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One problem in the real-world industrial process is how to utilize diverse infor-
mation on best practices through different data sources. It becomes more com-
plicated when those best practices are different, but not entirely, from each other.
The goal is to find the optimal best practices from those diverse and somewhat
different data.

That problem has been formulated into finding the optimal parameter settings
in diverse, partially overlapping covariate data sources. First, the data from
different sources are stacked row-wise to form a master data set with missing
data. Then, Bayesian Optimization with Missing Inputs is employed to find the
optimal experiment’s parameter settings.

Different methods of modeling the missing data set are tested, such as Bayesian
Non-negative Matrix Factorization (BNMF) and Bayesian Probabilistic Matrix
Factorization (BPMF). Both provide a quality representation of the missing data,
allowing the Bayesian Optimization algorithm to work. The BPMF-based meth-
ods have significantly better performances than the BNMF-based methods. How-
ever, BNMF-based methods are helpful in some specific cases due to the structure
of the missing data set.

Multi-armed Bandit Algorithms are used to tackle the problem of a parameter
settings budget constraint in each iteration. The ε-greedy and UCB1 have been
tested. The ε-greedy can occasionally give better results because of its random-
ness. In contrast, The UCB1 consistently improves its performance through each
iteration.

This work proposes a framework to utilize the information from partially over-
lapping data sources to find the parameter settings that yield a maximum return.
This work benefits a wide range of real-world industrial production processes and
opens exciting research directions.

Keywords: bayesian optimizaion, multi-source, partial overlapping, miss-
ing data, multi-armed bandits, matrix factorization, acquisi-
tion functions
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Abbreviations and Acronyms

BO Bayesian Optimization
BNMF Bayesian Non-negative Matrix Factorization
BPMF Bayesian Probabilistic Matrix Factorization
BOMI Bayesian Optimization with Missing Inputs
GP Gaussian Process
GP-UCB Gaussian Process Upper Confidence Bound
UCB1 Multi-arm Bandit Upper Confidence Bound
UCB-MI Upper Confidence Bound with Missing Inputs
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Chapter 1

Introduction

1.1 Motivation

In several industries, the optimisation of industrial manufacturing processes,
such as pharmaceutical production and carbon fiber manufacturing, is critical
for successful commercial production. While the outcome of a production
process depends on numerous parameters, acquiring representative data to
quantify parameters’ impacts and interactions for optimisation purposes is
challenging because different manufacturers modify (skip, replace) some of
the steps in the standard processes to fit their needs and as a result, the data
sets relating to the same target process recorded by different manufacturers
do not necessarily even contain values of the same parameters.

An almost similar problem arises when the objective is to combine several
“not so different” industrial process into a new general process to improve
yield. In such a case, one does not have a data set containing values of all
process parameters to optimize. Instead, one can only access data sets from
the similar industrial procedures where at best the parameters recorded for
the different processes overlap.

Importantly, complex real-world manufacturing processes are often ex-
pensive to run in terms of time, money, or both. Furthemore, modifying
the value of each parameter comes at a cost. Due to these cost factors,
one cannot experiment with all process parameters simultaneously (as in a
computational experiment, for example) but one rather can vary the values
of only a small subset at a time. For example, running one industrial pro-
cess end-to-end to produce a complete product can last several weeks while
requiring an expensive qualified laboratory environment and modifying the
value of each parameter may take days of work. These cost factors require
taking into account the budget constraints when performing experiments to
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CHAPTER 1. INTRODUCTION 8

identify optimal parameter settings. The budget constraint can relate to
the maximum number of experiment iterations or the number of parameters
whose values can be changed in each experiment.

This thesis develops a novel framework to address the needs mentioned
above.

1.2 Problem statement

To formulate the problem, let’s first define:

• The outcome of the industrial process is modelled as function f .

• The values of the n parameters of the industrial process f are collected
in an n-dimensional vector x referred to as the setting. X denotes the
distribution of settings. x is drawn from X.

• f(x) or y is the yield of a specific setting x of the industrial process f .

For generality, a general industrial fgen is assumed to be a black-box
function. As varying the values of the parameters of an industrial process is
often costly, it is reasonable to assume that fgen is expensive to evaluate.

To develop a solution to address the needs presented in Section 1.1,
Bayesian Optimization (BO) is used as a starting point. BO is an opti-
mization method where the function f is a black-box function. BO assumes
that the analytical form of f is not known. Thus, the derivative of f can-
not be evaluated analytically. Furthermore, the function f is expected to be
very expensive to evaluate, and only a limited number of values of f(x) (in
this case, the yields) can be obtained. Hence, grid search or using numeric
gradient estimate to find the optimal value [19] is not practical. Bayesian
Optimization techniques are hence well suited the problem studied in this
thesis. By modeling the function f using the data (xn, f(xn)) and a surro-
gate model (often a Gaussian Process), optimal values of f can be sought in
a computationally feasible manner.

Conventionally, information for the full set of covariates in X from which
x is drawn is available, and Bayesian Optimization has been proven quite
beneficial in such cases [50][72]. However, for certain industrial processes,
data about the settings of similar industrial processes contain measurements
from different but partially overlapping subsets of the covariates from X
covariate sets. Assuming that the union of covariates from those data sources
is the exhausting set of covariates of X, and there are no missing in the yields
(y = f(x)), the problem of applying Bayesian Optimization where the data
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of the covariates are presented only in some data sources is formalized. The
problem is illustrated by the Figure 1.1 below. X can be seen as a general
process in this picture. And X1, X2, X3 are the modified versions of the
general procedure where missing covariates are the skipped or modified steps,
mentioned in Section 1.1

Missing covariates 
of data souce 1

Missing covariates 
of data souce 2

Missing covariates 
of data souce 3

How to utilize data sets with overlapping 
covariates/features in Bayesian Optimization?

Figure 1.1: Summary of Bayesian Optimization in partially overlapping co-
variates data sources

1.3 Structure of the Thesis

The thesis consists of eight chapters. Except for Chapter 1, the rest of the
work is structured as follows: Chapter 2 presents the survey of the literature
on Bayesian Optimization, missing data, missing data imputation methods,
and works related to our study. Next, Chapter 3 briefly presents the back-
ground knowledge related to the to-be-developed methods. In Chapter 4,
the problem is formally defined, and the details of the novel method to solve
the problem are presented. Then, in Chapter 5, the setup of the experi-
ments to verify the methods is laid out. The data used in these experiments
is presented in this chapter. The evaluation methods and metrics are also
mentioned in this chapter. Subsequently, in Chapter 6, the results of the
experiments and how well they are compared to each other are carefully ex-
plained. Moreover, in Chapter 7 a discussion of the methods and the findings
can be found. Lastly, conclusions are drawn in Chapter 8.



Chapter 2

Related Work

Bayesian Optimization (BO) was first introduced by Kushner [36], Zhilin-
skas [81], Mockus [47] [45] and popularized by Efficient Global Optimization,
which is the work of John et al. [29]. BO is a vast area of research with dif-
ferent topics such as multi-objective optimization [46][33][31], multi-fidelity
optimization [27][65], and convergence rate [10][8][9][7] to name a few.

Bayesian Optimization has also been adopted in various application do-
mains such as agriculture [50][58][69][71] and industrial production [79][11][43]
[49][12]. With the rise in popularity of the deep neural networks, BO is also
a handy tool in their hyper-parameters optimization [32].

Few works have applied BO in the setup similar to what has been de-
scribed in Chapter 1. Nevertheless, the formulation in Chapter 4 opens a
new approach to address the problem, i.e., formulating the problem in terms
of BO for missing data set with constraint budget. The literature that con-
nects to that problem formulation is listed below.

Missing data research is as extensive as Bayesian Optimization research.
Buuren’s book [73] is comprehensive coverage of imputation techniques for
missing data. However, according to Luong et al. [42], the imputation tech-
niques are not as effective compared to likelihood-based approaches when it
comes to the context of applying BO in the missing data set. The results align
with a comment in Buuren’s book related to likelihood-based approaches.
There are several notable likelihood-based approaches in the literature in
dealing with missing data in general, such as [14] [39] and others in the con-
text of Kernel Methods and Gaussian Processes [63] [62]. In this work, based
on the suggestion in Luong et al. above, the techniques of Bayesian Matrix
Factorization to deal with the data missingness are employed. Chapter 3
introduces those techniques in details.

Another line of work in Bayesian Optimization dealing with the constraint
budget related to the methods presented in this thesis can be mentioned in
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CHAPTER 2. RELATED WORK 11

articles [64][37][41]. These methods are not suitable in this situation since
they require a fully observed covariate x to evaluate the objective function
f(x). This requirement is not satisfied due to the budget constraint in choos-
ing the covariates in each evaluation. The recently published work of Hayashi
et al. [24] is the closest to the setup of this thesis where the experiment’s
parameters can be changed is fixed, and others are unobserved or cannot be
controlled. The difference is that we can choose from the set of all parameters
but not all of them simultaneously due to budget constraints. Meanwhile,
they are only allowed to choose the parameters from a fixed subset of all
parameters.

The next chapter presents the technical details of the to-be-implemented
methods to solve the problem.



Chapter 3

Background

This section introduces the background of the main methods introduced in
the later chapters. These are Bayesian Optimization, Bayesian Matrix Fac-
torization methods, the Bayesian Optimization with Missing Inputs, and the
Multi-armed Bandit Problem.

3.1 Bayesian Optimization

Bayesian Optimization is a black-box optimization methods that attempt to
solve the following problem:

x∗ = arg max
x∈A

f(x)

where f is called the objective function and A is called a feasible set. The
objective function and feasible set often have these properties:

• The input x is in Rd. Traditionally, d is typically not too large (d ≤ 20).
However, later advancements helped Bayesian Optimization deal with
high-dimensional data sets.

• The simple set A is a feasible set which membership is easily assessed.
Normally x ∈ A is defined as {x ∈ Rd : ai ≤ x ≤ bi} or {x ∈ Rd :∑

i xi = 1}.

• The objective function f is continuous to model using Gaussian process
regression.

• The objective function f is expensive to evaluate both in terms of
the time it takes to evaluate f (e.g., hours in computer experiments,
days in industrial processes, or months in agriculture processes) or the

12



CHAPTER 3. BACKGROUND 13

economic/opportunity cost to evaluate f is high (e.g., industrial and
agriculture experiments take much money to run).

• Since f is a black-box function, the form of f is not known to apply
techniques that leverage the knowledge for optimization.

• When evaluating f , only the value of f(x) is known but not its first
or second derivative. Therefore, the methods such as gradient descent,
Newton’s method, or quasi-Newton methods cannot be applied. This
property is called derivative-free.

• Assuming no noise when observing f(x).

• Finding the global optimum, rather than the local optimum, is the
focus.

In short, according to Frazier [19], Bayesian Optimization can be seen as a
black-box derivative-free global optimization. The tutorial in Bayesian Opti-
mization of Frazier is also comprehensive material for further reference. Next,
the mechanism of Bayesian Optimization and its components are described.

3.1.1 Overview

There are two main components in Bayesian Optimization:

• The first component is a probabilistic statistical to model the black-box
objective function. This component is also called a surrogate model.

• The second component is an acquisition function to suggest the follow-
ing sample to evaluate.

The steps to perform Bayesian Optimization are presented in the pseudo-
code 1. The black-box objective function is f and the budget (number of
experiments) to evaluate f is N .

Next, two essential components of Bayesian Optimization are presented.
They are surrogate models and acquisition functions.

3.1.2 Surrogate Models

There are two choices for probabilistic surrogate models of Bayesian Opti-
mization. They are Gaussian Processes [55] and Random Forests [4]. Tradi-
tionally, Gaussian Processes have been chosen as the off-the-shelf surrogate
model’s Bayesian Optimization because of its expressiveness, closed-form an-
alytical formula, and built-in uncertainty estimation. However, they scale
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Algorithm 1 Pseudo-code for Bayesian Optimization

Evaluate k random points with f to form the basis data set {xi, f(xi))
n=k
i=0 }.

Model the data {xi, f(xi))
n=k
i=0 } with a probabilistic statistical model.

Set i = k.
while i ≤ N do

Update the posterior probability distribution of f using all the data.
Compute the acquisition function using the updated posterior distri-

bution.
Choose the xnext by select the maximizer of the acquisition function

over x.
Evaluate f(xnext). Then add the new point (xnext, f(xnext) into the

current data set.
Increase i.

end while

poorly regarding the number of dimensions and samples in the data set.
Therefore, there have been a number of researches seek to alleviate those
problems [22][76][77][20][30].

Random Forests are another choice for a surrogate model in Bayesian
Optimization. If Gaussian Processes are well-suited in low dimensional, nu-
merical configuration spaces problems [17], Random Forests are useful in
high-dimensional, conditional configuration spaces and partly discrete ones
[28][38]. Moreover, the tree-based method reduces the training time com-
pared to Gaussian Processes when dealing with a large data set. Since it is
well known that Gaussian Processes running time grows cubically in terms of
training examples and parameters. Meanwhile, it only grows linearly in tree-
based methods. There is also research that uses another tree-based method
which is the gradient-boosted tree, to serve as a surrogate model [74].

Gaussian Processes are chosen as surrogate models in this thesis since
the data set is low dimensional with numerical parameters. The basics of
Gaussian Process Regression are briefly presented in the next section. A
complete and comprehensive introduction of Gaussian Process Regression
and Gaussian Process can be found in the book of Williams and Rasmussen
[78].

3.1.2.1 Gaussian Process Regression

A Gaussian Process can be seen as a probabilistic distribution over continuous
function. Suppose there are the mean function m(x) and the covariance
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function (k(x,x′)) of a real process f(x):

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

then the Gaussian Process is defined as:

f(x) ∼ GP(m(x), k(x,x′))

Suppose there exists the data set of n elements D = {(xi, yi))}ni=1 where
yi = f(xi) + εi for i = 1, 2, ..., n and εi ∼ N (0, σ2

ε ), the predictive equation
of the test point x∗ of Gaussian Process Regression in this case of noisy
observations is:

f(x∗)|D ∼ N (µ(x∗), σ
2(x∗)) (3.1)

with µ(x∗, and σ2(x∗) is the realization of the mean function m(x) and covari-
ance function k(x,x′) above, in the case prediction with noisy observation:

µ(x∗) = k∗
T (K + σ2

ε I)−1y (3.2)

σ2(x∗) = k(x∗,x∗)− k∗
T (K + σ2

ε I)−1k∗ (3.3)

where:

• k∗ is the covariance between all the inputs xi with the test point x∗,
k∗ = [k(xi,x∗)], ∀xi ∈ D.

• K is the covariance between all inputs, K = [k(xi,xj)], ∀xi,xj ∈ D.

• I is the identity matrix that has the same dimension as K.

• y = [yi, ..., yn] is the vector of observation with noise.

• σ2
ε is the observation noise.

The details of this derivation can be found in Chapter 2 of Williams and
Rasmussen’s book [78].

The choice of the covariance function k(·, ·), also called the kernel, defines
the behaviour of the Gaussian Process. The common choice and simple kernel
is the Gaussian kernel or squared exponential kernel:

k(x,x′) = σ2 exp

(
− 1

2l2
||x− x′||2

)
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where σ2 is the overall variance of the function and l is the lengthscale. The
other popular choice is the Matérn kernel:

k(x,x′) = σ2 21−ν

Γ(ν)

(√
2ν||x− x′||

l

)ν

Kν

(√
2ν||x− x′||

l

)

where σ2 is the overall variance of the function, Γ is the gamma function, Kν

is the modified Bessel function, l, and ν are the parameters of the covariance.
In order to choose the hyper-parameter, such as the lengthscale l in a squared
exponential kernel of the Gaussian Process, one can use the maximize log
marginal likelihood as laid out in Chapter 5 of Williams and Rasmussen’s
book [78].

In this work, the Gaussian kernel is chosen to use in the Gaussian Pro-
cesses.

By modeling the black-box function f as a Gaussian Process through
the input data D = {(xi, yi))}ni=1, the behaviour of the black-box function
can be inferred by drawing samples from the learned posterior probability
distribution as shown in Equation 3.1. The most rewarding point can be
computed using this posterior distribution, based on pre-defined criteria, to
evaluate next using the acquisition functions. The acquisition functions are
presented in the next section.

3.1.3 Acquisition Functions

As stated in the last section, modeling the black-box function by Gaussian
Processes can be useful in determining the next point to evaluate by using the
acquisition function. The acquisition functions harness the information given
by the posterior distribution model by the Gaussian Processes, especially
the mean function (Equation 3.2) and the covariance function (Equation
3.3). Different combinations between the mean function and the covariance
function express the trade-off between exploitation (sample the point where
the expected value is high, mean function) and exploration (sample the point
when the uncertainty of the return value is high, covariance function).

There a wide range of acquisition functions have been developed such
as Expected Improvement [29], Knowledge Gradient [18], Entropy Search
[25], Predictive Entropy Search [26], GP-UCB [67] and a modified version
of GP-UCB for missing inputs called UCB-MI [42]. Since this work uses
UCB-MI, which uses GP-UCB, the details of GP-UCB are presented in the
next section. UCB-MI will be presented later when introducing the Bayesian
Optimization for Missing Inputs of Luong et al.
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3.1.3.1 Gaussian Process Upper Confidence Bound (GP-UCB)

The GP-UCB acquisition function can be computed as:

αGP−UCBt (x) = µt(x) +
√
βtσt(x)

We have:

• µt and σt are the mean function and covariance function learned from
the data by a surrogate model up to iteration t.

• βt is the exploitation-exploration trade off factor, and is calculate by
the formula:

βt = 2 log(t22π2/(3δ)) + 2d log
(
t2dbr

√
log(4da/δ)

)
where a, b > 0 are constant and r > 0, the formula of βt is to guarantee an
upper bound on the cummulative regret with probability greater than 1 − δ
in the input space D ⊂ [0, r]d. Details can be found in the Theorem 2 in the
paper of Srnivas et al. [67].

Following the GP-UCB, at each step t of the Bayesian Optimization loop,
a next point is chosen to evaluate based on the formula:

xt+1 = arg max
x∈D

αGP−UCBt (x)

Next, Bayesian Matrix Factorization techniques are described, especially
the Bayesian Probabilistic Matrix Factorization (BPMF) and Bayesian Non-
Negative Matrix Factorization (BNMF), since they are essential components
in the methods and experiments in the following chapters.

3.2 Bayesian Matrix Factorization

Matrix factorization and decomposition, such as eigendecomposition, singu-
lar value decomposition (SVD), and others, have been widely used in machine
learning and data analytics to reduce the dimension of the dataset or find
a low-rank approximation. However, problems arise when those methods
are applied to data sets such as The Netflix Prize challenge [3] where there
are a lot of missing data (users often only rate some movies). Modifica-
tions to the traditional tools are developed to overcome such troubles such
as [35][21][53][66]. However, these methods either have to rely on external
data, imputation methods, or ignore the missing data completely to perform
the task that significantly affects the prediction and modeling power.
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Salakhutdinov and Mnih developed a probabilistic framework for matrix
factorization called Probabilistic Matrix Factorization (PMF) [44] which put
a prior on the factorized components. The framework helps incorporate the
uncertainty of unobserved values into the model naturally. Later, they devel-
oped the Bayesian Probabilistic Matrix Factorization (BPMF) [59] in order
to predict the rating for new user/movie pairs. Gibbs sampling was used for
approximate inference. BPMF is briefly introduced. Later, another Bayesian
Matrix Factorization technique called Bayesian Non-Negative Matrix Factor-
ization (BNMF) is described. It puts a non-negative constraint on the sign
of the elements of the factorized matrices.

3.2.1 Bayesian Probabilistic Matrix Factorization

Since the framework was developed to solve The Netflix Prize challenge, the
same concept of users, movies, and ratings are used as in the original paper
to describe the techniques easily.

3.2.1.1 Probabilistic Matrix Factorization (PMF)

Suppose there are N users, M movies, and Rij is the rating of user i for
movie j. The D-dimension user-specific and movie-specific hidden feature
vectors are represented by Ui and Vj, respectively. The prior distributions
over U ∈ RD×N , V ∈ RD×M , and the conditional distribution over observed
ratings R ∈ RN×M are:

p(U |αU) =
N∏
i=1

N
(
Ui|0, α−1U I

)
(3.4)

p(V |αV ) =
M∏
j=1

N
(
Vj|0, α−1V I

)
(3.5)

p(R|U, V, α) =
N∏
i=1

M∏
j=1

[
N
(
Rij|UT

i Vj, α
−1)]Iij (3.6)

where:

• N (x|µ, α−1) denotes the Gaussian distributions with mean µ and pre-
cision α.

• Iij is the indication which equal to 1 if the user i rated the movie j and
equal to 0 otherwise.
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The model is learned by maximizing the log-posterior:

log p(U, V |R,α, αV , αU) = log p(R|U, V, α)

+ log p(U |αU) + log p(V |αV + C

Maximizing the posterior distribution with respect to U and V is the same as
minimizing the sum-of-squares error function with quadratic regularization
terms:

E =
1

2

N∑
i=1

M∑
j=1

Iij(Rij − UT
i Vj)

2

+
λU
2

N∑
i=1

||Ui||2Fro +
λV
2

M∑
j=1

||Vj||2Fro

where || · ||2Fro is the Frobenius norm, and λU = αU/α, λV = αV /α. A local
minimum can be found by running the descent in U and V with the objective
function above.

3.2.1.2 Bayesian Probabilistic Matrix Factorization (BPMF)

Using the same notation and context in the last section 3.2.1.1, the BPMF
model is presented below. The likelihood term is the same as in the Equation
3.6. The prior over user and movie feature vectors are:

p(U |µU ,ΛU) =
N∏
i=1

N (Ui|µU ,Λ−1U )

p(V |µV ,ΛV ) =
M∏
i=1

N (Vi|µV ,Λ−1V )

A Normal-Wishart priors was placed on the user and movie hyper-parameters
ΘU = {µU ,ΛU} and ΘV = {µV ,ΛV }:

p(ΘU |Θ0) = p(µU |ΛU)p(ΛU)

= N (µU |µ0, (β0ΛU)−1)W(ΛU |W0, ν0)

p(ΘV |Θ0) = p(µV |ΛV )p(ΛV )

= N (µV |µ0, (β0ΛV )−1)W(ΛV |W0, ν0)

where W is the Wishart distribution with a D ×D scale matrix W0 and ν0
degrees of freedom. The probability density function (pdf) of the Wishart
distribution is:

W(Λ|W0, ν0) =
1

C
|Λ|(ν0−D−1)/2 exp

(
1

2
Tr(W−1

0 Λ)

)
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where C is thr normalizing constant. The hyper-parameters µ0, ν0,W0 were
set in advance. The graphical models of PMF and BPMF is shown below.
The predictive posterior distribution of the new rating R∗ij for user i and

Figure 3.1: Graphical models of PMF (left) and BPMF (right). The images
were reproduced from the original paper [59].

movie j can be obtained by the formula below:

p(R∗ij|R,Θ0) =

∫∫
p(R∗ij|Ui, Vj)p(U, V |R,ΘU ,ΘV )

p(ΘU ,ΘV |Θ0)d{U, V }d{ΘU ,ΘV }
Since the predictive posterior distribution is analytically intractable, a Markov
Chain Monte Carlo (MCMC) based method is used to do approximate infer-
ence. The Monte Carlo approximation of the predictive posterior distribution
above is:

p(R∗ij|R,Θ0) ≈
1

K

K∑
k=1

p(R∗ij|Uk
i , V

k
j )

The author used Gibbs sampling, an MCMC algorithm, which sample the
hidden variables from their conditional probability distributions over the cur-
rent values of all other variables. The conditional probability distribution of
user vector Ui, given the movie features, observed rating matrix R, and values
of other hyper-parameters is:

p(Ui|R, V,ΘU , α) = N (Ui|µ∗i , [Λ∗i ]−1)

∼
M∏
j=1

[
N (Rij|UT

i Vj, α
−1)
]Iij

p(Ui|µU ,ΛU)



CHAPTER 3. BACKGROUND 21

where:

Λ∗i = ΛU + α
M∑
j=1

[VjV
T
j ]Iij

µ∗i = [Λ∗i ]
( − 1)

(
α

M∑
j=1

[VjRij]
Iij + ΛUµU

)

Since the users are independent, the conditional probability of the latent
user matrix can be factorized into the product of individual users. Bu this
manner, the sampling process of the user vectors can be done in parallel.

p(U |R, V,ΘU) =
N∏
i=1

p(Ui|R, V,ΘU)

The user hyper-parameters conditional probability distribution on the user
feature matrix U is the Normal-Wishart distribution:

p(µU ,ΛU |U,Θ0) = N (µU |µ∗U , (β∗0 ,ΛU)−1)W(ΛU |W ∗
0 , ν

∗
0)

where:

µ∗0 =
β0µ0 +NŪ

β0 +N
, β∗0 = β0 +N, ν∗0 = ν0 +N

[W ∗
0 ]−1 = W−1

0 +NS̄ +
β0N

β0 +N
(µ0 − Ū)(µ0 − Ū)T

Ū =
1

N

N∑
i=1

Ui, S̄ =
1

N

N∑
i=1

UiU
T
i

Since the conditional probability distributions over the movie latent feature
vector and hyper-parameters will have the exact form, the Gibbs sampling
algorithm to sample the latent user and movie feature is as follows: The next
section summarizes the technical details of Bayesian Non-Negative Matrix
Factorization model.

3.2.2 Bayesian Non-Negative Matrix Factorization

The details of the model can be found in the original work [60]. The same
context and notations are used as in the last section. The non-negative
matrix factorization can be depicted as:

R = UTV + E
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Algorithm 2 Gibbs sampling algorithm for BPMF

Initiate the latent factorized matrix component {U1, V 1}. U ∈ RD×N ,
V ∈ RD×M .
for t = 1 to T do

1. Sample the hyper-parameters:

µtU ,Λ
t
U ∼ p(µU ,ΛU |U t,Θ0)

µtV ,Λ
t
V ∼ p(µV ,ΛV |V t,Θ0)

2. Sample i = 1 to N user vectors in parallel:

U t+1
i ∼ p(Ui|R, V t, µtU ,Λ

t
U)

3. Sample j = 1 to M movie vectors in parallel:

V t+1
i ∼ p(Vi|R,U t+1, µtV ,Λ

t
V )

end for

where R ∈ RN×M is the rating matrix, U ∈ R+
D×N and V ∈ R+

D×M are
the factorized matrix of users and movies latent features, and E ∈ RN×M is
the residual matrix. There is a non-negative constraint over the elements of
the factorized matrices. Assume that the residuals Eij is i.i.d and normal
distributed with zero mean and variance σ2. Then, the likelihood in the
Bayesian model is:

p(R|Θ) =
∏
i,j

N (Ri,j; (UT
i Vj, σ

2)

where:

• Θ = {U, V, σ2} is all the parameters in the model

• N (x;µ, σ2) is the pdf of a Normal distribution with mean µ and vari-
ance σ2

• U and V are independently exponentially distributed with scales αd,i
and βd,j

p(U) =
∏
d,i

E(Ud,i;αd,i)

p(V ) =
∏
d,j

E(Vd,j; βd,j)



CHAPTER 3. BACKGROUND 23

where E(x;λ) is the pdf of a exponential distribution with rate (inverse scale)
λ. The prior of σ2 is chosen as an inverse gamma probability distribution
with shape k and scale θ:

p(σ2) = G−1(σ2; k, θ) =
θk

Γ(k)
(σ2)−k−1 exp

(
− θ

σ2

)
The graphical model of BNMF is: As in the last section, the conditional

Figure 3.2: The graphical model of BNMF model

distributions are needed to sample by the Gibbs sampling algorithm. The
conditional probability of the user Ud,i is:

p(Ud,i|R,U\(d,i),V,σ2) = N (Ud,i;µUd,i
, σ2

Ud,i
)E(Ud,i;αd,i)

where:

µUd,i
=

∑
j(Ri,j −

∑
d′ 6=d Ud′,iVd′,j)Vd,j∑
j V

2
d,j

σ2
Ud,u

=
σ2∑
j V

2
n,j

Due to symmetry, the conditional probability distribution of the movie Vd,j
has the same form. The conditional probability density of σ2 is:

p(σ2|R,U, V ) = G−1(σ2; kσ2 , θσ2)
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where:

kσ2 =
NM

2
+ 1 + k

θσ2 =
1

2

∑
i,j

(X − UTV )2i,j + θ

Since the users (and movies) are independent from each other. A parallel
sampling algorithm can be derived. From those conditional probability dis-
tribution above, the Gibbs sampling algorithm for BNMF is presented in the
Algorithm 3.

Algorithm 3 Gibbs sampling algorithm for BNMF

1. Initiate the latent factorized matrix component {U1, V 1}. U ∈ RD×N ,
V ∈ RD×M .
2. χ = 1

2

∑
i,j R

2
ij

for t = 1 to T do
C = V V T , D = RV T

for d = 1 to D do
µUd

=
Dd,:−Cd,\dU\d,:−αd,:σ

2

Cd,d

Ud,: ∼ N (µUd
, σ2

Cd,d
)E(αd,:)

end for
ξ = 1

2

∑
d,i Ud,i(AC − 2D)d,i

σ2 ∼ G−1(NM
2

+ k + 1, χ+ θ + ξ)
E = UUT , F = RUT

for d = 1 to D do
µVd =

Fd,:−Ed,\dV\d,L−βd,:σ2

En,n

Vd,: ∼ N (µVd ,
σ2

Ed,d
)E(βd,:)

end for
U t ← U , V t ← V

end for

Next, the following section explores how the Bayesian Matrix Factoriza-
tion can be utilized to perform BO in the case of missing data.

3.3 Bayesian Optimization with Missing In-

puts

In this section, the work of Luong et al. [42] is presented. The authors take
advantage of the Bayesian Matrix Factorization model to perform BO with
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missing data.
As laid out in the Algorithm 1, the black-box objective function is rep-

resented by a surrogate model (often a GP) through the data. However,
problems arise when there are missing data. The authors choose the BPMF
to model the missing data by finding the factorized components U and V
such as UTV ≈ X. Then, the authors do not simply aggregate the informa-
tion found by sampling U and V . Such as computing the average over the
samples to obtain the imputation of the missing data. Instead, the samples
of the factorized matrices U and V are kept to reconstruct the missing values.

Later, these imputations are combined with the original data to pro-
duce several imputed versions of the data. Then, these imputed versions are
modeled by Gaussian Processes and later are utilized by an acquisition func-
tion, Upper Confidence Bound with Missing Inputs (UCB-MI), that consider
those imputed versions to suggest the next point to evaluate. The evaluated
point (which can be missing after evaluation) and the result are added to the
original data, and the BO loop continues. The process is illustrated in the
Algorithm 4.

The UCB-MI acquisition function is discussed in the next section.

3.3.1 Upper Confidence Bound with Missing Inputs

In other to incorporate information from several GPs to suggest the next
point, the authors of [42] develop Upper Confidence Bound with Missing
Inputs (UCB-MI), which aggregates information from individual acquisition
functions to take into account the uncertainty of the imputed values. Sup-
pose there a a set of GPs, {GP t}Tt=1, as described in the Algorithm 4. The
individual GP-UCB acquisition functions, αtGP−UCB, can be computed from
these GPs (section 3.1.3.1). Then, those GP-UCB acquisition functions can
be combined to form the UCB-MI as follows:

αUCB−MI = µα(αGP−UCB(x)) + βασα(αGP−UCB(x))

where:

µα(αGP−UCB(x)) =
1

T

T∑
t=1

αtGP−UCB(x)

σα(αGP−UCB(x)) =

√√√√∑T
t=1

(
αtGP−UCB(x)− 1

T

∑T
t=1 α

t
GP−UCB(x)

)2
T − 1

We can see that:
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Algorithm 4 Bayesian Optimization for Missing Inputs

Input data X = {xn, f(xn)}Nn=1 ∈ RN×M

Let the set {ik, jk}Kk=1 is the set of missing data indices in X.
Budget to run the experiment B.
for b = 1 to B do

1. Sampling T factorized matrices set {U t, V t}Tt=1 of X by BPMF.
U ∈ RD×N , V ∈ RD×M

for t = 1 to T do
X t ← X
for k = 1 to K do

Reconstruct the missing data xt{ij}k = (U t
ik

)T (V t
jk

)

X t
{ij}k ← xt{ij}k

end for
end for
2. The set {X t}Tt=1 contain the imputed version of X.
3. Model {X t}Tt=1 by the set of Gaussian Processes {GP t}Tt=1.
4. Using the acquisition function UCB-MI with the set of Gaussian

Processes {GP t}Tt=1 to suggest the next point to evaluate xnext.
if missing event then

xnext ← x′next.
end if
5. Compute f(xnext) then add {xnext, f(xnext)} to the original data X.

end for
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• µα(αGP−UCB(x)) represents the mean of the set of individual GP-UCB
acqusition functions or the agreement between them.

• σα(αGP−UCB(x)) represents the standard deviation of them or the dis-
agreement between them.

• And βα is the trade-off between the agreement and disagreement.

. Finally, the next point can be obtained by:

xt+1 = arg max
x∈D

αUCB−MI(x)

The following section introduces the final tool in the toolbox to tackle
the problem of limited budget in each experiment by using methods in the
Multi-armed Bandit Framework.

3.4 Multi-armed Bandit Framework

The Multi-armed Bandit Framework is usually applied to reason about in-
teractions between an agent and a stochastic environment where:

• The goal is to gain the maximum return/reward from the environment.

• There is a limited budget to interact with the environment.

• The agent needs to choose how to interact with the environment.

• Each interaction with the environment gives the agent feedback to de-
cide between doing what is best (exploitation) or changing to another
way of interaction (exploration). In the literature, the individual inter-
action/action is called “arm”. When selecting that interaction/action,
it is called “pulling an arm”. These terminologies are used from now
on.

The framework is helpful since only a limited number of experiment parame-
ter settings can be chosen to maximize the experiment’s results. The details
will be presented in Chapter 4. The multi-armed bandit problem was first
introduced by Robbins [56] and has been extensively researched since then.
Some useful overview resource can be found in these works [34] [61]. In this
work, only the two simplest algorithms of the multi-armed bandit framework
are employed to limit the scope. They are ε-greedy and Upper Confidence
Bound (UCB1). The next section describes those in detail.
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3.4.1 ε-greedy

This is a very simple algorithm. While the budget is still available, at each
iteration, the agent choose the arm that has the highest expected rewards so
far with the probability 1−ε. And choose a random arm with the probability
ε. In other words, if there are N arms, the probability of selecting arm i at
iteration t is:

pi(t) =

{
1− ε+ ε/n if arm i’s expect reward is the highest

ε/n otherwise

3.4.2 Upper Confidence Bound (UCB1)

The Upper Confidence Bound algorithm family has been proposed by Auer
et al. [1]. The simplest version of the family, UCB1, is an improved version
of ε-greedy. In UCB1, the number of times the arm has been pulled is
considered.

The expected reward of an arm after t times the arm have been pulled
is the exploitation factor. While the number of time that arm have been
pulled with the total iteration so far contribute to the exploration factor.
Specifically, suppose there are k arms, at round n the arm i is greedily picked
by the formula:

in = arg max
i=1...k

(
µ̂i +

√
2 lnn

ti

)
where µ̂i is the expected reward of arm i at round n. Moreover, ti is the
number of times the arm i has been pulled.

The usage of the ε-greedy, UCB1, and their contribution to our methods
will be discussed in-depth in the subsequent chapters.



Chapter 4

Methods

This section first states this thesis problem formally, then presents the meth-
ods used to solve that problem.

4.1 Problem Definition

In summary, the problem of Bayesian Optimization with partially overlap-
ping covariate data sources with constraint budgets is being tackled. For-
mally, suppose there is the set of T data set {X t}Tt=1 where each X t has the
set of covariates Ct = {ct1, ct2, ...} and the set of response vector {yt}Tt=1. The
data sources’ covariates are partially overlapping which is ∀i, j, C i 6= Cj, and
∃i, j such that C i ∩ Cj 6= ∅. In theory, the method can work where all Ct

are disjoint. However, the experiments conducted do not include such cases.
Therefore, the overlapping covariate constraint is included.

Another condition is that each X t has to represent the setting of the same
process or mechanism f , and the response yt = f(xt) must have the same
meaning across X t. For example, each X t can be different methods to make
beer, and each method has somewhat similar settings but is not identical.
Furthermore, the response yt should be the same beer evaluation score.

Given the data source set {X t}Tt=1 and the response vector set {yt}Tt=1,
the problem is to find the setting x that gives the maximum return, with a
limited amount of experiment can b run, from the process, or a black-box
function f :

x∗ = arg max
x∈D

f(x)

where D is the domain of x
One important detail is that the covariates of x∗ is not the union

⋃T
t=1C

t

of the set of the covariates, but only a small subset of it, i.e., Cx∗ ⊂
⋃T
t=1C

t,

29
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where Cx∗ is the set of covariates of x∗. The covariates of those data sources
do not coincidentally partially overlap. It is the consequence of choosing some
parameters to try in different experiment settings because of the budget or
technology constraints. Also, separated experiments will have different sets
of parameters.

For example, breweries will have different formulae due to the availability
of the ingredients, traditions, or technologies. Moreover, if there is a need to
open a new brewery and try to utilize the data of others around the globe,
it is implausible that one can obtain the union of all ingredients, techniques,
and technologies of all other breweries combined. The same argument can be
applied in the case of industrial or agricultural processes. Therefore, there are
two budgeting constraints in this work. The usual constraint of the number
of experiments can be run, and the constraint of number parameters can be
changed in each experiment.

The following section presents the primary method to solve the above
problems formally.

4.2 Bayesian Optimization for Partially Over-

lapping Covariate Data Sources with Con-

straint Budget

In this section, the method to tackle the problem of Bayesian Optimization
for partial overlapping covariate data sources with a constraint budget is
presented. Based on the problem definition in Section 4.1, the method needs
to satisfy three requirements:

1. The method needs to utilize the information from the partially over-
lapping data sources {X t}Tt=1.

2. By utilizing the data, the method needs to find the experiment setting
x∗ maximizing the black-box function’s return with a limited number
of experiments.

3. In each experiment, only some experiment settings can be tuned/changed,
and the others are left at default or simply unobserved/uncontrollable.
The method needs to take into account this constraint.

In order to address the first two requirements, the data source set {X t}Tt=1

is stacked row-wise to form the master data set X where there are missing
data in X. The missing data are the experiment settings that do not present



CHAPTER 4. METHODS 31

in one data source but present in others. The stacked data set X is illus-
trated by the Figure 4.1. The problem now becomes to suggest the next

Missing covariates 
of data souce 1

Missing covariates 
of data souce 2

Missing covariates 
of data souce 3

How to utilize data sets with overlapping 
covariates/features in Bayesian Optimization?Figure 4.1: Data sources X1, X2, X3 are stacked to form the master data

source with missing data X

experiment given a missing data set. This problem can be addressed by ap-
plying Bayesian Optimization for Missing Inputs that have been laid out in
Section 3.3. After applying the BOMI method to the missing data X, the set-
ting xnext can be obtained and can be evaluated to find the ynext = f(xnext).
Then the BO loop continues.

However, the third requirement demand that only a subset of the experi-
ment settings of xnext can be chosen to tune or change and let the others vary
at random or unobserved. In order to balance the immediate and future re-
ward in choosing the combination of settings of xnext, the multi-armed bandit
model can be applied in this situation. Each combination of the experiment
settings of xnext can be considered as an arm. Each time a combination of
experiment settings is chosen, this can be seen as pulling an arm, and the
return f(xnext) is the reward for pulling that arm.

In short, by applying the BOMI and multi-armed bandit methods, an
algorithm to tackle the problems stated in Section 4.1 is proposed. The
overview of the method is shown in Figure 4.2, and the details are presented
in the Algorithm 5. The following section goes through the implementation
of this method and how we set up the experiments.
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Algorithm 5 Bayesian Optimization for Partial Overlapping Covariate Data
Sources with Constraint Budget

a. Input is the set of data source {X t}Tt=1, which covariates are partially
overlap, with the set of response vector {yt}Tt=1, that describe an underlying
black-box process f .
b. Stack X t column-wise to form the missing data set X.
c. Let the set {ik, jk}Kk=1 is the set of missing data indices inX. X ∈ RN×M .
d. Maximum number of experiments can run is B.
e. Maximum number of parameters can change in each experiment P .
for b = 1 to B do

1. Sampling S factorized matrices set {U s, V s}Ss=1 of X by a Bayesian
Matrix Factorization method. U ∈ RD×N , V ∈ RD×M , where X = UTV .

for s = 1 to S do
Xs ← X
for k = 1 to K do

Reconstruct the missing data xs{ij}k = (U s
ik

)T (V s
jk

)
Xs
{ij}k ← xs{ij}k

end for
end for
2. The set {Xs}Ss=1 contain the imputed version of X.
3. Model {Xs}Ss=1 by the set of Gaussian Processes {GPs}Ss=1.
4. Using the acquisition function UCB-MI with the set of Gaussian

Processes {GPs}Ss=1 to suggest the next point to evaluate xnext.
5. Select the set of P parameter settings/covariates c = {cp}Pp=1 to

change in xnext based on a Multi-armed Bandit Algorithm (e.g. UCB1).
Other parameters are set randomly (unobserved) by the process f .

6. Compute f(xcnext) with partially observed xcnext then add
{xcnext, f(xcnext)} to the original data X.

7. Update the reward (in multi-armed bandit algorithm) of the set of
covariates c: rc = E[f(xcnext)] where E[f(xcnext)] is the expectation reward
of xcnext up to iteration b.
end for
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Missing covariates 
of data souce 1

Missing covariates 
of data souce 2

Missing covariates 
of data souce 3

Bayesian Optimization 
with Missing Inputs

Multi-armed Bandit 
Algorithm

Uncontrolled/unobserved 
covariate

Add
to

Figure 4.2: Overview of Bayesian Optimization for Partial Overlapping Co-
variate Data Sources with Constraint Budget



Chapter 5

Implementation

This chapter goes through the setup of the experiments to test the method
introduced in Chapter 4. The software and the implementation used to
realize that method are also described.

5.1 Experimentation

There are two experiments to simulate the black-box function or an indus-
trial/agriculture process f : the training process of a Random Forest Classifier
and manufacturing cellulose-based carbon fibers.

5.1.1 Random Forest Classifier Experiment

In the first experiment, the black-box function f is simulated by the process
of training a Random Forest Classifier on the Covertype Data Set in the UCI
Machine Learning Repository [15].

The train and test split of the data set is fixed to consistently assess the
performance of different classifier configurations in the proposed Bayesian
Optimization method. The accuracy of the classifier is chosen to be the
return y = f(x), and x is the different hyper-parameters of the Random
Forest Classifier in scikit-learn.

In each experiment iteration, hyper-parameters that need to be changed
are chosen according to the Multi-armed Bandit Algorithm in the proposed
method. The others are unobserved and will be randomly assigned by the
black-box function. It is reasonable to assume that those unobserved hyper-
parameters will vary around default values under normal conditions. In order
to simulate desired behavior, the unobserved hyper-parameters are set to
their default values and are varied in a set of predefined ranges.

34
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The hyper-parameters, their value ranges, default values, varied ranges,
and their effects on the complexity of the classifier, when increased, are
summarized in Table 5.1. The differences in value ranges, default values,
the varied ranges from the defaults, and the effect on the model complexity
of each parameter will add to the difficulty of the optimization process, which
helps in emulating a real-world process better.

Hyper-parameter Value Range
Default
Value

Varied Range
(from default)

Model
Complexity

Effect
n estimators (10, 2000) 100 (1, 20) Increase
max depth (5, 10000) None (100, 1000) Increase

min samples split (2, 100) 2 (1, 10) Decrease
min samples leaf (1, 100) 1 (1, 10) Decrease

min weight fraction leaf (0, 0.01) 0.0 (0.001, 0.005) Decrease
max leaf nodes (100, 1000) None (20, 500) Increase

min impurity decrease (0, 0.001) 0.0 (0.0001, 0.0005) Decrease

Table 5.1: Hyper-parameters’ settings of the Random Forest Classifier ex-
periment

The initial data for this experiment is shown in Table 5.2. The initial
data emulate stacked data set from three different data sources that overlap
at one covariate. Furthermore, each experiment from each data source has
only three parameter settings available. The observed parameter settings are
varied around the default value around a predefined range shown in Table
5.1. The classification accuracy of each experiment is also presented.

n esitma-
tors

max
depth

min
samples

split

min
samples

leaf

mean
weight
fraction

leaf

max leaf
nodes

min
impurity
decrease

Classifi-
cation

Accuracy

10 10 3 0.7016
25 30 10 0.7174
50 100 20 0.7302

25 1 0.003 0.7132
14 3 0.0015 0.7131
4 7 0.002 0.7137

0.004 50 0.00015 0.7098
0.0031 25 0.00025 0.6936
0.0022 75 0.00035 0.7076

Table 5.2: Initial Data of the Random Forest Experiment

In this experiment, the number of times new parameter settings can be
tested is set at 200. The number of parameter settings that can be chosen
to test (and leave others unobserved) ranges from [3 . . . 7] where 3 is the
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minimum number of settings that each experiment can have before stacking
them together, and 7 is the maximum number of settings after stacking.

In short, this experiment aims to find the experiment settings that max-
imize the classification accuracy after 200 iterations using [3 . . . 7] settings
each time. The results are presented in Section 6.1. The next section de-
scribes the experiment using the carbon fiber manufacturing process data.

5.1.2 Carbon Fiber Manufacturing Experiment

The carbon fiber manufacturing data is collected from the paper of Zhang
et al. [80] by the company Teraloop1. The data set has 32 data points.
The covariates of the data set are High T2 Temperature (Celsius), Tension
(MPa), Tensile Strength (GPa), Strain at break (%), and Young’s Modulus
(GPa). Young’s Modulus is chosen to be the response y = f(x), and others
are parameter settings x.

Six random data points (except the data point with highest Young’s mod-
ulus, explain later) are chosen at random with some covariates remove to
simulate a stacked data set formed from different partial overlapping sources.
The initial data is presented in Table 5.3.

High T2
Tempera-

ture
(Celsius)

Tension
(MPa)

Tensile
Strength
(GPa)

Strain at
break
(%)

Young’s
Modulus

(GPa)

2100 36 50
2100 72 50

108 1.22 66
144 1.14 68

1.15 1.78 63
1.22 1.6 75

Table 5.3: Initial Data of the Carbon Fiber Manufacturing Experiment

Since the underlying process to evaluate the new experiment settings is
not available, the 26 remaining data points are used to imitate the carbon
fiber manufacturing process. Specifically, after modeling the training data
with Gaussian Processes to form a surrogate model, the acquisition function
runs through the remaining data points and chooses the one with the highest
acquisition score to be the next experiment to evaluate. The budgeting of
the experiment settings, i.e., selecting only some of the experiment settings

1https://www.teraloop.org/

https://www.teraloop.org/
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to evaluate, is kept unchanged. The budgets to choose parameter settings to
change at each iteration are set in the range [2 . . . 4].

The budgeting step now has a different meaning. In the Random Forest
experiment, the experiment setting budgeting restricts the information from
the suggested experiment go into the underlying black-box process. Hence,
it undermines the ability of Bayesian Optimization to maximize the return.
Consequently, the Multi-armed Bandit Algorithm is needed to alleviate that
problem. Since the underlying carbon manufacturing process is not available
in this experiment, the return is retrieved from the past data with all the
covariates observed.

Nevertheless, experiment setting budgeting still has the meaning of lim-
ited information and causes finding the maximum return harder. Now, the
meaning of budgeting the suggested experiment becomes limiting the infor-
mation goes into the next iteration. Therefore, the utility of a Multi-armed
Bandit Algorithm can still be applied.

Because of the lacking of the underlying black-box process, the goal of
this experiment is different from the former. Instead of finding the setting
that yields the maximum return, the target is now finding the setting with
the least amount of experiment run. Because there is a finite set of data
points, a data point with the maximum return can always be found. That
also explains why the data point with a maximum return is not chosen in
the initial data set. The results of this experiment can be found in Section
6.2.

The following section describes the parameters of the components of the
proposed method.

5.2 Method’s Components’ Parameters

Since many configurations can be made in each of these components, the
most parameters that impact the problem are controlled and described here.
Others are kept based on the suggestion in the original papers. The details of
the components and their origin can be found in Chapter 3. The components
and their configurations are:

The Bayesian Matrix Factorization: There are two tested methods, BPMF
and BNMF. Apart from the default parameters of each method, the
controlled parameters are the number of latent variable D, the number
of Gibbs sampling algorithm iterations G, and the number of samples
S of factorized matrices U and V . We choose D = 15, G = 200, and
S = 5. The samples of factorized matrices U and V are obtained at
the end of the Gibbs sampling process.
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The UCB and UCB-MI Acquisition Function: We set the a, b = 1 in
UCB, and βα = 0.2 in UCB-MI.

Multi-armed Bandit Algorithms: The experiments are evaluated by two
algorithms, ε-greedy and UCB1. In ε-greedy, the two settings ε = 0.1
and ε = 0.3 are tried. There is no parameter to config in the UCB1.

5.3 Software

According to Figure 4.2, there are two main components in our methods.
The components and the software for those are listed below:

• The Bayesian Optimization for Missing Inputs (BOMI) to deal with the
stacked data set X and limited experiment runs. The implementation
of the original paper [42] is used. It can be accessed in their GitHub
repository [40].

• The Multi-armed Bandit Algorithm to select the potential high-reward
experiment settings. We implemented two Multi-armed Bandit Algo-
rithms ourselves, which are ε-greedy and UCB1.

In BOMI, as described in Section 3.3, there are also two main components:

• The first one is the Bayesian Matrix Factorization to handle the missing
data. In the original BOMI paper, the author used the BPMF imple-
mentation of Pacchiardi, which can be accessed in their GitHub repos-
itory [51]. The method BNMF is employed to compare with BPMF.
The BNMF implementation of Brouwer is used. It has been published
in the paper [6] and also has a GitHub repository [5].

• The second one is the UCB-MI acquisition function to incorporate the
uncertainty of imputed data to suggest the next experiment to perform.
The implementation of Luong [40] mentioned above is employed.

Apart from these main components above, the Python 3.7.9 and other com-
mon data science packages/tools such as scikit-learn [54], NumPy [23], pan-
das [52], and BoTorch [2] are used in the implementation of the proposed
method.



Chapter 6

Evaluation

This chapter presents the results of this thesis.

6.1 Random Forest Classifier Experiment

Figure 6.1, Figure 6.2 shows the results of applying two Bayesian Matrix
Factorization methods (BNMF, BPMF) and Multi-armed Bandit Algorithms
(ε-greedy, UCB1) to the Random Forest Classifier Experiment in the case of
selecting three and four experiment settings. In the case of selecting only
three experiment settings per iteration (three budget), BPMF combined with
UCB1 achieves the best results. In the same case, in general, BPMF is a
better model to incorporate the uncertainty of the missing data since it helps
find better experiment settings sooner (required less iteration) than BNMF.
In terms of the bandit algorithms, 0.1-greedy does better when combined
with BPMF and BNMF and achieves the best result. Nevertheless, UCB1
consistently gives better results early on (less than 100 iterations) but can
plateau later.

It is even more apparent in the case of selecting four settings (per ex-
periment). Regardless of the bandit algorithms, the BPMF combinations
significantly better results than BNMF. The UCB1 consistently provides sig-
nificantly better results very early on, in this case, less than 50 iterations.
Moreover, the algorithm is on par with 0.1-greedy which gives the highest
return. The same can be said in the case of selecting five experiment set-
tings in Figure 6.3, modeling the missing data by BPMF still provides an
outstanding performance compared to BNMF.

In terms of the bandit algorithms, the advantage of UCB1 in the low
iteration cases is no longer there, and other algorithms have caught up. A
reasonable explanation that is because of the increase of available information
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Figure 6.1: Random Forest Classifier Experiment, three parameter settings
are selected each iteration.

Figure 6.2: Random Forest Classifier Experiment, four parameter settings
are selected each iteration.
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in each iteration.

Figure 6.3: Random Forest Classifier Experiment, five parameter settings are
selected each iteration.

Likewise, the increase of available information in each iteration is the rea-
son the gap between the performance of BNMF-based methods and BPMF-
based methods have been narrow down. Although there is still room for
improvement for the BNMF-based methods, the evidence can be seen in
Figure 6.4.

Finally, the results when not applying any budget constraint on the exper-
iment settings are presented in Figure 6.5. The BPMF clearly outperforms
the BNMF. The non negative condition on factorized element values of the
BNMF may restrict the modeling capability which leads to this result.

6.1.1 Information Usage Effectiveness

This section introduces the concept of information usage effectiveness to com-
pare these methods more generally. The effectiveness of the information us-
age can express how each method uses the information provided to find the
maximum returns. Due to the parameter setting constraint at each itera-
tion, the amount of information each method can use is different. Therefore,
they must be normalized into an information unit to compare them more
objectively. The information unit is defined as a single setting in a single
experiment. If, at each iteration, one is allowed to choose three experiment
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Figure 6.4: Random Forest Classifier Experiment, 6 parameter settings are
selected each iteration.

Figure 6.5: Random Forest Classifier Experiment, no constraint on selecting
parameter settings.
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settings to change and add to the data in the next iteration, the number of
the information unit is increased by three.

In order to systematically assess the information usage effectiveness, the
results of ε-greedy algorithms are not examined since they rely heavily on
randomness. The UCB1 algorithm combined with the two Bayesian Matrix
Factorization methods is chosen. The results can be seen in Figure 6.6.

The figure shows that the BPMF-based methods utilize the provided
information more effectively than the BNMF-based methods. The BNMF-
based methods can only use the information as effectively as BPNM-based
methods with no parameter settings constraint in each iteration (no bud-
geting case). Again, the non-negative constraint of BNMF may lead to this
result. However, this is just speculation and needs further analysis.

Figure 6.6: Information Usage Effectiveness, Random Forest Classifier Ex-
periment.

The following section examines the carbon fiber manufacturing experi-
ment.

6.2 Carbon Fiber Manufacturing Experiment

Similar to the previous section, we first inspect how the parameter setting
constraint affects each method’s performance. As explained in Section 5.1.2,
due to the lack of a real-world carbon fiber manufacturing process, the his-
torical data have been used to imitate the underlying mechanism. Therefore,
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the performance criterion is not to maximize the return but to choose the
record with the maximum return in the data set first through the missing
data modeling and acquisition function.

In the case of selecting the two-parameter setting constraint in Figure
6.7, the 0.3-greedy achieves the best result when combined with BNMF. The
performance profiles of 0.1-greedy and UCB1 are entirely the same under the
BNMF modeling (A few jitters are added to distinguish between the two). It
can be due to the limited amount of information in the data combined with
the non-negative constraint of the BNMF. BPMF-based methods perform
relatively well in the low iteration cases.

Figure 6.7: Carbon Fiber Manufacturing Experiment, 2 budget

BNMF-based methods show surprisingly good results in the case of select-
ing the three-parameter setting per iteration in Figure 6.8. These methods
can select the setting that yields the highest return in the early iterations
(less than 10) regardless of the bandit algorithm used. The reason may be
that BNMF can somehow exploit the structure of the missing data set. Fur-
ther investigation is needed to find the reason. BPMF-based methods still
perform well, and UCB1 finds the highest yield setting the earliest.

The Figure 6.9 shows the result of removing the effect of parameter setting
budgeting in each iteration. BPMF shows a notable better result than BNMF
that is similar in the case of Random Forest Classifier Experiment. The yield
line of BPMF is above the yield line of BNMF completely.
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Figure 6.8: Carbon Fiber Manufacturing Experiment, three budget

Figure 6.9: Random Forest Classifier Experiment, No Budgeting
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6.2.1 Information Usage Effectiveness

Similar to the Section 6.1.1, the information usage effectiveness of this ex-
periment is shown in the Figure 6.10. The results are very different from the
Random Forest Classifier Experiment. The higher returns are not associated
with the higher number of the information unit. For example, in the case of
BPMF (and UCB1), the case of budgeting two parameter settings in each
iteration gives a better result than the cases with more information. A simi-
lar situation can be seen in the case of the BNMF-based method. The three
parameter settings budgeting gives a significantly better result than others.
More experiments and analyses are needed to explain this phenomenon.

Figure 6.10: Information Usage Effectiveness, Carbon Fiber Manufacturing
Experiment

The next chapter discusses the drawbacks and other aspects of the pro-
posed methods. Future study directions to improve the current work are also
proposed.



Chapter 7

Discussion

The problem definition and the proposed methods have been laid out in the
previous chapters. The results have shown that the chosen approaches can
address specific aspects of the problem. The effectiveness of the proposed
methods has been demonstrated by applying them to two scenarios: one, the
Random Forest Classifier, a simulated data scenario to replicate the behaviors
of a black-box function, and two, a carbon fiber manufacturing process that
uses data from a real-world to simulate the black-box function. Both have
shown exciting and promising results.

Nevertheless, there are drawbacks related to the proposed approach, which
are addressed in the following sections.

7.1 The Drawbacks

The major drawbacks of this work are:

• The number of iterations to find the parameter settings that can im-
prove return is still high in the low information case. For example,
in the Random Forest Classifier experiment, the number of iterations
needed to get to a notable improvement in accuracy is around 75 to
100. Real-world industrial/agricultural processes often do not have the
luxury to conduct that high number of experiments.

• The experiments in this study used a machine learning training process
and past data to emulate a real-world production process that can hide
the complexity of running production in reality.

• Some unexpected behavior of the methods is not fully explained.
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Other minor drawbacks, e.g., different parameter settings, are not sys-
tematically tested in the experiments. Such concerns are mentioned in the
future work directions in the next section.

7.2 Future Work Directions

To improve the presented method, the following lines of work could be ben-
eficial:

• Internal structure of the data can be further exploited to pair with
the appropriate missing data modeling methods. This idea has been
mentioned briefly in Section 6.2.

• A real-world setting is needed to test the proposed method.

• Other models of the missing data or partial overlapping data can be
studied. (e.g. the Bayesian Group Factor Analysis [75])

• Different Markov Chain Monte Carlo (MCMC) methods, apart from
Gibbs sampling algorithm, such as Metropolis-Hastings [13] or Hamil-
tonian Monte Carlo [16][48] can also help to improve the factorized
results. The diagnostics of the MCMC results can also be performed
more deliberately.

• Other Multi-armed bandit algorithms such as Thompson Sampling [57],
Pursuit Algorithm [70], or Reinforcement Comparison [68] can also be
investigated.

• In the current method, the “arm”, in the context of the Multi-armed
bandit algorithm, is defined as the set of the experiment settings cho-
sen to observe in each Bayesian Optimization iteration. This definition
ignores the current values of the experiment settings. If two arms have
the same parameter settings but at different values, they are still con-
sidered as the same “arm”. Since the values of the settings significantly
affect the result of the method, clever way to model the parameter set-
tings with their values without generating too many numbers of “arm”
can be very beneficial.



Chapter 8

Conclusions

This work has defined and proposed the method to solve the “Bayesian Op-
timization for Partially Overlapping Covariate Data Sources”. The method
has been tested in two experiments, a Random Forest Classifier experiment,
and a Carbon Fiber Manufacturing experiment. The methods and the ex-
periments have shown that the partially overlapping covariate data sources
can be stacked row-wise and model the problem as a Bayesian Optimiza-
tion with missing data. Furthermore, the methods have demonstrated the
usage of Multi-armed bandit algorithms in solving the budget constraint of
choosing the experiment settings. Both have shown improvements when the
proposed methods are applied. Moreover, intriguing phenomena have been
observed and briefly analyzed.

Although there are many major and minor drawbacks in the setup of the
experiment and implementation, the method’s general direction is promis-
ing and has opened many worth investigating new research questions. The
method, with slight modification, can be translated into a process that can
be very beneficial in real-world industrial and agricultural processes and ex-
periments. That is also the goal of this work. Several future directions that
can enhance this work further have been presented in Section 7.2.
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