59.0 0.16377 0.16376 0.16375 58.5 0.160584 58.4 0.160736

110 61.2 61.7 62.2 0.23488 0.23492 0.23493 61.7 0.231885 61.6 0.232295

120 63.5 64.0 64.5 0.32996 0.32999 0.32995 64.0 0.326547 63.7 0.327607

130 64.1 64.6 65.1 0.45810 0.45811 0.45808 64.6 0.452593 63.9 0.455450

140 61.0 61.5 62.0 0.63653 0.63633 0.63634 61.5 0.625256 59.0 0.634867

A summaryof suchDDAresults,with a direct comparison toCCRandMilankovitch
solutions is provided in Table 4 and compactly illustrated in Figs. 18 and 19.

Table 4 reports the recorded values of critical η � t/r, at the given values of α and β,
determined with the procedure explained in [9]. On the side, the target discrete η

values for CCR and Milankovitch solutions [7] are as well reported, for comparison
purposes. As it may be appreciated, differences look really minimal and results show
that the features of the analytical treatment are correctly reproduced and that the
numerical DDA tool is able to provide consistent estimates of the critical thickness
(having reasonably guessed the position of the inner-joint). Clearly, little dislocations
of the inner-joint position do not alter much the numerically recorded values of critical
thickness.

Similar comments may be deciphered from the reading of Figs. 18 and 19. Fig-
ure 18 globally shows in grid-view the array of the various masonry-arch openings,
with inner-joint set from CCR solution, with the corresponding recorded value of
critical thickness-to-radius ratio and the attached apparent rotational collapse mode.
The sequence of plots clearly illustrates the monotonic increasing trend of thickness
necessary for the arch to withstand, at increasing arch opening, over-complete arches
becoming really much thicker to stand up. The purely rotational collapse mode is any-
way correctly reproduced (a high value of friction coefficient is set in the simulations,
to avoid possible manifestations of any form of sliding [9], se also next subsection).
This looks thus consistent with source Heyman hypothesis of no sliding failure, at the
basis of the present theoretical treatment (finite friction effects are separately analysed
in [10–13]).

Figure 19 further gathers, on the top plot, the imposed values of angular inner-joint
position β at variable half-opening values α of the arch, with fork values around CCR
solution (Milankovitch solution is never much dissimilar, if not, a bit, for the last case
of α � 140°) and going through a maximum of β for an α at around 120°–130° [14].
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Fig. 19 Numerical DDA results and comparison to CCR and Milankovitch solutions
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Fig. 20 Geometric representation of a general circular masonry arch (with thickness-to-radius ratio η � t/r),
with redundant reactions at the right shoulder, internal actions within the circular masonry arch and block
weight, in the CP/MP formulation

Just below, in the centre plot, the recorded critical values of η are plotted, as a function
of imposed β, with almost undistinguishable η results for the considered β positions.
This scored plot provides a sort of discretized functional representation of the con-
tinuous plots earlier depicted in Fig. 16b (comparison to Figs. 10b shall also confirm
an increasing divergence to Heyman solution, also for the DDA results). The bottom
plot finally represents the DDA trends of η as a function of α, where clearly the dif-
ferences from the underlying values in β position really disappear in terms of η. The
plot truly confirms a continuous, increasing trend of critical thickness, at increasing
arch opening, as made apparent in looking, all together, at the array of arches gathered
in grid-view in previous Fig. 18.

4.3 Least-Thickness Optimization by a Complementarity Problem/Mathematical
Programming Formulation

A Complementarity Problem/Mathematical Programming (CM/MP) numerical for-
mulation and self-made implementation, recently developed by the authors [12, 13]
within a MATLAB environment, with the target to specifically enquire finite-friction
effects on masonry arches [22, 53–62], is here adapted to the numerical analysis of
symmetric circularmasonry arches relying on infinite (say high) friction and employed
for a further independent validation and interpretation of the arch characteristics in
the least-thickness condition, as by the solution of a numerical optimization problem.

The general formulation is first briefly introduced, in its main traits, and described
in the needs of adaptation of the computational implementation, towards the present
numerical optimization analysis. Then, it is run, and salient results are selected and
presented, in view of complementing and confronting the previous analytical and
numerical outcomes.

The formulation sets in within similar modelization attempts in the limit analysis of
masonry constructions [63–74] and relies on a series of works in stating the optimiza-
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Fig. 21 Kinematic description and variables of possible relative (rotational and sliding) movements among
adjacent rigid masonry blocks, in the CP/MP formulation

tion problem as a Complementarity/Mathematical Programming Problem [75–80], as
ruled by typical theoretical literature references [81–85].

The masonry arch is subdivided into n rigid blocks, by (n + 1) radial joints (Fig. 20)
and the relative voussoir kinematics at each joint is described by 4 non-negative kine-
matic variables (ϑ+, ϑ−, s+, s−; see Fig. 21) [13].

The 3n velocities ruling the rigid-bodymovements of the n rigid blocks are collected
in vector U̇G :

U̇G � [u̇G1 , v̇G1 , ψ̇1, . . . , u̇Gk , v̇Gk , ψ̇k, . . . , u̇Gn , v̇Gn , ψ̇n
]T

(68)

where u̇Gi , v̇Gi , ψ̇i , i � 1 . . . n, are the linear and angular velocities of each i-th
block and the 4(n + 1) relative velocities relevant to the (n + 1) joints are gathered in
vector λ̇:

λ̇ � [ϑ̇+
1 , ϑ̇−

1 , ṡ+1 , ṡ−
1 , . . . , ϑ̇+

k , ϑ̇−
k , ṡ+k , ṡ−

k , . . . , ϑ̇+
n+1, ϑ̇

−
n+1, ṡ+n+1, ṡ−

n+1

]T
(69)

The two sets of kinematic variables are linearly related by compatibility matrixBG :

U̇G� BG λ̇, λ̇ ≥ 0 (70)

The physical constraints on the masonry arch require the fulfilment of the following
kinematic relations:

B λ̇ � 0, λ̇ ≥ 0 (71)
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where B is a (kinematic) constraint matrix [13] while, at each joint, internal actions
must fulfil the following static inequalities:

ϕ �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ1

· · ·
ϕk

· · ·
ϕn+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0, ϕk �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕk
ϑ+

ϕk
ϑ−

ϕk
s+

ϕk
s−

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Mk − Nk
t

2

−Mk − Nk
t

2

Tk − μNk

−Tk − μNk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

≤ 0 (72)

Once internal actions are computed by equilibrium, relationships (72), in terms
of activation functions ϕk , define an “admissible static configuration” within the
masonry arch, the independent variables being three redundant reactions H, V and W
at the right built-in shoulder of the arch (Fig. 20):

ϕ � AH + Tw ≤ 0, H �
⎡
⎣ H

V
W

⎤
⎦ (73)

where A and Tw are, respectively, the matrix and the vector governing equilibrium
and joint activation [13].

Each relative velocity shall result orthogonal to the corresponding static activation
function:

ϕϑ+ ϑ̇+ � 0 ϕϑ− ϑ̇− � 0 ϕs+ ṡ+ � 0 ϕs− ṡ− � 0 (74)

Such relations also include a complete detachment (see [13]), for which, in order
to eliminate a numerical multiplicity (not corresponding to a physical one), a (weak)
“orthogonality” condition among non-negative variables ṡ+ and ṡ− shall be added to
the problem statement:

ṡ+ ṡ−�0 (75)

The external power is then readily computed as:

L̇e = wT U̇G ≥ 0, w =

⎡
⎢⎢⎢⎢⎣

w1
· · ·
wk

· · ·
wn

⎤
⎥⎥⎥⎥⎦, wk �

⎡
⎣ 0

−(β∗
k+1 − β∗

k

)
γ t d r

0

⎤
⎦ (76)

Finally, the velocity field can arbitrarily be normalized by setting:

pT λ̇ � 1, p(k) � 1, k � 1, . . . , n + 1 (77)
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In general terms, in a limit equilibrium configuration at incipient collapse,
kinematic (λ̇) and static (H) variables shall fulfil the following linear Complemen-
tarity Problem (see, e.g. [77]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f � −ϕT λ̇ � 0
ϕ � AH + TW ≤ 0

B λ̇ � 0
L̇e = wTBG λ̇ ≥ 0

pT λ̇ � 1
λ̇ ≥ 0

ṡ+T ṡ− � λ̇
T
B+T

s B−
s λ̇ � 0

(78)

Additionally, a convenient solution to complementarity system (78) may be
obtained by the following non-linear Mathematical Programming problem, in which
the (nonlinear) orthogonality condition on variables ϕ and λ̇ is used as an objective
function (see, e.g. [78]), to be led to a zero value:

fmin � min
λ̇,H

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

−ϕT λ̇

∣∣∣∣∣∣∣∣∣∣∣∣

ϕ � AH + TW ≤ 0
B λ̇ � 0

L̇e = wTBG λ̇ ≥ 0
pT λ̇ � 1
λ̇ ≥ 0

ṡ+T ṡ− � λ̇
T
B+T

s B−
s λ̇ � 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

� 0 (79)

Further, also the orthogonality condition on variables ṡ+ and ṡ− may conveniently
be transferred to the objective function, by adding (non-negative) scalar product
ṡ+T ṡ− � 0 to (non-negative) term −ϕT λ̇, in this way leading to a non-linear Mathe-
matical Programming problem with linear constraints only [13].

Notice that, in Mathematical Programming problem (79), thickness t and friction
coefficient μ are assumed as free parameters to be arbitrarily changed, to get to a zero
value as an optimum value for objective function f � −ϕT λ̇.

Multiple solutions to (non-convex) problem (78), and thus to programming
problem (79), may generally be expected (see, e.g. [79] and [82–85]), as linked to
the context of non-standard Limit Analysis, in the realm of masonry arches with finite
friction effects [53–73].

Additional details on the source CP/MP formulation are delivered in [13]. After
an appropriate normalization of variables, the solution of the optimization problem
has been obtained within MATLAB®, by either the “interior point” or the “active
set” minimization algorithm in (built-in) optimization function “fmincon”, with tol-
erances kept at 10−10. The following dedicated strategies have here been considered
and implemented, to handle the specific problem at hand, and leading to the outcomes
then gathered in Figs. 22 and 23:

• In a way to let all arch characteristics to be extracted in output from the numerical
implementation, a procedure has been devised to record out the value of intrinsic
non-dimensional horizontal thrust ĥ, out of the normalization of static primary-
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Fig. 23 Numerical CP/MP arch optimization (referred to CCR solution): maximum horizontal thrust (top);
widest inner-hinge position from the crown (bottom)
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variable redundant reaction H (Fig. 20), at the achieved solution instance. The
accuracy on the determination of such a static variable has been monitored and
found as almost comparable to that recorded for the source geometrical variables in
the optimization problem. This appears as a rather consistent feature of the present
adaptation implementation, since it comes up able to correctly reproduce all the char-
acteristic features of the least-thickness arch (geometrical, kinematical and statical).
Specifically, the quest was posed in terms of evaluating the maximum horizontal
thrust that the arch is able to transfer in the minimum-thickness condition (Fig. 23),
as explicitly analytically addressed in [14]. The recorded matching, on the estima-
tion of such a maximum value of thrust, turns out astonishingly good.

• Issue of symmetry. As briefly introduced, the present formulation for circular
masonry arches is rather general and allows for the analysis of non-symmetric
arches (Fig. 20). Moreover, the collapse mechanism to be plotted is obtained out
of the numerical calculation on the kinematic variables and, for symmetric arches,
is by no means pre-imposed to be symmetric [13]. In other words, what becomes
uniquely know is the geometrical position of the failure joints (geometrical vari-
ables), while the mechanism undertakes an arbitrariness linked to an exuberant
number of dofs. By instead implicitly imposing symmetry, for the resulting mech-
anism, this becomes a single-dof mode, and fully respecting symmetry, with a
transverse zero displacement at the crown of the symmetric masonry arch. This
has been set in the present adaptation, through the insertion of a specific control
flag, within the implementation, up to pre-set the symmetry condition in the treat-
ment of the geometrical reference configuration and of the kinematic variables of
the formulation and, for the definition of the symmetric collapse mode, some
equations are added to set the relations for the centres of gravity of the i-th and
j-th homologous chunks (by the axis of vertical symmetry at the crown), namely
ui + uj � 0, vi − vj � 0, ϕi + ϕj � 0. If the number of chunks is odd, for central
chunk r including the crown, the following symmetry constraints are considered,
for a consistent symmetric arch kinematics: ur � 0, ϕr � 0.

• Considering, still, the representation of the (symmetric) collapse mode (see Figs. 22
and 23), the following dedicated strategies have been implemented, in view of
achieving a convincing and realistic representation out of the act of motion within
linear kinematics (displacements for velocities). The positions of the vertices of the
masonry block are determined through linear kinematics, thus conserving compati-
bility among the chunks and with external constraints. Moreover, the relative angle
among the joints of the voussoir is the same, as the rigid-body act of motion lefts
it unaltered, still within an arbitrarily amplified, linear kinematics (i.e. it represents
a conformal mapping). Intrados and extrados vertices are, respectively, joined by
circular segments, with a slightly varied radius, given by the prolongation of the
facing joints of each chunk.

• Since finite-friction effects are here not of a target, the information from the “line
of friction” [12, 13] has been eliminated, and a high value of friction coefficient μ
among the blocks has been set, up to prevent any form of sliding, and then warrant
a purely rotational collapse mode, as indeed recorded in all the analysed cases
with 60°≤ α ≤ 140° (Figs. 22 and 23), where a high value ofμ � 10 (friction angle
ϕ � 84.3°) has been imposed. Indeed, any form of sliding, for α ≤ αlm � 2.48716
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� 142.504°, shall be prevented by μ ≥ μlm� 1.41527 (ϕlm� 54.7558°) [11], as
also confirmed by the numerical analyses in [13].

• Given the fact that the amount of friction is here immaterial, with respect to what
advanced in [13], a single plot with the line of thrust, turning out strictly con-
tained within the arch, in the critical, optimality configuration of least-thickness,
having superimposed the resulting purely rotational collapse mode, has been set,
also in the perspective to facilitate the unitary grid-view representation in Fig. 22.
Thus, the algorithm has been “specialized” to conveniently represent the features
of symmetry-constrained arches, in the hypothesis of “infinite” friction, for inquir-
ing and representing purely rotational collapse, as consistent with the mathematical
derivation in the first part of the paper, for the continuous masonry arch.

Numerical results for symmetric arches with four blocks are condensed in Figs. 22
and 23 (here, comparison reference should be made to CCR solution, since uniform
self-weight distribution is taken along geometrical centreline). Figure 22 shows, in
compact grid-view, as earlier done in Fig. 18 for the DDA treatment, the results for
the same half-angles of embrace of the arch, from 60° to 140°, each 10°. Results are
perfectly matching, also with the numerical values that shall be compared with the
analytical formulation (CCR solution). Figure 23 further shows two specific cases
of a stationarity interest, namely the arch with “maximum horizontal thrust” and
with “widest angular inner-hinge position”, made the subject of a specific analytical
investigation in [14], with wholly consistent results.

5 Conclusions

In the first part of the paper, different, equivalent analytical derivation approaches of
the ruling equations for the statics of circular masonry arches in the least-thickness,
optimality condition have been provided, specifically those based on the so-called
upper and lower horizontal thrusts (“Coulomb’s static approach”) and on the balance
of virtual work or power (“Mascheroni’s kinematic approach”), both leading to same
optimization outcomes:

• The proposed formulations reconcile previous treatments and bring in a unifying
and additional interpretation and understanding of the conditions that rule the least-
thickness solution.

• Specifically, beside established equilibrium at incipient collapse, the tangency con-
dition of the line of thrust (locus of pressure points) at the intrados of the arch can
be handled, as a stationary condition on the horizontal thrust itself, without the need
of going through the definition of the line of thrust, namely of the equation of its
eccentricity with respect to the geometrical centreline of the arch.

• The generalization to Milankovitch solution for the real self-weight distribution is
also reconsidered, and the features of the three arising solutions further described,
with an additional illustration. Thus, analytical features and results herein presented
complement those earlier provided in previous source companion work [7].
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In the second part of the manuscript, an independent numerical validation investi-
gation has then been developed, by three separate approaches, with truly consistent
results:

• First, a recursive determination of angular inner-hinge position of a continuous arch
is devised, to avoid the direct numerical solution of the governing system of equa-
tions. This could conveniently be handled even by hand computations, or by a simple
programming calculator or a spreadsheet, leading to the determination of the angu-
lar inner-hinge position, after which the main features of the arch characteristics, in
the least-thickness critical condition, could directly flow down, by substitution into
the provided explicit analytical representations.

• Second, a further numerical Discrete Element Method (DEM), Discontinuous
Deformation Analysis (DDA) investigation of discrete voussoir arches has been
developed, to deliver a confirmation of the assumed purely rotational collapse
mechanism and relevant estimation of the critical thickness. The achieved results
complement and complete those earlier presented in [9].

• Third, an innovative Complementarity Problem/Mathematical Programming
(CP/MP) formulation has been adapted and operated on symmetric circularmasonry
arches at high friction, for a consistent, final confirmation of all the characteristics
of the circular masonry arch in the least-thickness condition. The attached presented
results complement those delivered in [12, 13].

The current attempt has considered the so-called Couplet–Heyman problem in
the statement of a classical form-optimization problem in the Mechanics (statics) of
(symmetric) circular masonry arches, as pertinent to the present editorial collocation.
The optimization process has been set as follows:

• Initially, by analytical procedures, through the appropriate statement of the under-
lying stationary conditions, as those corresponding to Heyman literal description,
and has allowed to derive closed-form explicit analytical representations, for the
problem at hand.

• Additionally, by numerical strategies, where the optimization problem has been
scheduled as a direct numerical target (objective function), which opens up the way
to further perspectives towards a general interpretation and practical application,
for cases that shall be going beyond those codified ones that may conveniently be
handled by analytical derivations.

Indeed, further subsequent investigations may consider different shapes of the
masonry arch and possible true implications of the presence of finite friction, in terms
of non-standard Limit Analysis, about the bearing capacity of themasonry arch and the
resulting collapse mode, which may include sliding and other potential effects linked
to the arising non-normality kinematics of the arch collapse, as initially investigated,
analytically in [10, 11], and numerically in [12, 13].
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