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Abstract
The particle finite element method (PFEM) is a powerful and robust numerical tool for the simulation of multi-physics 
problems in evolving domains. The PFEM exploits the Lagrangian framework to automatically identify and follow interfaces 
between different materials (e.g. fluid–fluid, fluid–solid or free surfaces). The method solves the governing equations with 
the standard finite element method and overcomes mesh distortion issues using a fast and efficient remeshing procedure. 
The flexibility and robustness of the method together with its capability for dealing with large topological variations of the 
computational domains, explain its success for solving a wide range of industrial and engineering problems. This paper pro-
vides an extended overview of the theory and applications of the method, giving the tools required to understand the PFEM 
from its basic ideas to the more advanced applications. Moreover, this work aims to confirm the flexibility and robustness of 
the PFEM for a broad range of engineering applications. Furthermore, presenting the advantages and disadvantages of the 
method, this overview can be the starting point for improvements of PFEM technology and for widening its application fields.

1  Introduction

The last decades have seen a growing interest in the devel-
opment of computational methods for the simulation of 
engineering problems. A robust and efficient numerical 
simulation is particularly complex in the presence of multi-
physics phenomena and/or large deformations of the physi-
cal domains. Typical examples can be found in unsteady 
free-surface fluid dynamics problems, fluid–structure 
interaction applications with large motions of fluid–solid 
interfaces, non-linear solid mechanics with large changes 
of the topology and contact of solid bodies, and thermal-
mechanical coupled analysis in the presence of phase-change 
phenomena.

To tackle these complex problems, the Finite Element 
Method (FEM) has been generally privileged. In order to 
solve a problem in mechanics with the FEM, the reference 

configuration1 should be provided with a mesh. Depending 
on the framework considered, different FEM approaches 
arise.

For continuum mechanics problems, in a Eulerian 
approach, the finite element mesh is fixed and the material 
moves across the grid, being the mesh nodes dissociated 
from physical particles. Due to the relative motion between 
the material and the grid, convective terms appear in the 
definition of the time derivatives. Eulerian meshes are par-
ticularly suited for large deformation problems in enclosed 
domains, as those generally considered in standard Compu-
tational Fluid Dynamics (CFD). On the other hand, they do 
not provide a natural definition of evolving interfaces (like 
a free surface in fluid flows), calling for ad-hoc techniques 
such as level set [97] or volume of fluid[42] approaches.

On the contrary, in a Lagrangian approach, the finite 
element mesh moves along with the continuum body. Con-
sequently, boundaries and interfaces are naturally tracked 
during the motion allowing for a simpler imposition of 
boundary conditions. As the material points coincide with 
the grid nodes, no convective terms appear in the governing 
equations and material derivatives reduce to time deriva-
tives[23]. Also the integration points move with the material, 
so constitutive laws are evaluated at the same material points 
for all the duration of the analysis. This feature is particu-
larly useful for materials with history-dependent behaviour. 
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Nevertheless, in large-deformation problems, the mesh can 
undergo excessive distortion leading to accuracy loss or even 
to compromise the FEM calculation.

Arbitrary Lagrangian Eulerian (ALE) description gives 
a possibility to overcome the typical difficulties related to 
Lagrangian and Eulerian approaches. In the ALE descrip-
tion, the reference configuration is chosen ad-hoc to reduce 
mesh distortion and, in general, does not coincide either with 
material or spatial configurations. The mesh is defined in 
this reference configuration and moves independently from 
the material motion. ALE strategy exploits some of the 
advantages of both Lagrangian and Eulerian descriptions, 
however, the method has important limitations for very large 
and unpredictable domain deformations. In these cases, also 
the ALE mesh can become too distorted, reducing or com-
promising the accuracy of the computation.

In this work, we focus on the use of Lagrangian 
approaches in the presence of very large deformations of 
the domain. It is worth mentioning that there exist different 
examples of Lagrangian mesh-based solvers for the solution 
of mechanical problems also in the presence of significant 
deformations. For example, Hassager and Bisgaard[40] pro-
poses a Lagrangian FEM for the solution of non-Newtonian 
fluid flows. Ramaswamy et al.[102] uses a Lagrangian FEM 
in conjunction with a fractional step method to solve small-
amplitude sloshing problems. In[101], the same research 
group solves fluid dam-break problems and large-amplitude 
sloshing, and in[41], a solitary wave propagation. All these 
Lagrangian methods maintain the same discretization for all 
the duration of the analysis, leaving the mesh free to move 
and, eventually, deteriorate. Consequently, these approaches 
apply only to analyses in which the discretized domain does 
not undergo very large deformations, thus limiting the appli-
cations to real case problems.

Mesh deterioration constituted for a long time the intrin-
sic limit of Lagrangian mesh-based solvers. In the literature, 
there exist two different options to overcome this endemic 
feature of Lagrangian mesh-based solvers: to introduce a 
remeshing technique or to abandon completely the concept 
of mesh. The latter option gives rise to the so-called mesh-
less methods. These techniques represent the behaviour of a 
physical problem by a collection of particles. Each particle 
has assigned all physical properties and moves according 
to its weight and the interaction forces with the neighbour 
particles. Over the last decades, several meshless methods 
have been proposed, based either on weak or strong forms of 
the conservation equations. Meshless methods fall outside 
the scope of this review. An interested reader can refer to 
e.g.[67].

The second possibility to avoid mesh distortion is a 
remeshing technique. Here, when the Lagrangian mesh 
becomes too distorted, a new mesh is created with an 
ad-hoc procedure. An example of the application of this 

technique to fluid flow problems can be found in[36], where 
the authors reconstruct locally triangular meshes to solve 
fluid dynamics problems with a finite difference approach. 
Alternatively, in[3] a new finite element mesh is built from 
scratch whenever the elements become too distorted. Mut-
tin et al.[80] uses a Lagrangian finite element method to 
simulate metal casting problems with an automatic remesh-
ing technique to avoid mesh distortion. Radovitzky and 
Ortiz[100] and Malcevic and Ghattas[68] propose a con-
tinuous and adaptive remeshing at each time step. All these 
Lagrangian approaches are based on some form of remesh-
ing techniques. In all cases, when a new mesh is generated, 
the results need to be remapped from the old to the new 
mesh. Unavoidably, these operations introduce unwanted 
numerical diffusion into the numerical solution[36].

An innovative idea to exploit the Lagrangian framework 
and overcome mesh distortion issues has been proposed by 
Idelsohn et al.[52]. They introduced the so-called Particle 
Finite Element Method (PFEM), an innovative numerical 
tool able to solve complex non-linear problems in signifi-
cantly evolving domains[52, 87].

The PFEM combines the accuracy and robustness of 
mesh-based techniques with the advantages of particle-based 
methods. The PFEM discretizes the physical domain with 
a mesh on which the differential governing equations are 
solved with a standard finite element approach. Following 
a Lagrangian description, the mesh nodes move accord-
ing to the equations of motion, behaving like particles and 
transporting their momentum together with all their physical 
properties. In the PFEM, the mesh distortion issue, typical of 
Lagrangian mesh-based solvers, is overcome by generating a 
new mesh when the current one gets too distorted. However, 
unlike the previously mentioned methods, to avoid remap-
ping from mesh to mesh, the PFEM keeps the nodes of the 
previous mesh fixed. The new connectivity is built using 
the Delaunay Tessellation and a specific technique is used 
to identify internal and external boundaries. The obtained 
mesh is then used as the support over which the differential 
equations are solved in a standard FEM fashion.

Although the PFEM was initially conceived for fluid 
dynamics and fluid–structure interaction problems, the 
method soon was been extended to the solution of non-linear 
solid mechanics problems and to different types of multi-
physics problems interesting for varied fields of engineering 
and technology. This paper provides an extended overview 
of the theory and applications of the method and it contains 
all the ingredients to understand the PFEM from its basics 
to the more advanced features. A very extended literature 
review of the method is also given by highlighting the main 
advances of each contribution. The new techniques arisen 
from the original PFEM formulation are also presented.

The paper is structured as follows. Section 2 introduces 
the underlying and general concepts of the Particle Finite 
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Element Method (PFEM). Section 3 gives an extended 
review of the application of the PFEM to fluid dynamics 
problems. In Sect. 4, the use of the PFEM in fluid–structure 
interaction problems is examined, while in Sect. 5, the appli-
cation of the method to non-linear solid mechanics is con-
sidered. Section 6 is dedicated to the description of PFEM 
for other coupled problems, namely multi-fluids and ther-
mal–mechanical coupled analysis. In Sect. 7, some signifi-
cant applications of the method to several engineering and 
industrial problems are shown, while Sect. 8 shows some of 
the recent advances in the PFEM formulation. Finally, the 
concluding remarks of this work are given in Sect. 9.

2 � The Particle Finite Element Method 
(PFEM)

The PFEM is a numerical technique developed for the solu-
tion of multi-physics problems involving large deformations 
of the domain. It was originally conceived to treat free-sur-
face fluid flows[52] and fluid–structure interaction phenom-
ena[53], but later it has been applied to many other physical 
problems (see next sections for details).

The key idea of the PFEM is to combine a Lagrangian 
Finite Element Method (FEM) with an efficient and fast 
remeshing procedure. In the PFEM, the domain is defined 
by a set of particles (coinciding with the mesh nodes) that 
move in a Lagrangian manner according to the calculated 
nodal variables (e.g. velocity or displacements) and bring-
ing their physical properties (e.g. density, viscosity). Unlike 
meshless approaches, the interacting forces between parti-
cles are evaluated using a finite element mesh. In this sense, 
the PFEM can be seen as both a FEM-based and a particle 
method.

One of the most characteristic features of the PFEM is 
the mesh regeneration algorithm. Whenever the Lagrangian 
motion of the nodes leads to an excessively distorted mesh, 
such mesh is deleted and a new one is generated over the 
same set of nodes. To do so, after the elimination of the ele-
ments of the previous distorted mesh, a Delaunay triangula-
tion algorithm is used to rebuild the element connectivity, 
and an alpha shape scheme [25] is used to define the internal 
and external boundaries (see the next section). In case of 
data stored at the element integration points (typically, his-
torical variables in solid mechanics problems), Gauss points 
data must be transferred from the old mesh to the new one 
(Sect. 5.1).

To summarize, the fundamental features of the PFEM 
are the following: 

1.	 Lagrangian framework for the description of motion.
2.	 Mesh nodes are treated as physical particles.
3.	 All information is stored at the mesh nodes.
4.	 The FEM is used to solve the governing equations.
5.	 Mesh connectivity is regenerated with a Delaunay Tes-

sellation.
6.	 Boundaries are recovered through ad-hoc techniques 

(e.g. alpha-shape method).

2.1 � The PFEM Steps

Excluding the FEM solution of the differential equations, 
which differ for each specific problem, the PFEM solution 
algorithm is independent on the physics of the problem. A 
general solution scheme of the PFEM can be summarized 
as follows. 

1.	 Fill the domain with a set of points referred to as “par-
ticles” (Fig. 1a).

Fig. 1   Steps of Particle Finite Element Method
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2.	 Generate a finite element mesh using the particles as 
nodes (Fig. 1b).

3.	 Identify the external and internal boundaries of the com-
putational domain (Fig. 1c).

4.	 Solve the Lagrangian form of the governing equations 
with the FEM.

5.	 Update the positions of the nodes (Fig. 1d).
6.	 Proceed to the next time step. If remesh is needed go 

to step 2, otherwise, go directly to step 5. Figures 1e–g 
show the solution step for the following time instant.

In step 2, the mesh can be regenerated with any tessel-
lation algorithm. Typically, the Delaunay triangulation 
is used in the PFEM (Sect. 2.2.1). The identification of 
boundaries in step 3, needed to compute the domain inte-
grals and to impose correctly the boundary conditions, is 
performed using the alpha Shape method (Sect. 2.2.2).

It is also important to remark that equations of motions 
solved in step 4, can be non-linear and so they may require 
an iterative solution scheme. For those formulations using 
historical variables, e.g. in non-linear solid mechanics 
(Sect. 5), a remap of the historical variables stored at the 
Gauss points on the new mesh is needed before step 4.

At the end of each time step, the quality of the mesh is 
evaluated (step 6). The original works of the PFEM pro-
pose to perform the triangulation at every time step. Other 
papers suggest performing the remeshing only when the 
mesh is too distorted globally. This second strategy leads 
to a reduced computational cost, but also to a lower qual-
ity of the mesh. Examples of both alternatives can be 
found in implicit PFEM formulations (see e.g.[28]). On 
the contrary, for explicit strategies, due to the high com-
putational cost, only the second strategy is suitable[73].

2.2 � The Mesh

A key step in the PFEM solution is the generation of the 
finite element mesh. In large deformation problems, this 
operation is performed frequently, eventually at each time 
step for the most critical cases. Therefore, a very fast, 
efficient and robust algorithm is required. In the PFEM, 
this is performed using an enhanced Delaunay triangula-
tion algorithm. It is important to highlight that this pro-
cedure should be considered a redefinition of the element 
connectivities rather than a real remeshing because the 
mesh nodes of the previous mesh are kept in the same 
position. Due to the crucial importance of this step in the 
PFEM solution scheme, a detailed description of the basic 
concepts, of the implementation details and of the impli-
cations of the remeshing step are given in this section.

2.2.1 � The Delaunay Triangulation

Before defining the Delaunay triangulation, the Voro-
noï diagram has to be introduced. Given a set of N points 
(n1, ..., nN) , the Voronoï diagram is defined as the partition 
of ℝ3 in convex regions Ti where a node ni is associated to 
each region Ti , such that every point of Ti is closer to ni than 
to any other nodes nj with i ≠ j , i.e.

where d(�, �i) ∶= ‖� − �i‖ is the Euclidean norm. Every 
region Ti is called Voronoï cell. Each Voronoï cell is convex 
and closed if internal, open if placed at the boundary.

The Delaunay triangulation can be constructed by joining 
the points whose Voronoï cells have a common boundary. 
The Delaunay triangulation can be considered the dual of the 
Voronoï diagram because two nodes of the Delaunay trian-
gulation are joined by an edge, only if the respective Voronoï 
cells share a boundary. As a consequence, the Delaunay tes-
sellation generates a mesh of tetrahedra (in 3D) and triangles 
(in 2D). Figure 2 shows a 2D example of points, Voronoï 
cells (dashed line) and Delaunay triangulation (solid line).

A fundamental property of the Delaunay triangulation 
is that none of its vertices lays inside any tetrahedron’s cir-
cumsphere (in 3D) or triangle’s circumcircle (in 2D), see the 
blue circle in Fig. 2. Moreover, the vertices of Voronoï cells 
represent the center of tetrahedron’s circumsphere (in 3D) 
or triangle’s circumcircle (in 2D) of the Delaunay triangula-
tion (Fig. 2). Given a set of points in the space, the Voronoï 
diagram is unique, whereas different Delaunay triangulations 
may exist.

In 2D, the Delaunay triangulation has remarkable proper-
ties such as the minimization of the maximum radius of an 

(1)Ti =
{
� ∈ ℝ

3 ∶ d(�, �i) ≤ d(�, �j) ∀j ≠ i
}

Fig. 2   Example of Voronoï diagram (dashed line) and Delaunay tri-
angulation (solid line)
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element circumcircle and the maximization of the minimum 
angle among all the elements (max-min property). On the 
other hand, the 3D Delaunay algorithm loses some of the 
optimal properties of its 2D counterpart. Unfortunately, this 
has important consequences on the possible presence of bad 
quality tetrahedra in the mesh, such as zero-volume elements 
(slivers).

The mesh given by the union of the generated tetrahedra 
or triangles is the convex hull of the points, i.e. the convex 
figure with minimum volume (area in 2D) that encloses all 
points. Consequently, the Delaunay triangulation can gen-
erate only convex domains. In the next section, it is shown 
how in the PFEM, this geometrical limitation is overcome 
through the application of the alpha-shape technique. It is 
worth noting that non-convex domains can be created by 
Constrained Delaunay tessellation algorithms. However, 
these methods do not allow the reconnection of different 
parts of the computational domain and for this reason, can-
not be used for several free-surface fluids applications, while 
they have potential for solid mechanics problems.

The overall good properties of the Delaunay triangula-
tion together with the availability of several fast open-source 
algorithms, explain the popularity of this tessellation pro-
cedure in the PFEM framework. Nevertheless, we remark 
that using Delaunay meshes is not mandatory for the PFEM 
solution scheme. The key point is to obtain a mesh very 
rapidly starting from a points distribution. Hence, also non-
Delaunay meshes could be used without altering the nature 
of the method.

2.2.2 � Boundary Recovery through the Alpha‑Shape 
Technique

In a Lagrangian framework, the current volume �t and its 
external boundary �t = ��t are defined by the position of 
the material points. As introduced in the previous section, 
the Delaunay triangulation generates a convex figure which 
encloses all the nodes belonging to the set. As the convex 
hull may be not conformal with the actual external bounda-
ries of the computational domain, the new contours have to 
be identified every time the Delaunay triangulation is done. 
To clarify this problem, a 2D example is presented in Fig. 3: 
a set of points is shown in Fig. 3a and its Delaunay triangu-
lation in Fig. 3b. It is clear that the Delaunay triangulation 
does not match the real internal and external boundaries.

As originally proposed in[54], a possible method to 
recover the real shape of the point distribution is the so-
called alpha-shape method[25]. This technique is based on 
the observation that the unphysical elements which do not 
belong to the real domain, are in general the largest and 
most distorted ones because they connect nodes that are far 
from each other.

The basic idea is to remove these unnecessary elements 
from the mesh using a geometrical criterion based on the 
mesh distortion. For each element e of the mesh, an index 
of elemental distortion �e is defined as:

where Re is the radius of the circumsphere (or circumcircle 
in 2D) to the considered element and hmean is a characteristic 
mesh size. An example of hmean can be the average of the 
minimum element side among all the elements of the initial 
mesh[18].

A threshold value 𝛼̄ for the distortion of the mesh can be 
fixed and, consequently, all the elements that do not satisfy 
the condition:

are removed from the mesh. Figure 4 shows the Delaunay 
triangulation coupled with the alpha-shape scheme for the 
example introduced previously.

A proper definition of the distortion threshold 𝛼̄ is manda-
tory for the correct boundary recognition. Different values 
of 𝛼̄ can lead to different configurations (see e.g. Fig. 4). If 𝛼̄ 
is too large, some overly distorted or too large elements can 

(2)�e =
Re

hmean

(3)𝛼e ≤ 𝛼̄

Fig. 3   a Distribution of points, b delaunay triangulation

Fig. 4   Delaunay triangulation with alpha-shape: a 𝛼̄ = 1.9 , b 𝛼̄ = 1.4
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be incorporated into the mesh. On the contrary, if 𝛼̄ is too 
small, too many elements are removed creating unphysical 
holes within the analysis domain. Obviously, for 𝛼̄ → ∞ , the 
original Delaunay tessellation is recovered. A critical review 
of the effect of the parameter 𝛼̄ can be found in[28].

An alternative definition of the alpha-shape method can 
be found in the first papers on the PFEM (see e.g.[52, 87]). 
Considering that the particles follow a variable distribution 
h(x), where h(x) is the minimum distance between two par-
ticles, the following criterion has been used:

All particles on an empty sphere with a radius r(x) bigger 
than 𝛼̄h(x) are considered as boundary particles. 

It is important to note that the two definitions give the 
same results.

More advanced versions of the PFEM, allow using differ-
ent values of 𝛼̄ for distinct parts of the domain. A possibility 
is the use of a lower value of 𝛼̄ for the elements whose nodes 
belonged to the boundaries in the previous time step and 
larger values for the internal elements.

An alternative technique to efficiently manage the bound-
ary definition in the PFEM is the Constrained Delaunay 
tessellation. However, it is difficult to apply this method to 
problems with significant changes of the material bounda-
ries, like in many free-surface fluids applications. Moreo-
ver, the separation and reconnection of different parts of 
the computational domain are difficult to be handled with 
this technique. On the other hand, the Constrained Delaunay 
tessellation can be used for some solid mechanics problems 
where no significant changes in time of the boundary are 
expected.

It must be noted that the local changes of topology due to 
the alpha-shape technique may produce the lack of preserva-
tion of the volume. If the sum of the volume of the erased 
elements is different than the one of the new simplices, the 
overall volume of the analysis is not conserved. Neverthe-
less, it must be noted that this inconvenience of the PFEM 
remeshing procedure is proportional to the mesh size and 
can be reduced to the desired accuracy by refining the mesh. 
An accurate description of the effect of the parameter � on 
the accuracy of the results can be found in[28].

2.2.3 � Separation and Reconnection of Nodes 
and Subdomains

One of the main strengths of the PFEM lays in its capability 
to model separation and reconnection of parts of the com-
putational domain and also single isolated particles. This is 
of great relevance for the simulation of several engineering 
applications and natural phenomena, such as breaking waves 
and splashes formation in free-surface fluid flows.

The identification of the parts detaching from the rest 
of the domain is done automatically by the alpha-shape 
method. When a boundary node belongs to a too distorted 

element, the criterion of Eq. (3) removes the element and the 
node is separated from the domain. After the separation, the 
particle motion is governed by the body force and the initial 
velocity which it is subjected to. At each new Delaunay tri-
angulation, the detached particle becomes again a vertice of 
the new tessellation and its connection with the rest of the 
domain is evaluated. If the particle has approached enough 
the boundary, the element is not eliminated by the alpha-
shape check, and it is again incorporated in the main mass. 
Figure 5 shows an example of separation and incorporation 
of a particle.

The same considerations described for isolated nodes 
apply for groups of nodes linked together by elements. Nev-
ertheless, in this case, the motion of these subdomains is 
computed through the FEM equations.

2.2.4 � Adding and Removing Nodes

In mesh-based Lagrangian approaches, the nodes move 
as a consequence of the equation of motion. Hence, some 
nodes may concentrate in a region of the domain and, on the 
contrary, in another region, the number of nodes becomes 
too low to obtain an accurate solution. Such a situation 
may affect the quality of the mesh and, consequently, the 
accuracy and effectiveness of the FEM solver, especially in 
3D problems. To overcome this drawback, it is possible to 
remove and add nodes in the mesh zones that need it. The 
same idea was originally proposed in the very early work on 
Lagrangian FEM for fluid flow[36]. It is important to remark 
that in the PFEM, insertion and removal of mesh nodes can 
be safely done because the mass is not associated with the 
nodes but with the elements, as in standard FEM.

In the PFEM literature, different algorithms to add and 
remove particle have been proposed. However, the key idea 
is always based on the two following concepts:

Fig. 5   a Separation of a fluid particle from the bulk. b Incorporation 
of a fluid particle in the bulk
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•	 If a node comes too close to another node (or to a 
boundary) the node should be removed (or moved to 
another location), see Fig. 6;

•	 If an element becomes too large, a new node should be 
inserted, see Fig. 7.

The nodes insertion can be done inside the element (for 
example, in its center of mass, Fig. 7b) or along an edge 
(for example, in the middle of its largest edge, Fig. 7c).

Removing nodes is also important to avoid the unde-
sired situation of artificial leakage. This pathological 
situation mainly refers to fluid dynamics problems and 
it occurs when a node comes so close to a boundary wall 
that the alpha-shape removes the element connecting it to 
the boundary nodes. A void is then produced and material 
could pass through the wall nodes. To prevent this, it is 
recommended to remove those nodes that come to close 
to the fixed domain boundaries.

It is important noticing that the previous operations 
can be performed without generating a new mesh with the 
Delaunay triangulation and by only changing the local ele-
mental topology. However, in this case, the mesh cannot be 
longer considered as a Delaunay mesh.

Adding and removing nodes can also be done without 
altering the total number of nodes. In this case, a new node is 
added only if a node can be removed from another position. 
Doing so, the mesh size tends to remain constant during the 
analysis. Moreover, this is also useful from the implementa-
tion point of view, as it enables the use of simplified data 
structure with dimensions fixed in time.

2.2.5 � Mesh Refinement

The Delaunay tessellation coupled with the alpha-shape 
leads to uniform meshes if a unique threshold value 𝛼̄ in Eq. 
(3) is used for the whole domain. However, there exist situ-
ations in which a non-uniform mesh is recommendable, for 
example in the regions close to boundary layers, in nozzles 
or at the interface between different materials.

In these cases, one may define different values of the 
parameter 𝛼̄ depending on the position of the nodes. Conse-
quently, nodes can concentrate automatically in the desired 
zones and get rarefied elsewhere. A similar mesh refinement 
technique was applied in[15].

Another possibility is to modify the alpha-shape criterion 
according to error estimation considerations. For example, in 
manufacturing processes to simulate complex large deforma-
tion, the insertion of particles is based on the equidistribu-
tion of the plastic power and the removal were driven by a 
Zienkiewicz-Zhu error estimator [104, 106].

2.3 � Implications of Remeshing on the FEM Solution 
Scheme

The use of remeshing has some important implications on 
the FEM model that can be used in a PFEM framework. As 
explained in previous sections, a key characteristic of PFEM 
remeshing is that the new mesh is not created from scratch, 
but is built keeping the nodes of the previous mesh. This fea-
ture, allows avoiding data interpolation from the old to the 
new mesh when only nodal variables are used (typically in 
fluid dynamics), on the other hand, it limits the applicability 
of the method to linear elements. Higher-order interpolations 
would require to remap from mesh to mesh the unknowns 
placed in the middle of the edges of the elements. Further-
more, the element curvature will be lost at each step of the 
Delaunay triangulation. As a consequence, only linear shape 
functions should be used in a PFEM framework.

In this respect, we note that low order elements can 
be unstable for incompressible or quasi-incompressible 
problems, also in case of using mixed formulations (e.g. 

Fig. 6   Example of node removal. a Original mesh; b mesh without 
the removed node

Fig. 7   Example of node addition. a Original mesh; b addition of a 
new node inside an element; c addition of a new node along an edge
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linear shape functions for velocity and pressure). This issue 
explains why the PFEM formulations for fluid mechanics 
are generally provided with some stabilization methods. A 
description of the most commonly used stabilization proce-
dures in PFEM can be found in Sect. 3.6.

Another important implication of remeshing on the FEM 
solution is related to the continuous elimination of the ele-
ments. In standard methods using Gaussian integration, this 
makes necessary the implementation of specific techniques 
for the recovery of historical variables[96]. Nevertheless, 
remapping can be avoided in case of using a nodal inte-
gration scheme, as the historical variables are stored at the 
nodes[126]. More details can be found in Sect. 5.1.

PFEM remeshing also affects the choice of the reference 
configuration used in the FEM solution. Typically, three pos-
sible reference configurations can be chosen: 

1.	 The initial configuration;
2.	 The configuration at the beginning of each time step;
3.	 The configuration at the beginning of each non-linear 

iteration.

Due to the excessive distortion of the mesh, the first choice 
(Total Lagrangian method) is practically unfeasible and only 
the other two choices (Updated Lagrangian methods) are 
exploitable. Keeping the reference configuration constant 
in a time step, the shape functions, their derivatives and all 
the geometrical quantities can be computed only once in the 
time step, but the computation of the deformation gradient 
has to be performed at each non-linear iteration. Instead, if 
the configuration at the last non-linear iteration is used, the 
deformation gradient coincides with the identity matrix, but 
the geometrical quantities must be updated at every iteration. 
In both cases, the connectivity does not change within the 
same time step.

3 � PFEM for Fluid Dynamics Problems

The PFEM was originally conceived for the solution of free-
surface fluid flow problems[52]. The method was designed 
to deal with the large motion of the fluid domain and to track 
its highly deforming free boundaries, which could eventually 
fold, break and reconnect. The range of possible applications 
of such a technology is wide and interests several branches 
of engineering and applied sciences.

In fluid dynamics, the automatic capability of tracking the 
evolving free-surface is not the only benefit of the PFEM. 
Thanks to its Lagrangian description of the motion, the con-
vective terms do not enter in the PFEM governing equations. 
This is a great advantage as the convective terms are respon-
sible for non-linearity, non-symmetry and non-self-adjoin 

operators, thereby complicating significantly the solution 
of the governing equations in an Eulerian framework and 
typically requiring the introduction of stabilization terms to 
avoid numerical oscillations.

In contrast, in the Lagrangian framework, the non-linear-
ity appears because the governing equations are written in 
the unknown current deforming configuration, which may 
differ by large displacements from the reference one.

The absence of convective terms in the governing equa-
tions represents an important advantage of Lagrangian meth-
ods, such as PFEM versus standard Eulerian formulations. 
However, in fluid dynamics, the price to pay is the need to 
continuously remesh the computational domain. This fact 
has important implications on several aspects of the numeri-
cal solver, such as time integration and spatial discretization, 
the imposition of boundary conditions, or mass conserva-
tion. The following sections aim to analyze in detail the most 
important aspects of using the PFEM for fluid dynamics 
problems.

3.1 � Fluid Dynamics Problem Statement

Let consider a moving fluid domain �t in the time inter-
val [0, T]. The motion of the fluid body is governed by the 
Navier–Stokes equations. Introducing the velocity � = �(�, t) 
and the Cauchy stress tensor � = �(�, t) , momentum balance 
and mass conservation read:

where �(�) represents the fluid density, �(�, t) the external 
body forces per unit mass, and D⋅/Dt denotes the material 
time derivative. It is important to remark again that, due to 
the Lagrangian nature of the method, the convective term 
does not appear in the governing equations and the total time 
derivatives reduce to a local time derivative.

Many real fluids tend to an incompressible behaviour. In 
this case, the dependence of the density on time disappears, 
and Eq. (5) simplifies as:

which represents the mass conservation for an incompressi-
ble fluid. However, it must be underlined that a small amount 
of compressibility still exists in all the cases idealized as 
incompressible ones. It is interesting to note that consid-
ering small fluid compressibility can be convenient from 
the numerical point of view also for problems that would 
be classified as fully incompressible. Such an assumption 

(4)�
D�

Dt
= div � + � in �t × (0, T)

(5)
D�

Dt
+ � div � = 0 in �t × (0, T)

(6)div � = 0 in �t × (0, T)
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is referred to as weakly compressible fluid hypothesis. For 
suitable small Mach numbers (much smaller than one), the 
weakly compressible model well approximates the incom-
pressible limit. However, the algebraic nature of the prob-
lems changes: the system of equations is hyperbolic-para-
bolic for the compressible case and elliptic-parabolic for the 
incompressible one. The actual benefit of weakly compress-
ible solvers versus incompressible ones is the possibility to 
compute explicitly the pressure, thereby avoiding the need 
of using a Poisson solver. This aspect explains its popularity 
in PFEM formulations, see e.g. [32, 44, 51, 112]

It is important to remark that in a PFEM framework, also 
real compressible fluids can be considered[21, 57]. In this 
case, the system of governing equations (Eqs. (4)–(5)) must 
be complemented by adding an energy conservation equa-
tion and an equation of state.

Typically, in fluid dynamics, the Cauchy stress tensor � is 
decomposed into isotropic and deviatoric parts:

where p = p(�, t) is the pressure field, � the second-order 
identity tensor, and � is the deviatoric stress tensor, which 
is generally related to the deviatoric strain rate � through a 
rheological law as:

where � = �(�) is the viscosity. The deviatoric strain rate is 
obtained from the velocity field as:

Once the pressure field has been introduced, it is important 
to note that Eq. (5) can also be expressed as:

where � represents the bulk modulus of the fluid.

3.2 � Space Discretization and Stabilization

In the PFEM, a standard Galerkin approach is used to 
discretize in space the Eqs. (4)–(5) (or alternatively, Eqs. 
(4)–(10)). As already underlined in Sect. 2.3, in a standard 
PFEM framework, only linear shape functions are used to 
approximate the unknown variables. Introducing an isopar-
ametric finite element discretization, the velocity and the 
pressure can be expanded in terms of the nodal vectors � and 
� , respectively. The semi-discretized equations of motions 
read[23]:

(7)� = −p� + �

(8)� = 2�(�)�

(9)�(�) =
1

2

(
grad � + grad �

T
)
−

1

3
( div �)�

(10)
Dp

Dt
+ � div � = 0 in �t × (0, T)

(11)�
�
�̇ +�� + �

T
� = �

where �
�
 and �p are the mass matrices for velocity and 

pressure unknowns, � is the fluid matrix emanating from 
the viscosity term, � is the discretized divergence operator, 
and � is the vector of body forces and boundary conditions. 
The symbol ̇( ) represents a time derivative.

Using equal order interpolation for both the velocity and 
pressure unknowns, the LBB inf-sup compatibility condition 
is not fulfilled [9]. Hence, the formulation must be stabi-
lized. In the PFEM literature, different kinds of stabiliza-
tion procedures have been applied. For instance, the Finite 
Increment Calculus (FIC) formulation has been frequently 
used to stabilize the PFEM equations (see e.g. [52, 53, 83]). 
Alternatively, the Pressure Stabilizing Petrov-Galerkin tech-
nique has been used (see e.g. [13, 18]). In [61], the Algebraic 
Sub-Grid Scale stabilization technique is introduced to sta-
bilize mixed pressure velocity PFEM formulation. Examples 
of other stabilization techniques can be found in [111, 113]. 
In [2], the authors propose to make use of stable elements 
belonging to the bubble family.

3.3 � Time Integration

Equations (11)–(12) must be integrated in time and thus an 
approximation for the time derivative of pressure and veloci-
ties should be provided. Note that for really incompressible 
materials, the time derivative of pressure (or density) does 
not appear. Both implicit and explicit approaches can be 
used in a PFEM framework, although, typically, an implicit 
time integration has been preferred. For example, in[18, 83], 
implicit first-order scheme were used while in[33] second-
order schemes were proposed. To simplify the numerical 
treatment of the coupled equations, fractional step or similar 
partitioned schemes have been used in several PFEM appli-
cations (see e.g.[2, 52, 86, 109]) .

Only recently, explicit time integration schemes have 
been used in PFEM formulations (see e.g.[17, 72, 73]. 
Explicit solvers are very appealing for fast dynamics prob-
lems and also for non-linear problems that may suffer from 
numerical issues of convergence. Moreover, they have good 
parallelization skills as a system of fully decoupled equa-
tions can be obtained. On the other hand, the explicit time 
integration is conditionally stable and the choice of the 
time step size is governed by the CFL (Courant, Friedrichs, 
Lewy) stability condition. This feature gives to mesh quality 
a crucial role for the computation efficiency of explicit meth-
ods because the presence of excessively distorted elements 
may lead to vanishing stable time step size and compromise 
the computation. For this reason[72] proposes an efficient 
mesh smoothing approach based on an elastic analogy to 
improve the worst elements, with a computational cost 

(12)�p�̇ + 𝜅�� = �
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compatible with the frequent remeshing procedure required 
by the PFEM.

3.4 � Rheological Law

The first PFEM works focused on Newtonian flows only 
([52, 87]). However, soon also non-Newtonian fluids were 
analyzed[15, 19].

In Newtonian fluids, the deviatoric stress � is linearly 
related to the deviatoric strain rate � as:

where the fluid viscosity � is constant.
On the contrary, non-Newtonian fluids are characterized 

by a non-linear relationship between the deviatoric stress 
and deviatoric strain rate. The Bingham law is one of the 
most commonly used models. The law is well representa-
tive of some geophysical flows, such as mudflow, lahars 
or debris flows but also fresh concrete and other types of 
materials, like some fresh paints or alimentary sauces. A 
Bingham material undergoes shear deformations only if the 
shear stress overcomes a fixed limit, �0 , called yield stress. 
The Bingham law can be expressed with the following piece-
wise equations:

being

The incrementally discontinuous behaviour of Eqs. (14) 
and (15) and the unbounded value of viscosity, introduce 
numerical difficulties in the solution scheme which can be 
avoided using an exponential smoothing approximation[98]:

where the apparent viscosity 𝜇̃ has been introduced. When 
n → ∞ , the original Bingham model is recovered. Due to 
its good adaptability to fluid dynamics solvers, the Bingham 
model with exponential regularization has been largely used 
in PFEM works, e.g.[15, 64, 103, 117].

The Bingham model was conceived for materials with 
fixed yield stress. However, in some cases, the definition of 
the yield value can depend on the characteristic of the mate-
rial itself or by its intrinsic multi-physics (e.g. presence of 
the water in partially drained soils). A more general model, 
usually called frictional model, introduces non-constant 

(13)� = 2��

(14)�(�) = 2𝜇�(�) + 𝜏0
�(�)

‖�(�)‖
if ‖�‖ > 𝜏0

(15)�(�) = 0 otherwise

(16)‖�(�)‖ =

�
1

2
� ∶ � ‖�‖ =

�
1

2
� ∶ �

(17)�(�) = 2 𝜇̃ �(�) =

�
2𝜇 +

𝜏0

‖�‖
�
1 − e−n‖�‖

��
�(�)

yield stress depending on an effective pressure p′ and a fric-
tion angle �:

This relationship, which can be interpreted as a Mohr–Cou-
lomb failure criterion (see e.g.[16]), can be incorporated into 
Eq. (17) to represent the behaviour of frictional viscoplas-
tic materials. This model has been extensively used in the 
PFEM framework to simulate the flow of soil or granular 
material in[22, 61, 117].

3.5 � Boundary Conditions

To be well-posed, the problem (4)–(5) has to be supple-
mented with an appropriate set of initial and boundary con-
ditions. As underlined in the previous sections, the Lagran-
gian nature of the PFEM is very useful for the definition of 
evolving free-surfaces, which are automatically detected by 
the position of the external nodes of the domain.

On the contrary, the Lagrangian approach leaves much 
less flexibility to the treatment of constrained contours, 
which are represented by nodes with prescribed velocity. 
In Lagrangian methods, the external boundaries are defined 
by the position of the material particles (mesh nodes in the 
PFEM). These methods have some limitations when the 
boundary condition assigns non-zero velocity components 
to the nodes belonging to a fixed boundary. For these cases, 
the PFEM solver must be complemented by appropriate 
techniques. This section aims to shed light on the treatment 
of the different boundary conditions in the PFEM.

3.5.1 � Free Surfaces and Interfaces

The tracking of the free contours of a fluid is a complex 
task for many numerical approaches and, in some cases, it 
requires the additional implementation of ad-hoc techniques. 
This is the case of all Eulerian finite elements or finite vol-
umes formulations that must be complemented by tech-
niques like Volume of Fluid[42] or Level set[97] methods.

On the contrary, the PFEM can automatically define 
the free-surface position without any specific technique, 
because, each node of the domain is tracked during the 
motion, and the free surface can be easily identified directly 
by the position of the nodes of free contours.

The same considerations apply for the detection of the 
interface between different fluids or between a fluid and a 
structure. The Lagrangian nature of the PFEM allows for 
the automatic identification of these interfaces and to follow 
them on time.

Depending on the physics of the problem, different 
conditions can be imposed on the evolving interfaces. For 
free-surface contours, it must be ensured that the normal 

(18)�0 = p� tan (�)
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component of the stress tensor should vanish. This is much 
preferable to the imposition in a strong form of null pres-
sure, which can lead to the violation of mass conservation 
[51, 83, 112]. In the multi-fluid analysis, surface tension has 
significant importance and should be included at the inter-
face between the different fluids. Examples of PFEM formu-
lations for multi-fluid flows accounting for surface tension 
effects can be found in [74, 110]. The accurate imposition of 
boundary conditions at the interface is particularly important 
for fluid–structure interaction problems. The PFEM treat-
ment of these boundary conditions is explained in Sect. 4.3.

3.5.2 � Slip Boundary Conditions

No-slip boundary conditions between fluid and confining 
walls are generally considered in fluid dynamics. However, 
there exist cases in which a relative slip between the fluid 
and the surface is observed. A classical example is the so-
called Navier slip boundary condition, which defines a lin-
ear correlation between the slip velocity and the tangential 
stress at the slipping surface. The amount of slip is defined 
through a parameter called slip length, which can range from 
the no-slip condition to free-slip. Free-slip conditions are 
particularly interesting as they may help to avoid using very 
fine boundary layer meshes.

Slip boundary conditions have been applied in a PFEM 
framework using different approaches. Cerquaglia et al.[13] 
proposes to use a layer of contact elements between the fluid 
and the wall to account for the slip effects (both in the weak 
or in strong forms). In[26], the implications in terms of mass 
conservation of using free-slip conditions in the PFEM are 
discussed. Cremonesi et al.[20] suggests the use of a Lagran-
gian–Eulerian approach to describe the slip condition. In this 
method, the fluid domain is solved in a standard Lagrangian 
way, while the slip interface is assumed to be composed by 
Eulerian nodes and solved accordingly.

Note that a symmetry plane can be considered a special 
case of slip boundary conditions where no normal velocity 
is present and free-slip in allowed in the tangent direction. 
Consequently, the same techniques used for the slip can be 
extended also to the symmetry boundary conditions.

3.5.3 � Inflow and Outflow

The same complexity associated with slip boundary con-
ditions arises also for inflow and outflow boundaries. The 
imposition of this kind of boundary conditions is of great 
importance in the simulation of real engineering problems 
but can be critical in a Lagrangian FEM-based method. 
When a velocity profile (or a pressure profile) is imposed 
on a boundary, the nodes belonging to that boundary move 
following the fluid velocity and consequently the definition 
of the boundary is lost.

Ryzhakov et al.[110] presents an inlet technique in which 
the inflow region is treated in a standard Lagrangian form: 
the nodes belonging to the boundary move with the pre-
scribed velocity creating empty space which is then replaced 
with a new set of nodes. In[119], the same technique was 
used to simulate hydraulic channel conditions. Cremonesi 
et al.[20] suggests describing the inflow as an Eulerian 
boundary and the rest of the domain as Lagrangian. This 
technique overcomes the mesh issues of the purely Lagran-
gian strategy, but it requires the modification of the solver 
for the inlet nodes.

For the outflow conditions, in many relevant situations 
where no particular condition is imposed at the outlet sur-
face, it is sufficient to remove from the mesh the Lagrangian 
nodes which have crossed the outflow limit, i.e. nodes that 
are outside the computational domain. On the contrary, in 
the case of prescribing the pressure or velocity at the outlet, 
the same techniques used for the inflow should be applied.

3.6 � Mass Conservation

One of the critical points of free-surface fluid dynamics 
analysis is the unfulfillment of mass conservation. For the 
PFEM, like for other FEM-based methods, mass conserva-
tion may be violated due to two distinct reasons: 

1.	 Due to the numerical solution of the governing equa-
tions;

2.	 Due to the free-surface tracking technique.

The first source of mass variation is due to the Galerkin finite 
element solution of mass conservation (Eq. (6)) because 
the inaccuracy of the numerical solver affects directly the 
total mass conservation. Moreover, the typical stabilization 
techniques used to circumvent the unfulfillment of the LBB 
condition, have the effect of relaxing the incompressibility 
constrain leading to mass variations. Therefore, it is crucial 
to rely on a fluid dynamics solver with good mass preserva-
tion properties[51, 83, 112]. It is also important to highlight 
that this type of mass conservation violation can be experi-
enced in all the standard Eulerian and ALE approaches, not 
only in the PFEM.

The second mass violation source depends exclusively on 
the technique used to track the evolving fluid contours. In 
the PFEM, the fluid free surface is detected by the position 
of the nodes. However, during the remeshing, the connectiv-
ity may change (see Sect. 2.2.2), and this may lead to local 
topological variations of the fluid domain. These changes, 
besides perturbating locally the equilibrium configuration 
obtained at the previous step, can lead to a global variation 
in the volume of the computational domain, and so a global 
violation of mass conservation. It is important to remark 
that this volume variation reduces progressively by refining 
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the mesh and with a proper definition of the parameter � of 
the alpha Shape method[18, 28]. A detailed analysis of the 

effects of the remeshing procedure on the volume conserva-
tion for free-surface incompressible fluid problems can be 
found in[28].

3.7 � An Illustrative Example: The Dam Break Test

The application of different PFEM formulations to the dam 
break test, a classical benchmark for free-surface dynamics 
analysis, is here considered. The problem consists of a col-
umn of water initially located at the left part of a tank and 
sustained by a removable wall (dam) on its right side. At the 
initial time, the vertical wall is suddenly lifted and the water 
flows under the effect of gravity on a rectangular channel 
until it collides with the right vertical wall of the tank. The 
geometry of the problem is depicted in Fig. 8. This test was 
originally proposed in[59], where both experimental obser-
vations and numerical simulation results were provided.

This problem has been also solved many time with 
PFEM, both in 2D (see e.g. [13, 52, 53, 138]) and in 3D 
(see e.g [35, 72]). In Fig. 9, snapshots of a PFEM simulation 

Fig. 8   Dam break test. Geometry of the problem. L = 0.146  m, 
h = 0.175 m

Fig. 9   Dam break test. Snapshots of the simulation at different time steps compared with the corresponding experimental results. Pictures taken 
from [72]
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have been synchronized with the experimental test observa-
tions of [59], showing the good capability of the method 
to reproduce the complex phenomena occuring in this test, 
such as breaking waves, splashes and strong impacts with 
solid boundaries. 

Figure 10 shows the time evolution of the front wave. 
Different PFEM formulations are compared showing a good 
agreement among them and with experimental data. How-
ever, all the numerical simulations (PFEM and not) show a 
slightly faster front advancement of the front versus labo-
ratory observations. The reason for this small discrepancy 
lays in the modelling of the raising wall motion. In all the 
numerical simulations, the wall is removed instantaneously 
while it takes inevitably a finite amount of time in the experi-
ment (see the comments in [43, 120]).

It is worth to note that this test has also been solved many 
times with the PFEM including a rigid obstacle in the middle 
of the container (see e.g.[32, 63, 72, 83, 121]).

4 � PFEM for Fluid–Structure Interaction 
Problems

Since the very first works, the PFEM has been applied to 
the simulation of free-surface fluids interacting with mov-
ing solids. In the early applications, the solid objects were 
treated as rigid bodies[53, 87]. However, soon the method 
was extended also to elastic[44, 45] and elastoplastic[34, 
137] bodies.

The main reason that explains the success of PFEM in 
the framework of fluid–structure interaction (FSI) analysis, 
lays undoubtedly in its accurate tracking of moving inter-
faces. This feature is extremely useful for the solution of 
a wide range of engineering and industrial problems with 
fluid–solid interfaces undergoing large motions.

Furthermore, as it will be detailed later, the body-fitted 
mesh arisen from the PFEM interface detection algorithm, 
enables an easy transfer of boundary conditions between 
the different bodies, creating the good basis for an accurate 
solution of the FSI problem.

Finally, it is important to remark that the PFEM allows for 
a very natural coupling with all types of Lagrangian FEM 
because it does not impose any restrictions on their solution 
schemes, enabling the re-utilization of existing solvers.

In this section, after a general classification of FSI meth-
ods, an extended review of theory and applications of the 
PFEM for fluid–structure interaction problems is given.

4.1 � General Classification of FSI Methods

Let us consider a continuum domain �t evolving in the time 
interval [0, T] . The domain is constituted by two non-over-
lapping subdomains: a fluid one, �t

F
 and a structural one, 

�t
S
.2 Let us define the subdomains boundaries: � t

F
= ��t

F
 

for the fluid and � t
S
= ��t

S
 for the solid. The fluid–structure 

interface is given by � t
FSI

= ��t
F
∩ ��t

S
 (Fig. 11).

At the fluid–solid interface � t
FSI

 , dynamic and kinematic 
coupling conditions should be enforced:

where �F and �S are the fluid and solid velocities, �F and �S 
the Cauchy stress tensors in the fluid and solid domains and 
� is the normal to the interface � t

FSI
.

A large variety of schemes has been proposed in the lit-
erature to solve FSI problems. A first classification of these 
depends on the degree of coupling of the method. An algo-
rithm that enforces both the kinematic and dynamic trans-
mission conditions across the fluid–structure interface is 
defined as strongly coupled. If instead, an algorithm does not 

(19)�F = �S on � t
FSI

(20)�F ⋅ � = �S ⋅ � on � t
FSI
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Fig. 10   Dam break test. Time evolution of the front wave position

Fig. 11   Domain of the FSI problem

2  In the following, the subscript F refers to the fluid domain, while S 
to the solid one.
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satisfy exactly the coupling conditions, is defined as weakly 
coupled or loosely coupled

Another classification of FSI algorithms takes into 
account the structure of the solver. A method is said to be 
monolithic if a unique solver is used to solve the fluid–struc-
ture interaction problem. In this approach, the coupling con-
ditions are enforced exactly, leading to a strongly coupled 
scheme and preserving accuracy and stability. This repre-
sents the main advantage of monolithic strategies together 
with the fact that they do not suffer from added mass effect 
problems. However, monolithic methods do not allow reus-
ing existing fluid and solid solvers, and they potentially lead 
to large ill-conditioned linear systems, as both fluid and solid 
contributions are contained therein.

Alternatively, partitioned (or staggered) schemes solve 
fluid and solid sub-problems independently, and then they 
couple the solutions via transmission conditions. Partitioned 
methods can provide strong coupling, for example through 
sub-iterations or predictor/corrector techniques, or weak 
coupling otherwise. Staggered schemes allow the reuse of 
existing codes and to solve smaller and better conditioned 
linear systems. On the other hand, in some cases, partitioned 
schemes can suffer convergence issues.

4.2 � Detecting Fluid–Structure Interface in PFEM 
Framework

One of the key features of the application of the PFEM to 
FSI problems is the possibility to exploit a fully Lagrangian 
description of the fluid and solid subdomains. Therefore, the 
mesh evolves in time with the motion of the different bod-
ies, enabling accurate tracking of the evolving fluid–solid 
interface.

In the most general version of the PFEM, the interface 
detection is done by superposing a set of fictitious fluid 
particles to the structural boundary surfaces: these particles 

have the fluid physical properties, but, in the beginning, they 
are just used for the FSI boundaries identification (Fig. 12a 
or d). These particles are involved in the remeshing step 
of the fluid analysis, as the real fluid nodes. The resulting 
Delaunay mesh discretizes the whole fluid domain and cre-
ates the interface elements between the fluid and the solid 
domain (Fig. 12b or e). After that, the alpha-shape tech-
nique makes a selection of the interface elements eliminat-
ing those too large or too distorted. At this point, if all the 
interface elements are removed, the fluid and solid domains 
are not interacting any longer (Fig. 12c). On the contrary, 
if some interface elements connecting solid and fluid parts 
are not removed (Fig. 12e), a coupled analysis is performed 
(Fig. 12f).

It is important to note that, depending on the location 
of the fictitious nodes, different body-fitted strategies may 
arise. If the fictitious nodes coincide with the solid nodes, a 
conforming-mesh interface is obtained. If, on the contrary, 
the fictitious nodes do not coincide with the solid nodes, 
a non-conforming mesh strategy is obtained. This latter 
method enables the use of different mesh sizes for the fluid 
and the solid elements at the interface, but, it requires map-
ping the variables at the interface to transfer accurately the 
boundary conditions.

4.3 � Literature Review of PFEM for Fluid–Structure 
Problems

FSI problems have been solved with the PFEM using dif-
ferent strategies. In all cases, the PFEM is used to solve the 
fluid domain and to detect the interface, while the FEM is 
used for the solid solution. Practically speaking, the remesh-
ing step affects only the fluid parts, while the solid discre-
tization remains unchanged during the entire analysis.

The full monolithic scheme has been used on different 
occasions. The first contribution in this category is[44], 
where the authors solve the FSI problem in a general and 
unified Lagrangian framework, exploiting the similari-
ties between the Newtonian model (used for the fluid) and 
the hypoelastic one (used for the solid). The method was 
extended to quasi-incompressible solids in[33] and to ther-
mal-coupled problems in[34]. Recently, in[27] the method 
has been adapted to a nodal-integration framework.[111, 
113] presented a monolithic approach with a global pres-
sure condensation which enables the definition of a purely 
displacement-based linear system of equations. A matrix-
free technique is used for the solution of such a linear sys-
tem. In[138–140], ill-conditioning issues of the monolithic 
formulation had been overcome by applying a fractional 
step approach to the linear system, segregating pressures 
and velocities unknowns into smaller systems of equations.

Fig. 12   FSI for conforming fluid and solid meshes: a Fluid as a set of 
particles, structure as a mesh of quadrilateral elements with fictitious 
fluid particles at its boundary. b Delaunay triangulation. c Applica-
tion of alpha-shape method. d same as a but subdomains in contact. e 
Delaunay triangulation. f Application of the alpha-shape method
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There also exist several partitioned PFEM approaches 
for FSI problems. In[53], a Gauss-Seidel technique was 
used to treat the FSI problem, although only rigid bodies 
were considered. In[18], a partitioned Dirichlet-Neumann 
algorithm solving the fluid with the PFEM and the elas-
tic solid with a displacement-based FEM was presented. A 
similar algorithm was applied in[114] to the simulation of 
sea-landing of aerial vehicles. Meduri et al.[73] proposed a 
partitioned approach allowing for a non-conforming mesh at 
the interfaces and different time steps for the fluid and solid 
solutions. This work also showed the successful coupling 
of a PFEM fluid solver with commercial software used for 
the solid parts. Recently[14] presented a fully partitioned 
Lagrangian framework using an Interface Quasi-Newton 
Inverse Least Squares strategy to avoid added mass effects.

4.4 � An Illustrative Example: The Dam Break 
with an Elastic Obstacle

The collapse of a water column against a deformable mem-
brane is a typical benchmark problem for FSI analysis with 
free-surface fluid flows[123]. The geometry of the problem 
is depicted in Fig. 13. Following[123], the following geo-
metrical parameters are used:

The fluid is water and its physical properties are: viscos-
ity � = 0.001 kg/ms , density �f = 1000 kg/m3 . The solid is 
elastic having Young modulus E = 1000 kPa , Poisson ratio 
� = 0 and density �s = 2500 kg/m3.

Figure 14 shows some representative snapshots of the 
simulation. The water column collapses after the removal of 
the vertical wall and spreads on the rectangular channel until 
hits the vertical elastic membrane (Fig. 14a). The obstacle 
blends under the effect of the fluid impact (Fig. 14b). Water 
slips on the deflected membrane and collides with the ter-
minal vertical rigid wall (Fig. 14c). After that, the water 
volume fills the right part of the container (Fig. 14d) impact-
ing again on the right part of the solid object (Fig. 14e, f).

Figure  15 plots the time evolution of the horizontal 
displacement of the left upper corner of the solid object 
obtained by different PFEM strategies. The curves show an 
overall good mutual agreement.

(21)L = 14.6 cm h = 1.2 cm d = 0.8 cm

Fig. 13   Collapse of a water column on a elastic object. Geometry of 
the problem

Fig. 14   Collapse of a water column on a elastic object. Picture from[71]
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5 � PFEM for Non‑linear Solid and Contact 
Mechanics

Although the PFEM was originally designed for fluid 
dynamics and FSI applications, the method was soon 
extended to non-linear solid mechanics. Indeed, a 
Lagrangian approach for large-deformation problems 
was appealing for several industrial and natural processes, 
where solid bodies undergo so large motions to behave 
like a fluid. This is the case, for example, of several man-
ufacturing processes and many geotechnical applications. 
In this section, we will refer to PFEM formulations for 
non-linear solid mechanics, in short PFEM-solid, as those 
PFEM strategies that make use of historical variables 
defined inside the elements.

The first PFEM-solid formulation [95] was applied 
to complex industrial processes, such as metal forging, 
machining, or powder filling, and showed the capability 
of the method to track accurately the deforming shape of 
the material and to deal with the complex interactions 
between the different solid bodies. This first work opened 
up the way to many other PFEM-solid formulations. Ref-
erences [84, 104, 106, 107] applied their PFEM-solid 
methods to different types of manufacturing processes, 
[4, 11, 12] analyzed tunneling and excavation applica-
tions, while bed erosion in river dynamics was tackled in 
[81, 82, 86]. Several PFEM-solid formulations have been 
proposed in the field of soil mechanics and geotechnal 
engineering, especially for the modelling of frictional 
materials and granular flows [10, 24, 56, 66, 127, 128] 
and for different types of geomechanics problems [75–78]

5.1 � Historical Variable Recovery

One of the most critical points of PFEM-solid formula-
tions is the management and conservation of the historical 
variables during the remeshing step. The solution accuracy 
depends on how well the historical information is pre-
served along with the transition from the previous mesh 
to the new one.

The PFEM remeshing procedure consists of erasing 
all the elements of the distorted mesh and creating the 
new tessellation over the cloud of points composed by the 
mesh nodes (Sect. 2). For PFEM-solid formulations using 
Gaussian integration, this remeshing strategy implies that 
all elemental information must be transferred from the ele-
ments of the old mesh to the nodes, and then, from these 
to the new mesh elements.

This remapping procedure leads inevitably to smooth 
the historical solution, also if the element connectivity is 
not changed. To limit this drawback, Oliver et al.[95] pro-
posed to remap not the whole historical variable but just its 
time step increment. Hence, at the end of a generic com-
putation step 

[
tn;tn+1

]
 , the nodal stresses 𝝈̄n+1 are obtained 

from the incremental elemental stresses ��n+1 as follows

where M
�
 is a standard mass-type matrix and N

�
 is a transfer 

matrix using the shape functions[95].
At the beginning of the new time step, the nodal stresses 

are mapped on the new Gauss points with standard FEM 
interpolation procedures as:

where xgp is the position of the Gauss point, N is the shape 
function and nn is the number of nodes of the element.

In order to avoid excessive smoothing of historical 
variables[104, 106] proposed to transfer the information 
directly from the Gauss points of the previous mesh to the 
closest ones of the new mesh. This way, all information on 
elements that did not modify their connectivity during the 
remeshing, is perfectly preserved. However, in the parts 
of the mesh affected by the change of connectivity, this 
technique introduces inevitably an error, whose magnitude 
depends on the distance between the original and the new 
positions of the Gauss points.

Recently[56, 124, 126] proposed to use nodal integra-
tion rather than the Gaussian one to improve the preserva-
tion of historical variables. In nodal integration schemes, 
all variables (including stresses and strains) are stored at 
the nodes. Hence, this information is not erased during the 
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n +
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Fig. 15   Collapse of a water column on a elastic object. Compari-
sons of the PFEM results of Idelsohn et al.[44], Zhu and Scott[113], 
Meduri et al.[73], and Cerquaglia et al.[14]
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remeshing and neither is affected by remapping operations. 
This solution appears to be a good way to preserve the 
historical variables information in a PFEM-solid formu-
lation. Nevertheless, we note that PFEM-solid strategies 
with nodal integration, analogously to elemental integra-
tion methods, are not completely insensitive to mesh vari-
ations, such as change of connectivity or the elimination/
creation of elements. These mesh modifications, perturbat-
ing the equilibrium configuration obtained at the previous 
computation step, may affect the convergence and accu-
racy of the solution, also when nodal integration is used.

5.2 � Contact Problems

Since its first approach to non-linear solid mechanics, the 
potential of the PFEM for dealing with contact interaction 
between solids was explored. The first study that showed the 
suitability of the method for contact problems was[81]. In 
this work, the authors studied FSI problems where the solid 
bodies, dragged by the fluid motion, could eventually hit the 
walls of the computational domain.

The PFEM contact algorithm uses a mesh of interlayer 
elements between the boundaries of the interacting solid 
bodies. This auxiliary mesh is created following the same 
steps of the standard PFEM remeshing procedure (Sect. 2). 
Nevertheless, not all the elements fulfilling the alpha-shape 
criterion are used to compute the contact forces, but only 
those having a size smaller than a fixed critical value ( hc ). 
Over these active contact elements, the elastic and frictional 
forces are computed either with penalty methods or using 
Lagrangian multipliers.

This methodology was also used in [95] to solve mutual 
contacts in manufacturing processes. The paper emphasized 
the property of the auxiliary PFEM mesh, called anticipat-
ing interface mesh, to recognize in advance the solid parts 
getting in contact and to impose the contact constraints in a 
diffusive manner.

Inevitably, the accuracy of this method depends on the 
size of the mesh and, in particular, on the critical distance 
hc , whose value affects the timing of the contact and the 
size of the gap between the solid interfaces. To improve this 
aspect[95] proposed to apply an artificial contraction to the 
solid boundaries to capture more accurately the contact time 
and to reduce the distance between the interacting solid bod-
ies. The same methodology was also used in the so-called 
Contact Domain Method[96] and formalized in[115].

The first three-dimensional (3D) application of the PFEM 
contact algorithm was presented in[86], where the capabili-
ties of the method were proved against complex multi-body 
interactions, either in the presence of water or not.

A different contact algorithm was used in the PFEM-
solid formulations[127, 129] for the simulation of granular 
flows and landslides. In these works, the auxiliary mesh was 

used only to detect the colliding solid boundaries, but not 
to calculate the contact forces, which were computed with a 
strategy originally conceived for discrete element methods 
(DEM)[60].

6 � The PFEM for Other Coupled Problems

6.1 � Multi‑fluid Problems

Heterogeneous fluid flows are involved in several natural 
phenomena and engineering applications. The numerical 
simulation of mixing processes of immiscible fluids is par-
ticularly complex in the presence of very different physical 
properties (density and viscosity) and multiple and articu-
lated interfaces. In this context, the success of the numerical 
simulation mainly depends on the ability of the method to 
track accurately these interfaces and to model the phenom-
ena taking place there.

In the Eulerian framework, standard interface-capturing 
methods, such as Level Set[97] and Volume of Fluid[42] 
should be introduced. However, these front-capturing meth-
ods have some difficulties to avoid the smoothing of the 
interface, in particular in unsteady flows. On the contrary, 
the PFEM can automatically track the evolution of many 
sharp interfaces, thanks to its Lagrangian nature and to the 
definition of the material properties at the mesh nodes.

The PFEM multi-fluid interfaces can naturally fold, break 
and merge, analogously to the fluid free surface (Sect. 3). 
This represents a key capability of the method in the frame-
work of heterogeneous fluids simulation. Furthermore, in 
the PFEM, the finite elements located at the interface can be 
properly enhanced to deal with the numerical issues arisen 
from the abrupt jump of material properties. As in a stand-
ard FEM, to deal with localized pressures jumps and insta-
bilities, ad-hoc stabilization and pressure enrichment at the 
interface should be introduced [46, 48]. In [46], fluids with 
different density are considered, in [48], also the viscosity 
jump is introduced. Moreover [48] shows that discontinu-
ous pressure fields can avoid errors in the incompressibility 
condition. Mier-Torrecilla et al. [74] presents the PFEM 
for large jumps in the physical properties, including also 
surface tension. Figure 16, taken from [46], shows the mix-
ing process of two fluids with different density and initial 
temperature. 

In the PFEM, the interface separating two materials can 
be considered inside an element (elemental interface) or 
along its edges (nodal interface)[46]. Elemental interfaces 
are more stable as they do not change much when remesh-
ing is performed. On the other hand, nodal interfaces are 
more accurate because they allow representing exactly the 
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gradient pressure jump that normally occurs when with a 
jump in the density.

One of the most crucial aspects of the PFEM applied to 
multi-fluid flows, is the conservation of fluid volumes dur-
ing the remeshing step. In fact, on the one hand, the change 
of connectivity may modify locally the path of the interface 
elements, and, on the other hand, the insertion and removal 
of mesh nodes may benefit or disadvantage one fluid versus 
the others. For this reason, it is very important to control 
the remeshing operations at the interface to avoid or limit 
the artificial volume variations of the involved fluids[122].

6.2 � Thermal Coupled Problems

Thermally coupled flows are of great relevance for many 
fields of engineering and technology as well as for many 
natural phenomena. Since its origin, the PFEM has paid 
great attention to these kinds of problems. The first work in 
the field[1] showed that the Lagrangian nature of the PFEM 
can be very useful to model accurately thermal convection 
(Fig. 17). The work was then extended to 3D analysis in[2]. 
The potential of the method for dealing with thermal prob-
lems was further proved in a multi-fluid framework[46, 47].

Taking advantage of the capability of the method to deal 
with large changes of topologies, the PFEM has been also 
applied to the simulation of melting problems accounting for 
phase changes. The first approach to phase change analysis 
was presented in[90] for the simulation of the melting and 
spreading of polymers. The solid objects were modelled as 
highly viscous fluids with temperature-dependent viscosity. 
The same approach was extended to 3D simulations in[88, 
91] and used in[58, 69] to reproduce a small-scale fire test 
used to assess the flammability of polymers.

An immersed approach was proposed in[70], where 
a burning polymer was modelled with the PFEM and the 
surrounding air with an Eulerian formulation. This hybrid 
method allowed for the solution of the energy equation for 
both subdomains on the Eulerian mesh.

The first extension to thermally coupled fluid–structure 
analysis was presented in[85]. In this work, the fluid was 
modelled with the PFEM, while an elastoplastic FEM model 
was used for the structure. Melting phenomena were mod-
elled by transferring the external solid elements to the fluid 
domain when they fulfilled a melting criterion. The same 
approach was extended to 3D analysis in[34] and applied 
to the simulation of hypothetical scenarios of nuclear core 
melting during a severe accident in a nuclear plant.

Obviously, thermal effects are also of paramount impor-
tance for a wide range of manufacturing processes whose 
overview can be found in Sect. 7.4.

7 � Advanced Applications of the PFEM

This section aims to analyze four of the main applica-
tion fields of the PFEM to engineering and environmental 
problems.

7.1 � Hydraulic Engineering

Fluid dynamics has been the first field of application of the 
PFEM. The accurate simulation of the fluid free surface, 
also in the presence of breaking waves and splashes, together 
with the automatic modelling of fluid convection and the 
good energy conservation properties, make the PFEM an 
ideal tool for the analysis of different hydraulic engineering 
problems.

Fig. 16   Examples of multi-fluid problem. Mixing of two fluids with 
different densities and initial temperature conditions. Pictures from 
[46] plot the evolution of nodal density

Fig. 17   Examples of thermal coupled problem. Pictures from[1]
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The first PFEM simulation of hydraulic laboratory tests 
was presented in[63]. In this work, a thorough comparison 
of the PFEM results against experimental observations is 
carried on four different free-surface flow configurations.

The suitability of PFEM in modelling wave propagation 
was clearly demonstrated in[92–94] by reproducing accu-
rately different types of propagating waves in laboratory 
channels. Zhu et al.[136] extended the application field by 
also considering the presence of solid structures, repro-
ducing the situation of tsunami waves loading on a bridge. 
Recently[79] showed the successful application of the PFEM 
to the simulation of water dam break impacting water at rest 
and creating impulse waves.

Dam engineering is another main field of application of 
the PFEM. The first works in this area[62, 64, 65] used a 
hybrid FEM-Eulerian approach to simulate overtopping and 
failure of rockfill dam and the related seepage phenomena. 
Salazar et al.[118] studied a real dam geometry and mod-
elled the 3D air-water interaction to estimate the air demand 
at the bottom outlets. On the other hand[119] focused on the 
water shock-waves that form at the exit of dam spillways. 
Figure 18, taken from[119], shows a view of the real dam 
spillway and the 3D simulation with PFEM.

7.2 � Granular Flows

Granular flows are involved in many fields ranging from 
geophysics and geotechnical engineering to mining, pharma-
ceutical, and alimentary industries. Their numerical simula-
tion is challenging because, depending on the flow regime, 
granular materials can behave as solids, fluids or gases, and, 
in general, multiple phases may appear simultaneously. 
Granular flows have been approached with PFEM formula-
tions both in a solid and a fluid mechanics framework.

Zhang et al.[127] modelled the granular material as a 
rigid-plastic body and used PFEM-solid formulation to 
reproduce quasi-static and dynamic granular flows, while 
in[128, 131], an axisymmetric PFEM with rate-independent 
plasticity was employed.

A PFEM-solid formulation was also used in[24] consid-
ering large strains plasticity and a Drucker Prager model 
provided yield surface. The method was applied in[10] to 
complex industrial applications, such as silo discharge and 
tumbling mills.

Recently, a PFEM-solid formulation has been validated 
against several experimental tests of the collapse of granular 
columns[66], while in[56] a granular flow simulation has 
been carried out using a nodal integration method.

There exist also examples of PFEM-fluid formulations 
for granular flow simulation. A frictional viscoplastic model 
was used in[116] to simulate a sandy flow on a slope and 
impacting water at rest. Alternatively[29] used a regular-
ized �(I)-rheology to model the 2D and 3D flow of dense 
granular material. Figure 19 shows a series of consecutive 
snapshots of the collapse of a cylindrical granular column 
taken from[29].

7.3 � Landslides

Landslides are one of the most destructive and dangerous 
natural hazards. Each year they cause billions of euros in 
damages and thousands of casualties worldwide. Forecast-
ing the effects of these catastrophic events on the civil and 

Fig. 18   View from downstream 
of dam spillway. Compari-
son between numerical and 
experimental results. Picture 
from[119]

Fig. 19   Example of collapse of an cylindrical granular column solved 
with the �(I)-rheology. Pictures from[29]
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natural environment is a complex task. In particular, it is 
hard to predict the landslide runout dynamics, due to the 
complex characterization of the landslide bulk material, the 
highly deforming shape of the sliding bodies, and the large 
size of the events. In this scenario, numerical methods can 
help to reduce the uncertainties in landslide events predic-
tion and to better evaluate the associated risk. In the last dec-
ade, the PFEM has shown to have some potential in this field 
thanks to its capacity of capturing evolving free surfaces and 
the possibility of using accurate constitutive models for the 
landslide material.

The first attempt to simulate landslides events with 
the PFEM was reported in[19]. The work focused on the 
impulse water waves induced by a landslide, a dangerous 
multi-hazard scenario affecting above all mountains’ natural 
and artificial reservoirs. In this first contribution, the land-
slide material was modelled as a non-Newtonian Bingham 
fluid. Similar landslides impulse wave events were analyzed 
in[116] using a frictional viscoplastic model. Preliminary 
3D results were also presented in the same work. 3D simula-
tions of sliding material on an unstable slope have been also 
presented in[16] focusing on the importance in the landslide 
runout of considering the slip velocity between the flowing 
mass and the basal surface.

In[129], a mathematical programming framework is 
introduced to simulate landslide with a plasticity model 
using a Mohr–Coulomb yield criterion. In[132], an elastic-
viscoplastic model for progressive failure analysis of sen-
sitive clays is presented while in[133], its application to 
landslide is shown. The same ideas have been extended to 
simulate submarine landslides in[130] and used to analyze 
the Saint Jude landslide case study in[134]. Very recently, 
a large scale PFEM model has been used to reproduce the 
Vajont landslide and the consequent impulse wave in the 
hydroelectric reservoir[30]. Figure 20 shows some snapshots 
of this 3D analysis.

7.4 � Manufacturing

The simulation of manufacturing processes represents one of 
the relevant areas of application of the PFEM. The capabil-
ity of the method to deal with large deformations, complex 
contact interaction, and constitutive models, explains the 
large number of PFEM works on manufacturing processes. 
Furthermore, typically, these problems also include coupled 
thermal effects that can be easily handled with the PFEM.

Traditionally, in the PFEM, manufacturing processes 
have been tackled via a solid mechanics framework. The 
first PFEM-solid formulation applied to this highly non-
linear analysis is reported in[95]. In this work, a PFEM-
solid formulation was used to reproduce industrial metal 
forging, machining, or powder filling problems. PFEM 
can be also efficiently used to simulate cutting processes in 

which phenomena of friction, adiabatic shear bands, exces-
sive heating, large strains, and high strain rates are involved. 
Oñate et  al.[84] showed examples of extrusion of steel 
plates, forging of metal pieces and cutting of metals. Fig-
ure 21 shows some representative results of a cutting process 
modelled with the PFEM. Other examples of manufacturing 
processes can be found in[104, 105, 107] which are focused 
on the simulation of the segmental chips generated during 
metal cutting processes.

Some manufacturing processes involve so large deforma-
tion of the contours that are more conveniently approached 
in a fluid dynamics framework than in a solid one. For 
example, mould filling and casting problems are modelled 
with a PFEM fluid dynamics formulation in[89], while the 
application to forming problems is presented in[84]. These 
latter processes were also considered in[109], where the 
heat equation is coupled to the mechanical model through a 
temperature-dependent viscosity to simulate glass forming 

Fig. 20   Example of landslide-water interaction modelled with the 
PFEM (the Vajont landslide). Pictures from[30]
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processes. An axisymmetric PFEM formulation was pro-
posed in[108] to simulate the forming of glass bottles.

8 � Recent Advancement on the PFEM

8.1 � The PFEM of Second Generation (PFEM‑2)

An alternative PFEM technique to solve the incompress-
ible Navier–Stokes problem with large time steps has been 
presented in[50]. The key idea of the method lays in the 
X-IVAS (eXplicit Integration following the Velocity and 
Acceleration Streamlines) method, which consists of inte-
grating the convective terms following the streamlines rather 
than the particle trajectories. The X-IVAS technique has 
been coupled with the standard PFEM giving rise to the so-
called Particle Finite Element Method—Second Generation 
(PFEM-2).

Two different versions of PFEM-2 have been proposed. 
The first one, the PFEM-2 with moving mesh, is based on 
the standard PFEM scheme and it creates a new mesh using 
the position of the nodes. Conversely, in the PFEM-2 with 
fixed mesh, the initial background mesh is kept unchanged 
during the analysis and the information is mapped on this 
fixed mesh. The first technique needs to re-build the mesh 

when is too distorted, as it happens in standard PFEM, and 
it is very efficient for free-surface flows. The approach with 
fixed mesh, on the contrary, maps the variables on the mesh 
avoiding the generation of a new one, and it is particularly 
suited for fluid flow problems in closed domains.

An interesting feature of PFEM-2 is the possibility to use 
an explicit time integration independently on the Courant 
number. The method remains explicit and stable indepen-
dently on the mesh size. The time step is established follow-
ing only accuracy considerations, besides the limits given by 
the Fourier number.

The PFEM-2 has been applied successfully to different 
engineering problems. In[55], the ideas presented in[49, 50] 
were generalized for multifluid flows with large time steps. 
In[38], an extended validation of the method for academic 
problems is presented. Gimenez et al.[37] shows the poten-
tial of PFEM-2 to simulate industrial problems of large time 
duration. An application of the method to jet atomization 
simulation can be found in[39]. Becker and Idelsohn[5] 
shows the potential of PFEM-2 to simulate large scale land-
slides events. FSI problems are tackled with a monolithic 
PFEM-2 approach in[6]. Finally[8] shows an application of 
the method to the simulation of sediment transport phenom-
ena in rivers.

8.2 � PFEM with Nodal Integration

Traditionally, the PFEM has been formulated for standard 
elemental integration, storing stresses and strains at the 
Gauss points. However, in PFEM with Gaussian integra-
tion, due to the continuous elimination of the elements done 
during the remeshing steps, it may be required to transfer the 
elemental information from the old mesh to the new one. 
This is avoided in fluid dynamics problems, where the meas-
ures of stresses and strains are computed from the scratch 
at each time step, but is mandatory for non-linear solid 
mechanics methods that require the storage of historical 
variables. Remapping procedures, besides having a certain 
computational cost, introduce interpolation errors into the 
numerical scheme and cause the smoothing of the historical 
variables (Sect. 2).

On the other hand, in nodal integration methods, stresses 
and material historical variables are computed and stored at 
the mesh nodes[99]. Consequently, a PFEM strategy with 
nodal integration does not require variable remapping pro-
cedures along the remeshing step.

This feature motivated recent research on the use of 
nodal integration in a PFEM framework[56, 124, 126]. The 
method, called by the authors Smoothed Particle Finite Ele-
ment Method, took inspiration from the Smoothed Finite 
Element Method[135] and was successfully applied to 2D 
geomechanics problems with large deformations.

Fig. 21   Examples of a cutting problem. Pictures from[84]
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The use of nodal integration is also appealing in fluid 
dynamics analysis. FEM models with nodal integration 
are expected to suffer less from the low quality of the 
mesh[125]. This feature is particularly important for PFEM 
models because it would allow reducing the number of 
remeshing events and the associated drawbacks. Good resil-
ience to mesh distortion was also found in the first applica-
tion of PFEM with nodal integration to free-surface fluid 
dynamics problems[31]. The same work showed that the 
scheme gives a faster stress convergence than the standard 
element-based method. On the other hand, using stiffness 
matrices with larger bandwidth for the same mesh, nodal 
methods have a higher computational cost for the solution 
of the linear systems.

Very recently[27] showed the accuracy of PFEM with 
nodal integration for the solution of FSI problems in pres-
ence of free-surface fluid flows.

From a broader perspective, the demonstrated suitabil-
ity of PFEM with nodal integration for fluid dynamics[31], 
solid mechanics[56, 124, 126], and FSI analysis[27] opens 
the field to a unified treatment of a general multi-physics 
continuum within a unique PFEM framework.

9 � Conclusions

The PFEM is a powerful and well-assessed numerical tech-
nique that has been extensively used to simulate complex 
engineering problems. This work aimed to give an extended 
overview of the method describing its basic ideas, the main 
strengths and weaknesses, and the spectrum of applications.

In the first part of the work, the method has been 
described in its general form without focusing on specific 
physics or application fields. The remeshing procedure of 
the PFEM has been described in detail. The properties and 
implications of the Delaunay Tesselation, used to re-build 
the elemental connectivities, are analyzed and the alpha-
shape method used to identify internal and external bounda-
ries, is presented in details. Particular attention has been 
devoted to describing the techniques to improve the mesh 
quality, as the insertion and removal of mesh nodes, and to 
highlight the capability of the method to reproduce separa-
tion and reconnection of parts of the computational domain.

After this general description, different physical problems 
have been analyzed separately focusing on the particulari-
ties of their respective PFEM solution scheme. Free-surface 
fluid dynamics was historically the first field of application 
of the PFEM and, for this reason, has been analyzed first. 
Crucial aspects of fluid dynamics analysis and their treat-
ment with the PFEM have been presented. Particular care 
has been devoted to the modelling of the different bound-
ary conditions and to discuss mass conservation issues. A 
benchmark problem for free-surface fluid dynamics solved 

with different PFEM formulations has also been presented, 
showing the capability of the method to deal with com-
plex phenomena such as breaking waves, strong impacts 
and water splashes formation. Then, the application of the 
PFEM to fluid–structure interaction (FSI) problems has been 
shown. After a general classification of the FSI methods, the 
PFEM strategy to track the evolving fluid–solid interfaces 
has been accurately described. An extended literature review 
of the different PFEM formulations for FSI has also been 
provided. Finally, different PFEM solutions of the collapse 
of a water column against a deformable membrane have 
been presented, confirming the suitability of PFEM for solv-
ing complex FSI problems with large solid–fluid interface 
motions. Finally, the application of PFEM to non-linear solid 
mechanics (PFEM-solid) has been described. The advan-
tages and disadvantages of PFEM-solid formulations have 
been highlighted. Particular attention has been devoted to 
describing the re-mapping methodologies used to recover 
the historical information during the remeshing step, and 
the strategy used to model solid–solid contact interaction. 
An extended literature review of PFEM-solid formulations 
has been also provided.

Other main multi-physics problems tackled with the 
PFEM have been analyzed. First, the suitability of the 
method to multi-fluid flows has been highlighted and then 
thermally coupled problems have been analyzed. The PFEM 
has shown to have a high potential for both multi-physics 
problems, proving to be able to handle multiple, articulate 
and sharp fluid–fluid interfaces, and to model naturally and 
accurately thermal convection in different application fields.

Interesting engineering and industrial applications of the 
method have been also presented. Obliviously, many other 
applications of the method have been reported in the lit-
erature. In this review, we limited our analysis only to the 
applications of PFEM to hydraulic engineering, granular 
flows, manufacturing and landslides problems. For all the 
mentioned fields, the potential of the PFEM has been dem-
onstrated and the main works have been referenced.

Finally, the recent advances in the method have been pre-
sented. First, the second generation of the PFEM (PFEM-
2) has been introduced. Then the use of nodal integration 
in the PFEM has been described. PFEM-2 allows reducing 
computational cost enlarging the time steps of the analysis. 
Nodal integration algorithms give the possibility to avoid 
remapping and reducing remeshing events. The potential of 
both methods has been generally presented together with the 
significant literature.

In conclusion, this work aimed to show the potential of 
the PFEM for solving a broad range of applications in engi-
neering and applied sciences. By highlighting the advan-
tages and disadvantages of the method, this work wants also 
to stimulate future improvements of the PFEM technology 
and to widen its field of application.
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Appendix: The Lagrangian Framework

Consider a continuum body occupying an evolving domain 
�t in the time interval [0: T]. The domain occupied by the 
body a time t = 0 is defined as �0 and called initial configu-
ration (see Fig. 22). The domain of the body at a generic 
time instant is denoted as �t and defined as current con-
figuration. Moreover, we define reference configuration the 
configuration at which the equation are referred[7].

In the reference configuration, the position vector of a 
material point is defined as material coordinates (or equiva-
lently Lagrangian coordinates) and labelled as � . Similarly, 

in the current configuration, the position of a point is defined 
as � and called spatial or Eulerian coordinates.

The motion of the continuum body is described by:

where the function � maps the reference configuration into 
the current configuration.

Two different approaches are typically used to describe 
the response of a continuum: the Lagrangian description 
and the Eulerian description. In the Lagrangian framework, 
the material particles are followed in their motion and, in 
this description, the independent variables are the material 
coordinates � at time t. On the contrary, in the Eulerian 
framework, a fixed region of space where the material par-
ticles pass is considered, in this case, the independent vari-
ables are the spatial coordinates � at time t. Typically, the 
Lagrangian framework is preferred in solid mechanics, while 
the Eulerian framework is typically used in fluid mechan-
ics. However, the focus of this work is the application of 
the Lagrangian description to fluid, solid and multi-physical 
problems.

According to the definition of the reference configuration 
(i.e. where the equation are written) different Lagrangian 
approaches can be defined. In the total Lagrangian formula-
tion the reference configuration is the initial configuration 
and it is fixed in time. In the updated Lagrangian formula-
tion, the reference configuration changes in time and typi-
cally corresponds to the last known configuration (i.e. the 
configuration at the previous time instant or at the previous 
load increment)[23]. In both formulations, the variables 
are a function of material coordinates, but derivatives and 
integration are defined differently. In the total Lagrangian, 
derivatives are taken with respect to the material coordinates 
and the integrals (e.g. for the weak form of the equations) 
are defined over the initial configuration. In the updated 
Lagrangian method, the derivatives are written with respect 
to spatial coordinates and the integration is performed over 
the current configuration.
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