
 

Permanent link to this version 

http://hdl.handle.net/11311/1156307 
 
 

 
RE.PUBLIC@POLIMI 
Research Publications at Politecnico di Milano 
 

  
  

 
 
  
 
 
 
This is the published version of: 
 
 
J.L. Gonzalo Gòmez, C. Colombo, P. Di Lizia 
Analytical Framework for Space Debris Collision Avoidance Maneuver Design 
Journal of Guidance Control and Dynamics, In press - Published online 21/12/2020 
doi:10.2514/1.G005398 
 
 
 
 
 
The final publication is available at https://doi.org/10.2514/1.G005398 
 
 
 
 
  
 
When citing this work, cite the original published paper. 
 
 
 
 
 



Analytical Framework for Space Debris Collision Avoidance
Maneuver Design

Juan Luis Gonzalo,∗ Camilla Colombo,† and Pierluigi Di Lizia‡

Polytechnic University of Milan, 20156 Milan, Italy
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Ananalytical formulation for collision avoidancemaneuvers involving a spacecraft and a space debris is presented,

including solutions for themaximumdeviation andminimumcollision probability cases.Gauss’s planetary equations

and relative motion equations are used to map maneuvers at a given time to displacements at the predicted close

approach. The model is then extended to map changes in state between two times, allowing one to propagate

covariance matrices. The analytical formulation reduces the optimization problem to an eigenproblem, for both

maximum deviation and minimum collision probability. Two maximum deviation cases, total deviation and impact

parameter, are compared for a large set of spacecraft–debris conjunction geometries derived from European Space

Agency’s Meteoroid and Space Debris Terrestrial Environment Reference (MASTER-2009) model. Moreover, the

maximum impact parameter and minimum collision probability maneuvers are compared assuming covariances

known at the maneuver time, to evaluate the net effect of lead time in collision probability. In all cases, solutions are

analyzed in the b-plane to leverage its natural separation of phasing and geometry change effects. Both uncertainties

and maximum deviation grow along the time axis for long lead times, limiting the reduction in collision probability.

Nomenclature

A = matrix form of the linearized relative motion equations
Ar = matrix form of the linearized relative motion equations

(only for position)
a = semimajor axis, km
b� = impact parameter, km
C = covariance matrix
e = eccentricity
f = true anomaly, deg or rad
G = Jacobian ofKeplerian elementswith respect toCartesian

state vector
Gv = matrix form of the Gauss’s planetary equations
h = angular momentum, km2∕s
i = inclination, deg or rad
M = mean anomaly, deg or rad
P = collision probability
p = parameter of the orbit, km
r = position vector, km
rA = radius of the spacecraft–debris combined envelope, km
s = Cartesian state vector, km and km∕s
T = state transition matrix relating δv at tCAM with δr at tCA
T = orbital period of the spacecraft, s
t = time, s
tCA = time at the close approach, s
tCAM = time at which the collision avoidance maneuver is per-

formed, s
v = velocity, km∕s
Z = state transition matrix relating δv at tCAM with deviation

in the b-plane at tCA

α = Keplerian elements of the orbit � a e i ω Ω M �,
km and deg or rad

Δt = lead time for the collision avoidance maneuver, s
ΔV = relative velocity between debris and spacecraft at the

close approach, km∕s
δb� = deviation in the b-plane after maneuver, km
δr = total deviation after maneuver, km
δv = impulsive maneuver, km∕s
δx = change in generic magnitude x
ζ = coordinate in the time axis of the b-plane, km
μ = gravitational parameter of the primary, km3∕s2
ξ = coordinate in the geometry axis of the b-plane, km
ρxy = correlation for generic variables x and y
σx = covariance for generic variable x
Ω = right ascension of the ascending node, deg or rad
ω = argument of perigee, deg or rad

I. Introduction

T HE need for and complexity of collision avoidance activities
between active spacecraft and debris (or other spacecraft) has

experienced a notable increase in the last couple decades, due to the
growing number of satellites in orbit and significant fragmentations
events (most notably, Fengyun-1C in 2007 [1] and Iridium-33/
Cosmos-2251 in 2009 [2]). The proliferation of objects in Earth orbit
already poses a critical threat to the safe and sustainable use of space,
and it is expected to keep increasing due to recent developments in the
space sector, such as new launch companies driving down the access
cost to space; the popularization of small-, cube-, and nanosats as
affordable yet flexible platforms; and the large constellations being
proposed by both incumbent companies and startups. Several
international efforts are being undertaken to tackle this issue, such
as the Inter-Agency Space Debris Coordination Committee (IADC)
and its space debris mitigation guidelines: a maximum lifetime of
25 years for objects in lowEarth orbit, and the relocation to graveyard
orbits for objects in geostationary Earth orbit. However, complying
with these guidelines introduces additional costs and complexity.
For instance, if a mitigation maneuver is to be performed using the
satellite thrusters, the additional operational time and propellant
requirements have to be considered. Furthermore, this may not be a
feasible option for all kinds of platforms. A cost-effective alternative
for reducing the de-orbiting time of small satellites can be the use of
passive end-of-life de-orbiting methods, such as drag or solar sails
and electrodynamic tethers. On the downside, their relatively large
cross-sectional area appreciably increases the risk of collision with
other spacecraft or space debris during the deorbiting phase [3–5].
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Space situational awareness and collision avoidance activities for
active satellites are also hindered by the fact that debris and spacecraft
tracking, collision risk assessment, and spacecraft operations are
in many cases performed by different entities. The U.S. Strategic
Command (USSTRATCOM) provides a publicly available catalog of
space objects around Earth. The catalog is constructed using obser-
vations from the Combined SpaceOperations Center (CSpOC) space
surveillance network, and orbit determination and propagation algo-
rithms based on the simplified general perturbation (SGP) model
[6,7]. Public data from the catalog are made available in the form of
two-line elements (TLEs). TLEs have a limited accuracy, and come
without information about the uncertainties in the orbit determina-
tion. This implies important limitations to the use of catalog infor-
mation for close approach (CA) prediction, requiring to improve the
accuracy or estimate the uncertainties with additional observations or
numerical techniques [8–10]. The accuracy of CA-related informa-
tion improved substantially with the introduction of conjunction data
messages (CDMs) and conjunction summarymessages (CSMs) [11],
which provide detailed orbit information along with the full covari-
ance quantifying the uncertainties in orbit determination. However,
this information is only provided to the spacecraft operator, and only
when a possible CA is detected. The number of CDM/CSM gener-
ated by USSTRATCOM and posted to Space-Track.org per day can
be in the thousands.
The publicly available information on how different entities carry

out their CA monitoring and collision avoidance maneuver (CAM)
planning activities for the spacecraft they operate is limited. A detailed
overview of the methodology and tools used by European Space
Agency’s (ESA’s) Space Debris Office (SDO), which provides opera-
tional collision avoidance services for ESAmissions and third parties,
is offeredbyBraunet al. in [12].Twokey aspects are highlighted in this
reference: on the one hand, the evolution of the information available to
operators; on the other hand, the introduction of new computational
tools to efficiently handling the increasing amount of information. To
address these issues, the SDO has integrated a variety of tools [12,13].
It maintains the Database Information System Characterizing Objects
in Space (DISCOS) database [14,15], providing physical information
about objects on orbit. Debris analysis is performed using the Debris
Risk Assessment and Mitigation Analysis (DRAMA) software suite
[16], including the Meteoroid and Space Debris Terrestrial Environ-
ment Reference (MASTER) [17] and Assessment of Risk Event
Statistics (ARES) tools. The former provides detailed information on
the space debris population, whereas the latter computes statistical
information such as estimates on annual CAMs required for a given
orbital region and desired level of risk. Collision risk is evaluated with
CollisionRiskAssessment Software (CRASS) [18,19],merging infor-
mation from different sources (TLEs, CDMs/CSMs, ephemeris from
operators), and maintaining its own database [12]. SDO’s capabilities
were recently extendedwith the introduction of CollisionRiskAssess-
ment and AvoidanceManoeuvre (CORAM) [20–22], which performs
extended risk assessment and CAM planning and optimization
through its Collision Risk Computation Software (CORCOS) and
Collision Avoidance Manoeuvre Optimization Software (CAMOS)
tools, respectively.
Another important aspect is the choice of a collision probability

threshold to operate. Setting a threshold too low would increase both
the required effort from the operations team and fuel consumption,
whereas setting it too high can raise the risk to unacceptable levels.
The accuracy improvements on the available information, as well as
the introduction of more advanced software tools, have allowed to
reduce these thresholds in recent times. Reference [12] provides
information about the evolution of the different events’ trigger thresh-
olds and postmaneuver target at the SDO depending on the screening
method. Although the specific values would be mission dependent,
reference values are provided for the threshold to initiate the decision
process (P > 10−4) and for the postmaneuver target (P < 10−6) as of
2013, using the CDM/CSM with full covariance information for
screening.
Despite all the advances, many challenges remain for the future.

The increasing space traffic will raise the need of CAMs by active
satellites and the amount of data to bemanaged, an issue that could be

tackled by the creation of Space Traffic Management protocols and
entities [23], analogously to current air traffic management activities.
The United States has recently proposed to transfer all its civil Space
Traffic Management–related activities to the Department of Com-
merce,§ including many activities currently carried out by CSpOC
such as maintaining the publicly releasable portion of the space
object catalogue, and on-orbit collision avoidance support services.
Regarding space debris identification and tracking, the Space Fence
system currently under development by Lockheed Martin¶ will nota-
bly improve the capabilities of the U.S. Air Force Space Surveillance
Network, allowing to track debris smaller than the current 10 cm limit
(down to 2–5 cm).
In recent years, a significant amount of research has been carried

out on CAMmodeling and optimization to advance the state-of-the-
art and address some of these challenges. Bombardelli proposed in
[24] an analytical formulation for impulsive CAMs based on the
Dromo set of regularized orbital elements. Accurate and relatively
simple expressions are proposed for the characterization of the
relative dynamics in the b-plane, and a procedure for the design of
maximum miss distance CAMs is derived. These results were later
extended by Bombardelli and Hernando-Ayuso [25] to include also
the design of minimum collision probability CAMs. Vasile et al. [26]
proposed an artificial-intelligence-based approach to assist in the
decision-making process for space traffic management activities.
By using a database of CAs and CAMs to train a machine learning
algorithm, their approach accounts for the consequences of a maneu-
ver (e.g., future CAs) when designing the CAM. Kim et al. [27] used
genetic algorithms to tackle the case where several debris approach
the satellite in a short period of time, identifying limitations in the use
of tangential maneuvers to deal with this scenario. Furthermore,
several authors are investigating the possibility to perform so-called
just-in-time CAMs between two debris, using external actions such
as lasers or clouds of gas [28,29].
This paper focuses on the analysis and design of optimal impulsive

CAMs involving a spacecraft and a space debris using analytical
methods. Naturally, the results also apply toCAMsbetween two active
spacecraft provided that only one of them performs a maneuver.
Analytical methods can prove very useful for applications requiring
high computational efficiency, e.g., analyses over large sets of data or
onboard applications. Following the procedure proposed byVasile and
Colombo [30] for the optimal deflection of asteroids, the instantaneous
change in orbital elements due to an impulsive maneuver is computed
through Gauss’s planetary equations. Because the change in orbital
elements is typically small, the deviation at the CA can then be
computed through linearized relative motion equations, leading to a
linear model with a matrix depending on the nominal orbital elements
of the deflected body and the lead time of the maneuver. Applying a
previous result by Conway [31], the maximum deviation optimal
control problem can be reduced to an eigenproblem.
The present work has two main differences compared with the

asteroid deflection model by Vasile and Colombo [30] or its appli-
cation to artificial intelligence-assisted CAM design in [26]. On the
one hand, the formulation is extended to the optimization of mini-
mum collision probability CAMs following the method proposed by
Bombardelli and Hernando-Ayuso [25]. By using Chan’s method for
the computation of collision probabilities between two objects [32],
they reduce the optimal collision probability problem to other with
the same structure as the maximum deviation one considered by
Conway [31], thus solvable as an eigenproblem. On the other hand,
the formulation is extended tomap changes in the state at a given time
to changes in the state at the predicted CA. This is particularly useful
for the analytical propagation of covariance matrices, with the limi-
tation that no perturbations are included. Another minor difference is
that the matrix form of the equations is rearranged, to separate the
effects due to the maneuver, the coasting arc up to the CA, and the

§Space Policy Directive-3, https://www.whitehouse.gov/presidential-actions/
space-policy-directive-3-national-space-traffic-management-policy/ [retrieved
20 November 2018].

¶Source: https://www.lockheedmartin.com/en-us/products/space-fence.html
[retrieved 08 February 2019].
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evaluation of the relative motion equations. This change eases the
extension of the formulation to other force models currently under
investigation [33].
The b-plane (see [34,35]) will be used extensively for the analysis

of the results, leveraging its separation of the displacements at the CA
along a time axis, associated with phasing maneuvers, and a geom-
etry axis, associated to changes in the shape of the orbit. Furthermore,
two different maximum deviation CAMs are considered: maximum
total deviation and maximum impact parameter in the b-plane. Both
CAMs are compared through an extensive sensitivity analysis over
the possible conjunction geometries, derived using statistical data
from ESA’s MASTER-2009 for the space debris population. Special
attention is paid to assessing the qualitative and quantitative effects of
orbit eccentricity, conjunction geometry, and lead time to conjunction
in the optimal direction of the deviating actions and the attainable
deviation.
The effect of lead time in collision probability is also studied in

detail. Uncertainties affecting a possible CA normally reduce as the
time of conjunction approaches. Conversely, the larger uncertainties
associated to long lead times can hinder the attainable collision
probability even if the deviation keeps increasing. To quantify this,
minimum collision probability CAMs are designed for scenarios
where the covariance matrices of spacecraft and debris are known
at themaneuver time. Although this hypothesis differs from the usual
practical scenario for spacecraft operators, where the estimated
covariance at the CA is provided in the CDM/CSM, the results of
this analysis provide a deeper insight on the deviation–uncertainties
tradeoff for the lead time.
The rest of the paper is organized as follows. First, themodels for the

impulsive CAMbetween spacecraft and debris, and the state transition
matrix (STM) relating changes of state at maneuver timewith changes
of state at CA are presented. Based on these models, the maximum
deviation (both total miss distance and impact parameter) and mini-
mum collision probability optimal CAMs are formulated. Then, a
sensitivity analysis over conjunction geometry and lead time is per-
formed for the maximum deviation maneuvers. Both approaches,
maximum total miss distance and maximum impact parameter in the
b-plane, are compared; the evolution of the maneuver orientation is
analyzed; and the accuracy of the analytical approximation is assessed.
Then, the effect of uncertainties on the CAM is studied by comparing
theminimumcollision probability and themaximum impact parameter
CAMs for a set of cases with uncertainties depending on the lead time.
In all cases, b-plane representations of the results allow to gain a better
physical insight on the underlying phenomena. Finally, conclusions
are drawn.

II. Dynamic Model

Given aCAbetween an active satellite and a debris, the objective is
to perform an impulsiveCAM to eithermaximize themiss distance or
minimize the collision probability. The impulsive CAM is performed
at a certain time tCAM before the time of CA tCA, with a lead time
Δt � tCA − tCAM and an instantaneous change in velocity δv. For
short Δt, perturbations other than the impulsive maneuver can be
neglected as a first approximation and the two-body problem model
is adopted for themotion between tCAM and tCA. The impulsiveCAM
is modeled through Gauss’s planetary equations [30,36], giving a
linear relation between δv and the instantaneous change in the
satellite’s Keplerian elements:

δα�tCAM� � Gv�tCAM�δv�tCAM� (1)

where δα��δa δe δi δΩ δω δM �T are the changes in semimajor
axis, eccentricity, inclination, right ascension of the ascending node,
argument of perigee, and mean anomaly, respectively, andGv�tCAM�
is the matrix form of the Gauss’s planetary equations at tCAM. The
derivation of Gauss’s planetary equations can be found in many
classical astrodynamics texts (e.g., [36]), and their particular expres-
sion for the reference frame consider in this paper is reported in
Sec. II.A and reference [30]. Under the two-body problemmodel, the
modification of the orbital elements at tCA coincides with δα�tCAM�

except for themean anomaly, due to the contribution from the change
in mean motion. The δM at the CA can be written as [30]:

δM�tCA� � δM�tCAM� � δMδn � δM�tCAM� � δnΔt (2)

where δMδn represents the change in mean anomaly due to the
change in mean motion δn, which in turn can be related to the change
in semimajor axis at the CAM as

δn �
�����
μ

a3

r
−

���������������������
μ

�a� δa�3
r

≈ −
3

2

���
μ

p
a5∕2

δa (3)

The evolution of δα from tCAM to tCA is now expressed in matrix
form as

δα�tCA� � GM�Δt�δα�tCAM�

�
2
4 I5 05;1

− 3
2

��
μ

p
a5∕2

Δt 0 0 0 0 1

3
5δα�tCAM� (4)

where 05;1 is the 5 × 1 zero matrix and I5 is the 5 × 5 identity matrix.
GM models the change in δα during the coasting arc between tCAM
and tCA, and its derivation is independent from Gv. Although the
previous GM only considers the effects due to the CAM, it could be
extended to include linearized representations of other perturbations
such as J2.
The deviation of the spacecraft at tCA is computed analytically

from δα using linearized relative motion equations [30,37]:

δr�tCA� � Ar�tCA�δα�tCA� (5)

where Ar�tCA� is the matrix form of the linearized relative motion
equations. The detailed derivation of Ar is too long to be reported
here and can be found in textbooks such as [37]. For convenience, its
expression in the reference frame used in this work is reported in
Sec. II.A. Plugging in Eqs. (1) and (4), an STMTmapping changes in
velocity at tCAM with changes in position at tCA is reached:

δr�tCA� � Tδv�tCAM�;
T � Ar�tCA�GM�Δt�Gv�tCAM� (6)

In this expression, each matrix models a different contribution to the
CAM:Gv corresponds to the orbit modification due to the impulsive
maneuver, GM provides the additional change in orbit parameters
during the coasting arc, and Ar maps the orbit modification into a
displacement at theCA.This formulation differs slightly from the one
used in [30,38], where the contribution to δM due to the change in
mean motion was incorporated as part of Ar. Although the new
approach involves the additional matrix GM, it is preferred as it
clearly separates the three parts of the model (CAM, coasting arc,
and displacement evaluation) and more easily allows for the exten-
sion to new types of CAMs (such as the low-thrust CAM in [39,40])
or the inclusion of additional perturbations in the coasting arc.
Equations (1–6) are enough for the modeling of impulsive CAMs;

however, it would be convenient to also have the full STM mapping
changes in the state at tCAM with changes in the state at tCA. Particu-
larly, this would enable an analytical propagation of covariance
matrices instead of requiring computationally expensive methods
like Monte Carlo simulations. The change in Keplerian elements
due to a change in state at tCAM can be written as

δα�tCAM� � �Gr�tCAM� Gv�tCAM� �δs�tCAM� � G�tCAM�δs�tCAM�
(7)

where s � �r; v� is the Cartesian state,Gr is the partial derivative of α
with respect to r (see the Appendix for a detailed derivation), andGv

is the matrix form of Gauss’s planetary equations previously intro-
duced. Same as before, the change in state at tCA is obtained using
relative motion equations:
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δs�tCA� �
�
Ar�tCA�
Av�tCA�

�
δα�tCA� � A�tCA�δα�tCA� (8)

Combining both equations together with Eq. (4) for the relation
between δα at tCAM and at tCA finally yields:

δs�tCA� � A�tCA�GM�Δt�G�tCAM�δs�tCAM� � �Tδs�tCAM� (9)

Note that �T is a square matrix of dimension 6 × 6, and that the
reduced STM T corresponds to the upper-right block of dimension
3 × 3 of �T.
The accuracy of the model will depend on the value of the lead time

Δt. The reason is twofold. On the one hand, by using a two-body
problem formulation for the dynamics the effects in time of all orbital
perturbations except for the impulsive CAM have been neglected. On
the other hand, for a fixed δv, as lead time increases so does the
deviation at the CA, reducing the accuracy of the linearized relative
motion equations. The latter effect is quantified numerically in
Sec. III.A, for both a quasi-circular and an elliptical orbit and several
values ofΔt and δv. Regarding the errors due to orbital perturbations,
they will strongly depend on the nominal orbit, the physical character-
istics of the satellite (e.g., area-to-mass ratio), and the CA configura-
tion. A numerical evaluation of the error between a perturbed and
unperturbed model for different configurations can be found in [25].

A. STM Expression for Particular Reference Frames

The expressions for G, GM, and A, and consequently T and �T,
depend on the reference frames used to project δs�tCAM� and δs�tCA�.
Let us consider two different reference frames: a tangential–normal–
out-of-plane (TNH) frame at tCAM and a radial–transversal–out-of-

plane (RTH) frame at tCA. The TNH frame T � fS; t̂; n̂; ĥg is cen-
tered at the spacecraft’s position and its axes are given by the
tangential direction (i.e., along the velocity), the normal direction
(inward belonging to the orbital plane), and the perpendicular-to-the-
orbit-plane direction. The unit vectors for the TNH frame can be
calculated as

it̂ �
v

kvk ; iĥ � r × v

kr × vk ; in̂ � iĥ × it̂ (10)

where r and v are the inertial position and velocity. The RTH frame

R � fS; r̂; ϑ̂; ĥg is also centered at the spacecraft, and its axes are
oriented along the radial, transversal, and perpendicular-to-the-orbit-
plane directions, respectively. In mathematical form,

ir̂ �
r

krk ; iĥ � r × v

kr × vk ; iϑ̂ � iĥ × ir̂ (11)

The expression for Gv, with δv projected in the TNH frame, can be
found in the literature [30,36]:

Gv�tCAM� �

2
666666666664

2a2v
μ 0 0

2�e�cos f�
v − r

av sin f 0

0 0 r cos θ
h

0 0 r sin θ
h sin i

2 sin f
ev

2e��r∕a� cos f
ev − r sin θ cos i

h sin i

− b
eav 2

�
1� e2r

p

�
sin f − b

eav
r
a cos f 0

3
777777777775

(12)

wheref is the true anomaly, θ � f� ω is the argument of latitude,b is
the semiminor axis of the elliptic orbit,p is its parameter, h is the norm
of the angular momentum, v is the magnitude of the velocity, and r is
the radial distance.The expression forGr with δr projected in a generic
reference frame is developed in the Appendix; particularizing for
the TNH frame by setting r � � rt rn 0 �⊤ and v � � v 0 0 �⊤
one reaches

Gr�tCAM�

�

2
6666666666664

2a2

r3
rt

2a2

r3
rn 0

1
μae

�
h2a
r3

− v2
�
rt � r sin f

ah v 1
μae

�
h2a
r3

− v2
�
rn 0

0 0 sin θ�e sinω
p

0 0 − cos θ�e cosω
p sin i

G51rt �G52v G51rn G53

G61rt �G62v G61rn 0

3
7777777777775

(13)

with

G51 � −
r

h2e
sin f

�
h2

pr3
�p� e2r� − �p� r�v2

r2

�
;

G52 � −
r

hep
�cos f� e�; G53 � �cos θ� e cosω� cos i

p sin i
;

G61 �
b

a2epr2
�r2 − a�p� r�� sin f; G62 �

rb

ha2e
cos f

where rt and rn are the projections of the position vector along the
tangential and normal directions, respectively.
Similarly, the equation corresponding toAr, with δr inRTH frame,

can be taken from Schaub and Junkins [37]:

AT
r �tCA� �

2
66666666664

r
a 0 0

−a cos f r sin f
γ2

�2� e cos f� 0

0 0 r sin θ

0 r cos i −r cos θ sin i
0 r 0

ae sin f
γ

r
γ3
�1� e cos f�2 0

3
77777777775
(14)

where γ �
�������������
1 − e2

p
. Regarding the relative velocity due to δα,

Schaub and Junkins [37] provide the full, nonlinear expressions for
δv with respect to the noninertial rotating frame of the relative
motion, which in this case is centered at the nominal position of
the CA. Linearizing these expressions and adding the terms due to the
rotation of the frame, an expression for Av with δv in RTH frame is
reached:

AT
v �tCA� �

2
6666666666664

− eh sin f
2ap − h

2ar 0

− h sin f
γ2r

h�e�cos f�
γ2p

0

0 0 h
p �e cosω� cos θ�

− h cos i
r

eh
p cos i sin f h sin i

p �e sinω� sin θ�
− h

r
eh
p sin f 0

− ah
γr2

0 0

3
7777777777775
(15)

B. b-Plane Projection

Amore convenient representation of the spacecraft’s deviation can
be achieved using the b-plane [34,35], defined through a local
reference frame B � fD; ξ; η; ζg centered at the debris D and with
unit vectors:

η̂ � vSC − vD
kvSC − vDk

; ξ̂ � vD × η̂
kvD × η̂k ; ζ̂ � ξ̂ × η̂ (16)
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where vD and vSC are the velocities of debris and spacecraft, respec-
tively. The b-plane of the encounter is then the plane ζ–ξ, orthogonal
to the relative velocity of the spacecraft with respect to the debris.
Moreover, it can be checked that the ζ axis is oriented along the
direction opposite to the projection of vD onto the b-plane. One of the
main advantages of using the b-plane for the design of CAMs is that
displacements in the ζ axis are associated with phasing maneuvers
(i.e., time shift), whereas displacements in the ξ axis come from a
geometrical change in the spacecraft’s orbit to modify the minimum
orbit intersection distance (MOID). For this reason, from now on ζ
will be referred to as the time axis, and ξwill be called geometry axis.
In the classic b-plane theory the impact parameter b� is defined as

the intersection of the incoming asymptote of the relative hyperbolic
trajectory and the b-plane. Assuming that the trajectory of the space-
craft with respect to the debris at the CA is nearly rectilinear, a b� can
be defined for our case in an analogous way (although the relative
trajectory is not hyperbolic), and it will be a good approximation of
the minimum miss distance [30]. The condition of nearly rectilinear
relative trajectory will be fulfilled if the duration of the CA is small
compared with the orbital period of the objects (short-term encoun-
ter). Furthermore, b� will also be close to the actual intersection of the
spacecraft’s trajectory with the b-plane. Because of this, from now on
the distance between the debris and the spacecraft on the b-planewill
also be referred to as impact parameter.
The b-plane projection of δr can be expressed in matrix form

as [41]:

δb� � Mδb�δr (17)

with

Mδb� �

2
664
η̂22 � η̂23 −η̂1η̂2 −η̂1η̂3
−η̂1η̂2 η̂21 � η̂33 −η̂2η̂3
−η̂1η̂3 −η̂2η̂3 η̂21 � η̂22

3
775 (18)

where η̂1, η̂2, and η̂3 are the components of unit vector η̂, expressed in
the same reference frame as δr. Recalling Eq. (6), the deviation in the
b-plane for a given δv is

δb� � Zδv;

Z � Mδb�T (19)

C. Maximum Miss Distance CAM

The mathematical formulation for the maximum miss distance
CAM with δv ≤ δvmax is now presented. Assuming a direct impact
(zero miss distance at nominal CA), the objective function for maxi-
mum deviation in terms of δr, Jδr, can be written as

Jδr � kδrk � kTδvk � δvTTTTδv (20)

Analogously, the objective function for maximum impact parameter,
Jδb� , takes the form

Jδb� � kδb�k � kZδvk � δvTZTZδv (21)

In both cases, the impulsive CAM has to fulfill the constraint
δv ≤ δvmax. This constraint is important not only for operational
reasons, but also because both objective functions are unbounded
(i.e., they would lead to an infinite displacement if no δv constraint is
applied).
We can use these expressions to proceed in finding the optimal

maneuver given at a certain time tomaximize themiss distance at CA.
Following the approach proposed byConway [31],maximizing Jδr is
equivalent to maximizing the associated quadratic form by choosing
a δvopt parallel to the eigenvector ofT

TT conjugated to themaximum
eigenvalue. Note that the sign of δvopt is not defined as it does not
affect the magnitude of the deviation [30,31]. Regarding the magni-
tude of the impulse δvopt, it is straightforward to check that the

quadratic form is maximized by using all the available impulse
capability δvmax. The same procedure can be applied for the maxi-
mization of Jδb� by solving the eigenvalue problem for ZTZ.

D. Minimum Collision Probability CAM

Owing to the uncertainties in the orbital state of spacecraft and
debris, the maximum deviation CAM may differ significantly from
theminimumcollision probability one. In a recentwork, Bombardelli
and Hernando-Ayuso [25] proposed an approximate analytical
method for designing minimum collision probability CAMs, using
Chan’s approach for the computation of collision probabilities [32] in
order to reduce the optimization problem to a quadratic form similar
to the one considered by Conway for maximum deflection [31].
Following Chan’s method, the original conjunction in the b-plane,
in which each object has its own spherical envelope and covariance
matrix, is reduced to an equivalent problem by assigning a combined
covariance to the debris (with no envelope) and a combined envelope
to the spacecraft (with no covariance). The spherical envelope for
each object in the original problem is a sphere encompassing the
whole object and centered at its center ofmass,whereas the combined
envelope is centered at the spacecraft and its radius rA is equal to the
sum of the radii of the individual envelopes. The combined covari-
ance in the b-plane reference frame:

C �
"

σ2ξ ρξζσξσζ

ρξζσξσζ σ2ζ

#
(22)

can be calculated as the sum of the individual covariances for both
objects, provided that their determination is statistically independent.
Then, the collision probability between debris and spacecraft can be
approximated through the convergent series:

P�u;w� � e−w∕2
X∞
m�0

wm

2mm!

�
1 − e−u∕2

Xm
k�0

uk

2kk!

�
(23)

with

u � r2A

σξσζ
���������������
1 − ρ2ξζ

q (24)

w �
��

ξ

σξ

�
2

�
�
ζ

σζ

�
2

− 2ρξζ
ξ

σξ

ζ

σζ

�
∕�1 − ρ2ξζ� (25)

where (ξ, ζ) is the position of the spacecraft in the b-plane at the CA.
As shown by Chan [32], accurate results can be obtained for m � 3
for small values of u. Interestingly, the position of the spacecraft only
influences collision probability P through the depth of intrusion w.
Then, Bombardelli and Hernando-Ayuso [25] prove that minimizing
P is equivalent to maximizing an objective function JP defined as

JP �
�
ξ

σξ

�
2

�
�
ζ

σζ

�
2

− 2ρξζ
ξ

σξ

ζ

σζ
(26)

JP can be written in matrix form as

JP � δrTQ�δr � δb�TQ�δb� (27)

where δr and δb� are expressed in the b-plane reference frame, and

Q� �
2
4 1∕σ2ξ 0 −ρξζ∕σξσζ

0 0 0

−ρξζ∕σξσζ 0 1∕σ2ζ

3
5 (28)

also projected in the b-plane reference frame. By substituting the
expressions for δr or δb�, Eqs. (6) and (19), the problem is reduced
to the maximization of a quadratic form of δv, which can be solved in
the same fashion as the maximum deviation case. The main difference
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with respect to the work by Bombardelli and Hernando-Ayuso [25] is
the choice of dynamic model: whereas they develop an STM based on
the Dromo orbital elements (for which time is a dependent variable),
we apply the previously introduced STM based on Gauss’s planetary
equations and linear relative motion. This approach has the advantage
of not requiring the solution of the time equation for every variation of
the orbit of the spacecraft, reducing computational cost as it is fully
analytical,whereas the solution of the time equation requires a numeri-
cal solver. Conversely, the formulation byBombardelli andHernando-
Ayuso [25] can be more convenient for geometry-based studies, as
the independent variable is related to the true anomaly. Furthermore,
having time as a dependent variable may lead to better accuracy for
longΔt. Quantifying these effects would require a comparative analy-
sis that lies out of the scope of this paper.

III. CAM Design and Sensitivity Analysis

This section deals with the design of maximum deviation and
minimum collision probability CAMs between a spacecraft and a
space debris in different practical scenarios, using the models pre-
sented in Sec. II. Realistic test data for the CA is generated consid-
ering current missions for the maneuvering spacecraft, and statistical
data from ESA MASTER-2009 tool [17] for the debris. The lack of
information about the corresponding covariance matrices is tackled
by considering a reference covariance constructed from TLEs and
a corrective procedure to account for the change in true anomaly.
Maximumdeviation CAMs are studied first, performing an extensive
sensitivity analysis over the geometry of the conjunction. The advan-
tages of working in the b-plane are explored, and the accuracy of the
analytical solutions is assessed. Then, the effect of uncertainties is
studied by considering a nominal CA and exploring the behavior of
the minimum collision probability CAMwith its lead time for differ-
ent evolutions of the covariance matrices.

A. Maximum Deviation CAMs

The models presented in Sec. II encompass two different
approaches for maximum deviation CAMs: maximizing either the
total miss distance δr or the impact parameter in the b-plane δb�. An
extensive sensitivity analysis on the geometry of the CA is now
performed comparing both approaches.
Two test cases are selected from current ESAmissions: PROBA-2

(quasi-circular orbit) and the XXM-Newton observatory (highly
elliptical orbit). Their nominal orbital parameters considered for
this study are reported in Table 1.** For the study, the nominal orbit
geometry will be preserved (i.e., semimajor axis, eccentricity, incli-
nation, right ascension of the ascending node, and argument of
perigee), whereas the position inside the orbit (i.e., the true anomaly)
will be changed to study its influence in the CAM.
Regarding the debris, statistical information fromMASTER-2009

[17] is used to cover a wide range of realistic conjunction geometries.
For each position of the spacecraft in its nominal orbit, a set of
possible debris orbits with zero miss distance at CA (direct impact)
is constructed from the ranges in conjunction azimuth, elevation, and
relative velocity given by MASTER. In all cases, the sources for
conjunctions are launchers and mission-related objects. Figure 1
shows the definition of the conjunction azimuth and elevation angles,
whereas the object flux distributions as functions of azimuth, eleva-
tion, and relative velocity for PROBA-2 and XMM are given in
Figs. 2 and 3, respectively. Clear patterns can be appreciated for
the PROBA-2 case in Fig. 2, yielding compact ranges for the

conjunction geometry and relative velocity. Particularly, significant
collision probabilities are only obtained for elevations close to 0 deg.
Furthermore, not all combinations inside the outer bounding values
correspond to a high object flux, as clearly appreciated in the plot for
impact azimuth and relative velocity. The object flux distributions for
theXMMnominal orbit in Fig. 3 show a less regular behavior, but it is
still straightforward to define bounds for the conjunction.
Because the magnitude of the impulsive maneuver does not affect

its optimal direction in the linearized model, there are four free
parameters to be considered in the sensitivity analysis: true anomaly
f0 of the spacecraft at the conjunction, relative velocity ΔV between
the spacecraft and the debris at the conjunction, and azimuth and
elevation angles of the debris in the encounter frame (geometry at the
conjunction). To present the data in a concise manner, the last two are
removed by presenting only the case with the maximum deviation
(i.e., the one with the most effective CAM) for each combination of
true anomaly and relative velocity.
The maximum miss distance CAM results for PROBA-2 are

presented in Figs. 4 and 5, for a δvopt of 1 cm∕s. Because δr depends
linearly with δv in the analytical formulation, results for a different
δvopt can be obtained by scaling. Figure 4 summarizes the effect of
true anomaly, relative velocity at conjunction, and maneuver lead
time in the attainable δr. It is straightforward to check that the former
two have a very small effect on the miss distance, whereas the lead
time increases δr in a regular fashion. Note that, for some combina-
tions of f0 and ΔV no feasible conjunction was found, in the sense
that all resulting candidate debris orbits were hyperbolic, leading to
holes in the constant-lead-time surfaces. In other words, for these
combinations of true anomaly and relative velocity, all of the azimuth
and elevation angles considered in the range given by MASTER led
to hyperbolic orbits, which cannot be the case for an Earth-bound
debris and were discarded. This is only related to the creation of the
synthetic debris population, and has no implication on the applicabil-
ity of the maximum deviation CAM model in those regions. Going
into further detail, Fig. 5 represents the evolution of δrwith lead time
for fixed values of f0 and ΔV. For clarity, these fixed values have
been marked also in Fig. 4, with a red line parallel to the ΔV axis for
fixed f0, and a blue line parallel to the f0 axis for fixed ΔV. As
previously indicated, true anomaly and relative conjunction velocity
have a negligible effect on the miss distance.
The effect of the orbital eccentricity of the spacecraft can be clearly

appreciated in Figs. 6–8 for the XMM test case. Although the
variation of δr with ΔV is still negligible, it now strongly depends
on the position of the spacecraft inside its orbit at the CA. Same as
before, the fixed f0 and fixed ΔV plots in Fig. 7 correspond, respec-
tively, to the red and blue lines in Fig. 6. Regarding the results for
fixed ΔV, it is important to highlight how the best solution for each
period corresponds to performing the maneuver close to the perigee,
and that the highest δr is reached when the maneuver also coincides

Table 1 Nominal orbital parameters for PROBA-2 and XMM

Object Epoch [UTC] a [km] e i [deg] Ω [deg] ω [deg] M [deg]

PROBA-2 2018/04/20 03:18:34 7,093.637 0.0014624 98.2443 303.5949 109.4990 250.7787
XXM 2018/04/27 18:31:05 66,926.137 0.8031489 70.1138 348.8689 95.9905 359.6770

Fig. 1 Conjunction geometryparameterization inESAMASTER-2009.

**Orbit information retrieved from http://www.heavens-above.com
[retrieved 30 April 2018].
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with a whole number of periods (i.e., when the CA takes place at the
perigee). Conversely,minimumvalues for δr are obtained close to the
apogees, and results worsen as the true anomaly of the CA separates
from the perigee of the maneuvering spacecraft’s orbit. Analogous
behaviors are reproduced for the required δvopt for a fixed δr of 5 km,
represented in Fig. 8. Note that, because the formulation is linear in
δvopt, Fig. 8 replicates the evolution of Fig. 7 with the vertical axis
reversed.
Figures 9–13 present the results for the maximum impact param-

eter CAM, identifying some key differences with respect to the
maximum δr cases. Particularly, as it can be seen in Figs. 9 and 12,
the deflection in the b-plane is now influenced by the geometry of
the CA (represented by ΔV). This effect is especially strong in the

PROBA-2 (quasi-circular) test case in Figs. 9 and 10, where δb� goes
to zero asΔV approaches 15 km∕s. The reason lies in the evolution of
the azimuth and elevation angles depicted in Fig. 11, showing that the
conjunction geometry becomes closer to a head-on collision as ΔV
increases. For a head-on collision, trying to move along the time axis
in the b-plane becomes ineffective, requiring a less efficient displace-
ment in the geometry axis. The effect of ΔV in the elliptic case is
much less significant as seen in Fig. 13, but still slightly greater than
for themaximum δr results. On the other hand, the phasing of the CA
and the maneuver with respect to the perigee of the spacecraft’s orbit
plays a very important role for the eccentric case, whereas the quasi-
circular case now shows a small dependence with f0.
The components in the TNH frame of the δv for maximum δr and

maximum δb� are represented in Fig. 14, for the XMM test case. The
true anomaly of the spacecraft at theCA isfCA � 0 deg, whereas the
debris encounters it with a relative velocity of ΔV � 5.0741 km∕s,
an elevation of −37.5000 deg, and an azimuth of −62.5000 deg.
Same as before, in the linearized model the magnitude of the optimal
δv does not affect its orientation. In both CAMs, the normal direction
is dominant during the first period, whereas the tangential direction
overcomes it for longer times. The out-of-plane component is gen-
erally negligible, and it has been omitted in the plot for the maximum
δr CAM for clarity (it falls below the range currently displayed). It is
appreciably larger for the maximum δb� CAM, but still two orders
of magnitude below the normal component. The displacements for
different δv orientations and δv � 1 cm∕s are shown in Fig. 15,
including both optimal CAMs as well as the results of thrusting only
along the tangential, normal, and out-of-plane directions. It is
observed that the maximum δr, maximum δb�, and tangential δv
solutions becomevery similar for lead times greater than half a period
of the maneuvering spacecraft. Note that, depending on the test case,
a separation can appear between the curves for δr and δb�, associated
to the component of δr along the direction perpendicular to the
b-plane. On the other hand, the normal and out-of-plane δv orienta-
tions lead to a bounded and periodic behavior for the displacement,

Fig. 2 Debris object fluxes forPROBA-2nominal orbit fromESAMASTER-2009, as functions of azimuth, elevation, and relative velocity at conjunction.

Fig. 3 Debris object fluxes for XMM nominal orbit from ESAMASTER-2009, as functions of azimuth, elevation, and relative velocity at conjunction.

Fig. 4 Maximummiss distance for PROBA-2 for an impulsive CAM of
1 cm∕s.
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underlying their incapacity to leverage increases in the lead time; this
justifies the fact that the optimal CAM tends to align with the
tangential direction for increasing lead times.
To conclude this part of the study, the accuracy of the linearized

relative motion approximation is assessed by comparing it with a
high-precision numerical propagation. A relative error in the dis-
placement is defined as [30]:

er �
kδrpropagated − δranalyticalk

kδrpropagatedk
(29)

where δrpropagated is the deviation of the spacecraft computed by the
numerical propagation, and δranalytical is the deviation given by the
analytical solution. Figure 16 shows the relative errors as a function of

δvopt and Δt for the maximum δr CAM, both for the PROBA-2 and
XMM test cases. The nominal CA for XMM is the same already
considered in Figs. 14 and 15, whereas for PROBA-2 the true anomaly
of the spacecraft at theCA isfCA � 0 deg and the debris encounters it
with a relative velocity of ΔV � 5.0541 km∕s, an elevation of
−2.1429 deg, and an azimuth of −73.9779 deg. In all cases, the
optimal impulse orientation for maximummiss distance is determined
using the linearized formulation, then δrpropagated and δranalytical are
evaluated for this direction and the desired δvopt, and finally the
corresponding er is computed. Because we are evaluating the error
in the total deviation δr for the maximum deviation CAM, the results
are not actually dependent on the nominal CAs, which are reported
here for completeness. The situation would be different for the impact
parameter and the maximum impact parameter CAM, which depend
on the conjunction geometry. It is observed that the relative error grows
with themaneuver lead timeandwithδvopt, because the accuracy of the
relativemotion approximation decreases as the separation between the
nominal and modified orbits increases. The evolution with lead time
shows a periodic behavior, with lines of local maxima located around
the pericenters. This effect is strongly influenced by eccentricity, being
barely appreciable for the quasi-circular test case but leading to steep
local maxima for the highly eccentric one. This is related to the higher
deviations achievablewith the same impulsemagnitude as eccentricity
increases, and was already observed for the application of linearized
relative motion to asteroid deflection by Vasile et al. [30]. Compared
with their results, theCAMcase showshigher relative errors for similar
values of δvopt; although the lead times are orders ofmagnitude smaller
than in the asteroid case, the gravitational pull of the primary is also
smaller, leading to larger displacements compared with the nominal
orbit, which reduce the accuracy of the linearized formulation. Finally,
although the relative error for the XMM test case reaches large values
between 0.4 and 0.5 for lead times of 5 periods and impulses close to
1 m∕s, this does not limit the practical applicability of the method.
On the one hand, most active satellites follow orbits with small
eccentricities, for which er is small. On the other hand, because the

Fig. 6 Maximum miss distance for XMM for an impulsive CAM of
1 cm∕s.

Fig. 7 Maximum miss distance for XMM, for a CAM of 1 cm∕s and several values of f0 and ΔV.

Fig. 5 Maximum miss distance for PROBA-2, for a CAM of 1 cm∕s and several values of f0 and ΔV.
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error magnitude is related to the displacement with respect to the
nominal orbit, high-error regions in Fig. 16 are associated to conjunc-
tion geometries for which large displacements are achievable with
small values of δvopt (recall Figs. 6 and 12), effectively bounding the
error for maneuvers with fixed displacement rather than fixed impulse
magnitude.

B. Minimum Collision Probability CAMs: Effect of Uncertainties

The analysis in the previous section does not take into account the
effect of uncertainties. Indeed, although the miss distance (or impact

parameter) for a fixed δv can be easily increased by considering a
longer lead time, this will also increase the uncertainties about the
objects’ position and velocity at the CA. This raises the question of
what is the net effect of CAM lead time on collision probability.
Furthermore, the maximum deviation CAM will not necessarily
correspond to the minimum collision probability one for a given
δvopt. For CAs involving objects with large envelopes and uncer-
tainties, such as sails or rocket bodies, designing the CAM to
minimize collision probability can prove more practical from an
operational point of view. To address these key issues, maximum
impact parameter and minimum collision probability CAMs are
studied and compared.
The publicly available information about actual covariance matri-

ces and CAs is very limited, as they are normally provided only to
satellite operators through private CDM/CSM. For this test case, a
sample covariance matrix numerically constructed from TLEs for an
Iridium 33 debris (NORAD ID 33874) is used. The sample covari-
ance has been generated through an orbit determination process
based on the use of the SGP4 analytical propagator. More specifi-
cally, a uniform time grid was adopted, covering an interval of 24 h
centered at the epoch of the TLE of the object with a time step of
15 min. SGP4 was used to generate the state vectors of the object in
Earth-centered inertial (ECI) reference frame at the epochs of the time
grid. Then, a batch least-squares estimatorwas run to fit the generated
vectors using the high-fidelity propagator AIDA [10]. AIDA is based
on the numerical integration of the dynamics of Earth-orbiting
objects, including the following:
1) The gravitational model EGM2008, up to the order specified by

the user (order 10 was adopted in this work)
2) The atmospheric drag with the atmosphere model NRLMSISE-

00 to compute air density
3) Third-body perturbations (moon and sun)
4) Solar radiation pressure with a dual-cone model for Earth

shadow

Fig. 8 Required δvopt to reach a miss distance of 5 km for XMM, for several values of f0 and ΔV.

Fig. 9 Maximum impact parameter for PROBA-2 for an impulsive
maneuver of 1 cm∕s.

Fig. 10 Maximum impact parameter for PROBA-2, for a CAM of 1 cm∕s and several values of f0 and ΔV.
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The output of the estimation process is the mean state vector and
the covariance of the state of the object at the epoch of the TLE,
expressed in the ECI reference frame:

rECIref � ��6.9688E� 3 �2.0931E� 3 −8.0909E� 0 � km
vECIref � �−1.5353E − 1 �4.4754E − 1 �7.3566E� 0 � km∕s

Cjref �

2
6666664

�1.1555E − 2 −2.3144E − 3 −1.1732E − 3 �4.5253E − 7 −5.6796E − 7 −1.0945E − 5

−2.3144E − 3 �1.9147E − 2 �1.4167E − 2 −1.2286E − 5 −2.5535E − 6 −3.3049E − 6

−1.1732E − 3 �1.4167E − 2 �3.0870E − 1 −2.8750E − 4 −8.6188E − 5 −1.2493E − 6

�4.5253E − 7 −1.2286E − 5 −2.8750E − 4 �2.8851E − 7 �7.9940E − 8 �1.1511E − 9

−5.6796E − 7 −2.5535E − 6 −8.6188E − 5 �7.9940E − 8 �4.5997E − 8 �1.4570E − 9

−1.0945E − 5 −3.3049E − 6 −1.2493E − 6 �1.1511E − 9 �1.4570E − 9 �1.2022E − 8

3
7777775

with units of km and km∕s for length and velocity, respectively.
The sample covariance matrix is given at a particular orbital

position; that is, it is associated to a specific true anomaly fref.
However, in order to perform a sensitivity analysis on the effect of
CAM lead time the covariancematrix at themaneuver time is needed.
To address this limitation, a procedure is devised to translate the
reference covariance matrix to an arbitrary true anomaly. Although
the reference covariance could be propagated from fref to the new
true anomaly directly, this would not only update the orientation of
the covariance ellipsoid but also affect its size. The aim is to preserve
the size of the sample covariance ellipsoid, represented by its eigen-
values, while updating only its orientation, represented by its eigen-
vectors. To this end, the following procedure is proposed:

1) The eigenvectors (i.e., principal directions) ek and eigenvalues
(i.e., principal values) λk of Cjref are computed.
2)Cjref is propagated from fref to the desired true anomaly f�, and

its new eigenvectors e�k and eigenvalues λ�k are computed.
3) The new covariance matrix at f� is retrieved by applying the

eigenvalues at fref , λk, to the eigenvectors at f
�, e�k .

Keep in mind that the sample covariance has been constructed for
testing purposes from publicly available TLE data. The covariance
matrices in an actual CDM/CSM can be appreciably smaller, but this
does not affect the performance of the method or the qualitative
analysis.
A sensitivity analysis is now performed for a CA taken from the

previous PROBA-2 test case. The nominal Keplerian elements of
spacecraft and debris at CA are reported in Table 2, corresponding to
a direct impact (zero distance at CA). Both objects are assigned a
covariance matrix, constructed by taking Cjref as base and applying
the procedure outlined in the previous paragraph to adjust for the
change in true anomaly.
The effect of CAM lead time in the uncertainties is evaluated first,

by assuming that orbit determination for each object is performed at
maneuver time, and propagating the corresponding covariance
matrix up to the CA using the analytical STM introduced in
Eq. (9). This is not the usual scenario for satellite operators, who
are normally provided the predicted uncertainties at the CA through
CDMs/CSMs. However, this artificial setup will allow us to gain a
better insight on the limitations to collision risk reduction with long
lead times due to the opposing effects of increasing achievable

displacements and growing uncertainties. Figure 17 shows the com-
bined covariance ellipse in the b-plane, both for orbit determination at
the CA (no lead time) and for a lead time of 5 orbital periods of the
maneuvering spacecraft. As expected, introducing a lead time
increases the size of the ellipse, but this does not occur in an isotropic
manner. Effectively, the ellipse tends to grow along the time axis,
causing its semimajor axis to alignwith it. As previously indicated, in
the b-plane representation phasing-related displacements translate
into displacements along the time axis, simplifying their visualization
and interpretation. Then, as the time between orbit determination and
covariance evaluation increases, phasing-related effects on uncer-
tainty growth become dominant and align the principal axis of the
covariancewith the time axis. This is confirmed by Fig. 18, where the

Fig. 11 Elevation and azimuth angles at CA for the PROBA-2 maximum δb� test case.

Fig. 12 Maximumimpact parameter forXMMfor an impulsivemaneu-
ver of 1 cm∕s.
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Fig. 15 Displacements for several δv orientations and a δvmagnitude of 1 cm∕s.

Fig. 16 Relative errors in the deviation for the maximum miss distance CAM, for PROBA-2 (left) and XMM (right).

Fig. 14 Optimal impulsive CAM components for the XMM test case.

Fig. 13 Maximum impact parameter for XXM, for a CAM of 1 cm∕s and several values of f0 and ΔV.
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evolution with Δt of the angle between the ellipse’s principal direc-
tion and the time axis is represented. Angles are measured counter-
clockwise in the ξ–ζ plane (i.e., corresponding to rotations around
the negative η direction). The angles approach 0 as the lead time
increases, with periodic oscillations leading to local maxima around
the perigee and local minima around the apogee after the first period.
The tendency of the covariance ellipse to grow along and align

with the ζ axis is justified by the representation of dynamics in the
b-plane, where the time axis ζ corresponds to the change in phasing
and the geometry axis ξ to the orbit shape modification. Conse-
quently, it is expected that the maximum impact parameter CAM
will also tend to align with the ζ axis as lead time increases. This
behavior is verified in Fig. 19, showing the angle formed in the
b-plane by the deviation vector and the time axis.
The fact that both uncertainty and miss distance grow along the

same direction in the b-plane casts doubts about the efficiency of
the maximum deviation approach to reduce collision probability. A
better solution can be sought for by trying to minimize collision
probability directly. The minimum collision probability CAM is
expected not only to try to increase the miss distance, but also to

orient the deviation closer to the semiminor axis of the covariance
ellipse in the b-plane. Figure 20 compares the results obtained for the
maximum deviation and minimum collision probability CAMs, in
terms of both the impact parameter and the collision probability. All
cases have an impulsive δvopt of 0.7 m∕s, and a combined envelope
radius of rA � 10 m. Regarding the uncertainties, two different
scenarios are considered: 1) the covariance matrices of both space-
craft and debris are known at the maneuver time, and 2) the covari-
ance of the spacecraft is known at the maneuver time but the
covariance of the debris is available at the CA. In the first scenario
the covariances at CAof both objects changewithΔt, whereas for the
second scenario, only the covariance of the spacecraft does. As
expected, the miss distance for the maximum impact parameter
CAM is always greater than or equal to the miss distance for the
minimum collision probability CAM, and, conversely, the collision
probability for the minimum collision probability CAM is always
smaller than or equal to the collision probability for the maximum
impact parameter CAM. Furthermore, the impact parameter for the
maximum δb� CAM is the same in both scenarios, as it does not
depend on the uncertainties. Focusing first on the scenariowhere both

Fig. 17 Combined covariance ellipse in the b-plane at CA, with orbit determination at CA (left) and 5 periods before (right).

Fig. 18 Orientation of the combined covariance ellipse in the b-plane
with respect to the time axis.

Fig. 19 Orientation of the displaced impact parameter in the b-plane

with respect to the time axis.

Table 2 Spacecraft and debris nominal Keplerian elements

Object a [km] e i [deg] Ω [deg] ω [deg] f0 [deg]

PROBA-2 7093.637 0.0014624 98.2443 303.5949 109.4990 179.4986
Debris 7782.193 0.0871621 88.6896 142.7269 248.1679 1.2233

12 Article in Advance / GONZALO, COLOMBO, AND DI LIZIA

D
ow

nl
oa

de
d 

by
 P

O
L

IT
E

C
N

IC
O

 D
E

 M
IL

A
N

O
 o

n 
D

ec
em

be
r 

23
, 2

02
0 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

53
98

 



covariance matrices are known at maneuver time (solid and dash-dot
lines in Fig. 20), the differences between both CAMs vary strongly
with the lead time due to the evolution of the uncertainties, with some
very notable features taking place for lead times within the first
period. The strong, narrow minima in collision probability during
the first period are due to the fast and irregular initial evolution of the
combined covariance. For some values of Δt, the combined covari-
ance ellipse has an orientation that allows for particularly efficient
minimum collision probability CAMs. The maximum deviation
CAM also shows low collision probability in these regions, indicat-
ing a good alignment in the b-plane between the maximum displace-
ment CAM and the covariance semiminor axis. These minima do not
appear for lead times greater than one period, as both the preferential
direction for displacement and the principal axis of the covariance
tend to align with the time axis. The presence of peaks in the first
period is strongly case-dependent, as observed from the differences
between the solutions propagating both covariances or only that
of the spacecraft. Figure 21 confirms that the minimum collision
probability solution tends to separate from the ζ axis more than the
maximum impact parameter one. Although it does go to 0 or 180 deg
at the pericenters, same as the maximum δb� case, the evolution

between these points shows large ranges of variation, as theminimum
collision probability CAMsteers away from the principal direction of
the combined covariance. The evolution of impact parameter and
collision probability in Fig. 20 for the minimum collision probability
CAM shows a relatively irregular behavior, due to the propagation of
the uncertainties and their combination at the CA. On the other hand,
the results corresponding to having the orbit determination of the
spacecraft at the maneuver and the orbit determination of the debris
at the CA (dotted and dashed lines in Fig. 20) show a smoother
variation. The largest differences with respect to the previous sce-
nario take place during the first period, especially for the collision
probability. Most notably, the first minimum in collision probability
is deeper and displaced toward higher lead times (but still under half a
period), and the separation in miss distance between both CAM
strategies strongly decreases. Regarding the miss distance, the sol-
ution propagating only the spacecraft covariance shows fewer local
minima. This is consistent with the results by Bombardelli and
Hernando-Ayuso [25], who obtained a smoother variation for test
cases where the combined covariancematrix is fully known and fixed
at the CA.
Although the best CAMs in terms of collision probability corre-

spond toΔt in the first period, their practical applicability is hindered
by operational constraints. First, a last-minute CAM carries signifi-
cant risks if it is not performed correctly. Furthermore, satellites in
LEO may spend several orbits without coverage from their ground
control stations, limiting the windows for implementing the CAM.
Finally, other figures of merit apart from δvmay be considered, such
as minimizing the time the satellite spends out of operation due to the
CAM or the cost to restore its nominal orbit afterward. Interestingly,
Fig. 20 shows that collision probability remains stable and slowly
decreases in average for Δt greater than one period.
The behavior of the maximum deviation and minimum collision

probability strategies can be better understood by studying the
evolution of the deviated trajectories in the b-plane. Figure 22
shows the b-plane representations of the maximum impact param-
eter and minimum collision probability CAMs for four different
lead times, for the scenario where both covariance matrices are
known at maneuver time. For convenience, these lead times are
also marked in Fig. 20. Three of the cases correspond to lead times
smaller than one period, whereas the last one has aΔt of 4.5 periods.
As previously indicated, although CAMs within the last revolution
before the encounter can provide the best performance in terms of
collision probability reduction and have more dynamic interest,
operational constraints for practical applications will normally
require to perform the CAM several revolutions in advance. Each

Fig. 20 Impact parameter (left) and collision probability (right), for maximum impact parameter and minimum collision probability CAMs.

Fig. 21 Orientation of the minimum collision probability CAM in the
b-plane with respect to the time axis.
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plot shows the 1-sigma covariance ellipse at CA and its principal
axes for the corresponding lead time, together with the trace of the
maximum δb� and minimum collision probability CAMs for values
of Δt between 0 and the nominal one. The points in the traces are
equispaced in lead time, meaning that a higher separation between
markers in the plot is associated with a faster variation of the
solution as Δt increases. To ease the visualization and comparison
of the results, a circle in dashed lines representing the impact
parameter is included for each solution, and the final position in
the b-plane is highlighted with a small circle.
The first example, depicted in Fig. 22a, corresponds to the first

localminimum in collision probability fromFig. 20 (Δt � 0.1241T).
As expected, the significant difference in collision probability
between both CAM strategies is due to the relative orientations of
the deviated trajectories with respect to the principal directions of the
covariance ellipse, with the minimum collision probability CAM
closely aligned with the smallest principal direction. Interestingly,
the ellipse and the maximum deviation solutions are not yet aligned
with the time axis, as the lead time is short. Observing the traces, it is
checked that for short lead times the maximum deviation is achieved
by moving along the geometry axis, whereas the minimum collision
probabilityCAMfollows the initial direction of the semiminor axis of

the covariance ellipse (which in general will be different for each
conjunction).
Figure 22b corresponds to the first local maximum of collision

probability for the minimum collision probability CAM (Δt �
0.5095T), which also corresponds to the first local minimum of
impact parameter for this CAM, and lies in the close vicinity of the
first local maximum of collision probability for the maximum
deviation CAM. Same as before, the minimum collision probability
solution alignswith the smallest principal direction of the covariance,
although this comes at a large cost for the attainable impact param-
eter. In fact, its trace shows that the impact parameter is actually
decreasing with Δt, and the larger separation between data points
indicates that the rate of variation is increasing. Conversely, the
maximum impact parameter solution lies along the principal direc-
tion of the ellipse, achieving a notably higher miss distance but with
an appreciably worse collision probability. Contrary to the minimum
collision probability solution, the trace for the maximum δb� CAM
shows a smooth and uniform evolution.
The third example, see Fig. 22c, corresponds to the global mini-

mum in collision probability in Fig. 20 (Δt � 0.8028T). The b-plane
representation shows that this global minimum is achieved through a
combination of impact parameter and orientation with respect to the

a)     t = 0.1241 T b)     t = 0.5095 T

c)     t = 0.8028 T d)     t = 4.5000 T

Fig. 22 b-Plane representation of the maximum impact parameter and minimum collision probability CAMs, for several lead times.
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covariance ellipse. For longer lead times the maximum attainable
deviation will keep increasing, but it will tend to closely align with
the ellipse as previously commented. This implies that, when uncer-
tainty evolution is taken into account, performing themaneuver sooner
than the last orbital period of the spacecraft before the CA does not
necessarily provide a significant advantage in terms of collision
probability. Looking at the traces, the maximum δb� CAM follows a
smooth and oscillatory behavior (recall Fig. 19), as it is not affected by
the covariance orientation. Meanwhile, the minimum collision prob-
ability CAM shows an irregular evolution as it tries to avoid the
principal axis of the moving covariance (see Fig. 18), but the final
points of the trace begin to align with the time axis to leverage the
higher displacements achievable through phasing.
In all the previous examples, the CAM was performed during

the last revolution before the CA. Although these solutions are
very interesting from a dynamic perspective and provide great insight
about the evolution of CAMs and uncertainties in the b-plane, their
applicability in an operational scenario is limited. To address this,
a case with a lead time of 4.5 periods is depicted in Fig. 22d. The
displacements and collision probabilities are, respectively, 10.4401 km
and 2.8253 10−6 for the maximum impact parameter CAM, and
10.3924 km and 2.7921 10−6 for the minimum collision probability
CAM. The trace for the maximum impact parameter CAM shows a
regular and periodic behavior, unaffected by the evolution of the
covariance, whereas the minimum collision probability one displays
a more irregular pattern. However, by comparing with previous sol-
utions it is observed that the variability of the minimum P CAM
decreases with lead time, growing along the covariance but trying to
steer clear from the principal axis. This is consistent with the results in
Fig. 20, where the differences between both CAMs decreased as
phasing effects became dominant.
The evolution of the components of δv for each type of CAM is

represented in Fig. 23, again for the scenario where both covariance

matrices are known at maneuver time. Both CAMs tend to align with
the tangential direction for lead times greater than a period, but the
minimum collision probability one presents small deviations and
higher values of the other two components. This is due to the
balancing of the effects of impact parameter and in-b-plane orienta-
tion in the collision probability. Furthermore, the evolution with lead
time of the uncertainties results in a less smooth short-term evolution
of the control orientation.
Finally, the required δvopt to achieve a collision probability of 10

−5

for the previous test case with both covariances known at tCAM and
several values of the combined envelope radius are shown in Fig. 24.
As expected, the required δvopt is smaller for the minimum collision
probability case than for the maximum δb� one, and it increases with
the size of the envelope.

IV. Conclusions

The design of impulsive CAMs between active spacecraft and
space debris has been studied in detail, considering different control
strategies and taking into account the effect of uncertainties. An
analytical approximation relating the change of velocity of the space-
craft at maneuver time with the deviation at the conjunction has been
applied, leveraging Gauss’s planetary equations to compute the
instantaneous change in orbital elements and then the linearized
relative motion model to map it into a displacement at the CA. This
model, already present in the literature, has been extended to map
changes in state at a given time to changes in state at the conjunction,
which allows one to propagate covariance matrices analytically.
Additionally, an alternative formulation relating the impulsive
CAM to changes in the impact parameter in the b-plane has been
proposed.
Two different control strategies have been considered: maximum

deviation and minimum collision probability. In both cases, the
analytical formulation allows one to reduce the optimization problem

Fig. 23 Optimal impulsive CAM components for maximum δb� (left) and minimum collision probability (right).

Fig. 24 δvopt required to achieve a collision probability of 10−5, for different CAM strategies and envelope sizes.
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to an eigenproblem determining the direction of the CAM. For the
maximum deviation problem, two metrics have been compared: total
miss distance and impact parameter in the b-plane. An extensive
sensitivity analysis on the geometry of the spacecraft–debris conjunc-
tion,with ranges basedon statistical data for the debris population from
ESA’sMeteoroid andSpaceDebris Terrestrial Environment Reference
(MASTER-2009) model, has shown that both approaches yield con-
sistent results. However, working in the b-plane has proven more
advantageous as it decomposes the deviation into effects due to the
change in phasing or to the modification of the orbit geometry.
Furthermore, optimizing directly for the impact parameter neglects
the displacements perpendicular to the b-plane of theCA,which do not
contribute to reducing the minimum distance between both objects.
As lead time for the CAM increases, both the uncertainties and the

maximum deviation CAM tend to align with the time axis in the
b-plane, which may limit the total decrease in collision probability
from the CAM. This effect has been analyzed by comparing the
maximum deviation andminimum collision probability solutions for
a range of maneuver lead times. Because the aim was to analyze the
opposing effects of deviation increase and uncertainty growth with
lead time, the covariance matrices have been assumed to be known at
maneuver time and propagated up to the CA. This is not the situation
for satellite operators, who are normally provided the predicted
uncertainties at the CA. The results show that minimum collision
probability CAMs experience faster variations in the b-plane as they
try to avoid the principal direction of the covariance, particularly
during the last orbital period before the CA, which in turn leads to
smaller deviations. A key observation, consistent with other works, is
that the optimum δv for both CAM strategies tends to align with the
tangential direction for lead times greater than half a period of the
spacecraft’s orbit.
The numerical test cases show that the minimum collision proba-

bility CAM outperforms the maximum deviation one in terms of
propellant requirements to meet a given threshold for the collision
probability. The differences are especially significant for CAMs
performed during the last orbit before the CA. Although these last-
minutemaneuvers are normally not feasible in practical scenarios due
to operational constraints, the minimum collision probability CAM
still outperforms the maximum deviation one for lead times greater
than a period (though the differences are reduced). It is then con-
cluded that the minimum collision probability CAM design method-
ology is preferable, in concordance with the findings of previous
research such as Bombardelli and Hernando-Ayuso [25].
The accuracy of the proposed model has been assessed for a

significant range in lead times and impulse magnitudes, showing that
errors remain small for practical scenarios.

Appendix: Jacobian of Orbital Elements with Respect
to Position Vector

The partial derivate of α � � a e i Ω ω M �⊤ with respect
to v is reported in the classic book by Battin [36]. However, the
derivation of ∂α∕∂r is not included as it is not needed to obtain
Gauss’s planetary equations. In this Appendix we outline the deriva-
tion of ∂α∕∂r following a procedure analogous to the one in [36]. The
expressions for the partial derivatives are given in terms of orbital
parameters and generic position and velocity vectors, meaning that
they can be applied to any reference frame by choosing adequate
expressions for r and v.
A consistent ordering of vector and matrix multiplication oper-

ations is important for the developments hereafter. In the following,

�
∂u
∂v

�
ij

� ∂ui
∂vj

and vectors are treated as column vectors unless transposed.
Some equations that will be of utility are now presented. The vis-

viva or energy integral takes the form

μ

�
2

r
−
1

a

�
� v2 (A1)

Several relations can be established for the semilatus-rectum p, the
semimajor axis a, and the semiminor axis b:

p � h2

μ
� b2

a
� a�1 − e2� (A2)

Auseful relation between r, v, and the true anomaly f is given in [36]:

r ⋅ v � μ

h
re sin f (A3)

The partial derivative of the distance rwith respect to r takes the form

∂
∂r

r � ∂
∂r

��������
r⊤r

p
� r⊤

r
(A4)

and from it the partial derivative of the position unit vector ir can be
obtained as

∂ir
∂r

� ∂
∂r

�
r

r

�
� 1

r
I3 −

1

r3
rr⊤ � −

1

r
�iri⊤r − I3� (A5)

where I3 is the 3 × 3 identity matrix.

Variation of the Semimajor Axis

Taking the partial derivative of the vis-viva equation, Eq. (A1),
with respect to r,

μ

�
−

2

r2
∂r
∂r

� 1

a2
∂a
∂r

�
� 0

solving for the partial derivative of a and introducing Eq. (A4)
leads to

∂a
∂r

� 2a2

r3
r⊤ (A6)

Variation of the Angular Momentum

Although angular momentum h is not part of α, it will be needed
for further derivations. The angular momentum vector h can be
written as

h � −v × r � −Svr

where Sv is the skew-symmetric matrix associated to operator v× ∘:

Sv �
2
4 0 −vz vy

vz 0 −vx
−vy vx 0

3
5

Using this notation, the partial derivative of h with respect to r is
simply

∂h
∂r

� S⊤
v (A7)

The partial derivative for h can now be obtained by taking the partial
derivative of h2 � h⊤h with respect to r and substituting Eq. (A7),
yielding

∂h
∂r

� �v × ih�⊤ (A8)

where ih is the angularmomentumunit vector. This expression can be
rewritten using Lagrange’s formula for the expansion of the triple
product and plugging in Eq. (A3):
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∂h
∂r

� v2

h
r⊤ −

re

p
sin fv⊤ (A9)

Variation of the Eccentricity

From the definition of the semilatus rectum, Eq. (A2), and recall-
ing the previous results, it is straightforward to reach

∂e
∂r

� −
1

μae
�v × h�⊤ � p

r3e
r⊤

or, alternatively, applying Lagrange’s formula and Eq. (A3):

∂e
∂r

� 1

μae

�
h2a

r3
− v2

�
rT � r sin f

ah
v⊤ (A10)

Variation of the Inclination and Longitude of the Node

The angular momentum vector can be expressed in the inertial
frame as

h � hih � h�sinΩ sin iix − cosΩ sin iiy � cos iiz�

where ix, iy, and iz are the unit vectors along axes x, y, and z,
respectively. Taking the partial derivative with respect to r leads to

∂h
∂r

� ih
∂h
∂r

� h sin iin
∂Ω
∂r

− him
∂i
∂r

where in � cosΩix � sinΩiy is the line of nodes unit vector, and
im � ih × in. Substituting Eq. (A7) and projecting along in leads to
the partial derivative for Ω:

∂Ω
∂r

� 1

h sin i
�Svin�⊤ � 1

h sin i
�v × in�⊤ (A11)

whereas projecting along im yields the partial derivative for i:

∂i
∂r

� −
1

h
�Svim�⊤ � −

1

h
�v × im�⊤ (A12)

Cross products v × in and v × im can be rewritten in a more
convenient way expressing the velocity vector as [36]

v � −
μ

h
sin fie �

μ

h
�e� cos f�ip

where ie is the eccentricity unit vector, and ip � ih × ie. Performing
some manipulations one obtains:

v × in � −
μ

h
�cos θ� e cosω�ih;

v × im � −
μ

h
�sin θ� e sinω�ih

Substituting these expressions, Eqs. (A11) and (A12) take the more
convenient forms:

∂Ω
∂r

� −
cos θ� e cosω

p sin i
i⊤h (A13)

∂i
∂r

� sin θ� e sinω

p
i⊤h (A14)

Variation of the Argument of Pericenter, Argument of
Longitude, and True Anomaly

The argument of pericenterω is related to the argument of latitude θ
and the true anomaly f through the expression θ � ω� f, leading to

∂ω
∂r

� ∂θ
∂r

−
∂f
∂r

The partial derivative for the true anomaly is obtained first. From the
equation of the orbit,

r�1� e cos f� � h2

μ

it is possible to derive

re sin f
∂f
∂r

� ∂r
∂r

�1� e cos f� � r cos f
∂e
∂r

−
2h

μ

∂h
∂r

However, solving for ∂f∕∂r directly from this equation would lead to
singularities for f � 0, π. On the other hand, taking the partial deriva-
tive of Eq. (A3) with respect to r leads to

re cos f
∂f
∂r

� h

μ
v⊤ � r ⋅ v

μ

∂h
∂r

− e sin f
∂r
∂r

− r sin f
∂e
∂r

which is singular for f � 	π. Combining both equations an expres-
sion valid for all f is obtained:

re
∂f
∂r

� sin f
∂r
∂r

� 1

μ
�cos fr ⋅ v − 2 sin fh� ∂h

∂r
� h cos f

μ
v⊤

Substituting for the knownpartial derivatives andmanipulating to get a
more compact form one finally reaches

∂f
∂r

� r

eh2

�
sinf

�
h2

r3
− �r� p� v

2

r2

�
r⊤ �

�
h

p
�cosf� e� � eh

r

�
v⊤

�
(A15)

Alternatively, the norm of the velocity can be eliminated by using the
vis-viva equation, Eq. (A1):

∂f
∂r

� r

eh2

�
μ

ar3
��r − a��p� r� − ra� sin fr⊤

�
�
h

p
�cos f� e� � eh

r

�
v⊤

�
(A16)

Thepartial derivative of the argument of latitudeθwith respect to r is
obtained following an analogous procedure to the one by Battin [36]
for ∂θ∕∂v. We begin by expressing θ in terms of Ω, ix, iy, and ir:

cos θ � in ⋅ ir � cosΩ�ix ⋅ ir� � sinΩ�iy ⋅ ir�

Taking the partial derivativewith respect to r, substituting forEq. (A5),
and operating:

∂θ
∂r

� − cos i
∂Ω
∂r

� 1

r
i⊤ϑ

Replacing ∂Ω∕∂r with Eq. (A13) and expressing the transversal unit
vector iϑ in terms of r and v, an expression with the same structure of
previous results is reached:

∂θ
∂r

� �cos θ� e cosω� cos i
p sin i

i⊤h −
e

pr
sin fr⊤ � 1

h
v⊤ (A17)

Finally, the partial derivative for the argument of pericenter ω is
obtained combining the results for f and θ:
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∂ω
∂r

� �cos θ� e cosω� cos i
p sin i

i⊤h

−
r

h2e
sin f

�
h2

pr3
�p� e2r� − �p� r� v

2

r2

�
r⊤

−
r

hep
�cos f� e�v⊤ (A18)

Variation of Eccentric and Mean Anomalies
for Elliptic Orbit

For the particular case of elliptic orbit the eccentric anomaly E is
defined as

cosE � cos f� e

1� e cos f

Taking the partial derivative with respect to r and using relation
b sinE � r sin f (see [36], Sec. 4.3) to remove the trigonometric
terms in E, one reaches

∂E
∂r

� − sin f
ra

pb

∂e
∂r

� r

b

∂f
∂r

(A19)

Substituting previous results, grouping in r⊤ and v⊤, and simplifying,

∂E
∂r

� r

μbe

�
− sin f

aμ� r�rv2 − μ�
r3

r⊤ � h

p
�cos f� e�v⊤

�
(A20)

or alternatively, using the vis-viva equation, Eq. (A1), to remove v2,

∂E
∂r

� r

μbe

�
μ sin f

r2 − ra − a2

ar3
r⊤ � h

p
�cos f� e�v⊤

�
(A21)

Finally, the partial derivative for the mean anomaly can be derived
from Kepler’s equation:

M � E − e sinE

Taking the partial derivative, plugging in Eqs. (A19), (A10), and
(A16), and simplifying,

∂M
∂r

� rb

ha2e

�
h

pr3
�r2 − a�p� r�� sin frT � cos fvT

�
(A22)
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