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Abstract
This work proposes a model for suggesting optimal process configuration in plunge centreless grinding operations. Seven
different approaches were implemented and compared: first principles model, neural network model with one hidden layer,
support vector regression model with polynomial kernel function, Gaussian process regression model and hybrid versions of
those three models. The first approach is based on an enhancement of the well-known numerical process simulation of geomet-
rical instability. The model takes into account raw workpiece profile and possible wheel-workpiece loss of contact, which
introduces an inherent limitation on the resulting profile waviness. Physical models, because of epistemic errors due to neglected
or oversimplified functional relationships, can be too approximated for being considered in industrial applications. Moreover, in
deterministic models, uncertainties affecting the various parameters are not explicitly considered. Complexity in centreless
grinding models arises from phenomena like contact length dependency on local compliance, contact force and grinding wheel
roughness, unpredicted material properties of the grinding wheel and workpiece, precision of the manual setup done by the
operator, wheel wear and nature of wheel wear. In order to improve the overall model prediction accuracy and allow automated
continuous learning, several machine learning techniques have been investigated: a Bayesian regularized neural network, an SVR
model and a GPR model. To exploit the a priori knowledge embedded in physical models, hybrid models are proposed, where
neural network, SVR and GPR models are fed by the nominal process parameters enriched with the roundness predicted by the
first principle model. Those hybrid models result in an improved prediction capability.
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1 Introduction

1.1 Centreless grinding

As Dhavlikar et al. [1] describe centreless grinding is a com-
mon manufacturing grinding process for round workpieces,
thanks to its unique workpiece (WP) holding system. The

WP is sustained along three contact lines, with the grinding
wheel, the regulating wheel and the supporting blade (Fig. 1).
This method removes the need to clamp the workpiece and
create centring holes on the workpiece. WP loading and
unloading is easier, which results in reduced cycle time and
higher productivity. Nevertheless, Zhou et al. [2] mention, due
to this setup, centreless grinding is exposed to roundness er-
rors generated by two types of instabilities: dynamic regener-
ative chatter and geometric lobing.

Dynamic chatter, due to the interaction between the cutting
process and the main resonances of the machine structure, is a
very usual phenomenon in machining processes. Gallego [3]
defines the geometric lobing as the product of the peculiar
geometric setup of the WP, i.e. blade angle and WP height.
As Klocke [4] shows in his study, it is one of the main con-
straints to WP roundness accuracy: WP centre can oscillate,
provoking an irregular material removal which in turn in-
creases WP waviness.
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Dall [5] conducted the first significant research on the
out-of-roundness WP problem, systematically relating the
roundness error to the geometric configuration. Two main
parameters were considered: the tangent angle and the top
supporting blade angle. Then, Yonetsu [6] defined the
interactions between pre- and post-grinding amplitudes
of harmonics of the WP profile. And Rowe et al. [7]
simulated the centreless grinding lobing problem on a
digital computer taking into account all previous geomet-
rical contemplations and presented the analytical model of
the so-called geometric rounding mechanism. Later
Marinescu et al. [8] used these results to explain the geo-
metric roundness error regeneration process. After de-
scribing the basic geometrical connections of the process,
it was possible to use different stability criteria, like
Nyquist criterion, to show the theoretical instabilities pro-
duced by different configurations. Various researchers
such as Bueno et al. [9] claimed that it is possible to
create a stability map using the Nyquist criterion for each
possible number of complete undulations that can be gen-
erated on the WP. Zhou et al. [2] presented the periodic
characteristic roots distribution of the lobing loop and
recommended a nominal stability diagram to suggest the
range of the centre-height angle in order to lessen the
lobing effect. Rowe et al. [10] introduced the geometric
stability parameter derived from the Nyquist stability cri-
terion, limited to integer lobes. Using these bases, Bianchi
et al. [11] considered the nonlinearity due to the loss of
contact under large waviness, investigating its effect on
process stability. Also Lizarralde [12] has applied similar
approaches to guide setup and optimization of centreless
plunge grinding processes, in order to reduce setup time
and avoid geometric instabilities as a function of WP
height and blade angle, taking into account machine-WP
dynamic interaction. These techniques lead to models that

quantitatively predict the evolution of profile error for
each geometric configuration.

The main objective of the previous works was to identify
the region of instability, to be avoided during process setup
configuration. It has to be noted that, depending onWP initial
profile and process nonlinearities, final waviness can be neg-
ligible despite process instability, resulting in an acceptable
WP. Time domain simulations have been exploited in litera-
ture for considering nonlinear phenomena and trying to pre-
dict the final WP roundness for unstable processes.
Nevertheless, the limits of simulative approaches are well ex-
plained by Marinescu et al. [8]: “It is seen that the general
[simulated] shapes have a similar tendency to those predicted
[…], but it would appear that other errors are additionally
present in the experimental results”. As a matter of fact, lim-
ited quantitative comparisons are available in literature despite
the significant research effort spent. As Zhou et al. [13] ex-
plain, different physical phenomena are involved in this phe-
nomenon: while geometric variables roughly define the shape
of the contact zone betweenWP and grinding wheel, measure-
ments show that the actual contact length is much greater than
the expected geometrical intersection. Furthermore Liu et al.
[14] discuss that the main parameters influencing contact
length are workpiece energy intensity, wear length and contact
time of the abrasive grains, number of abrasive grains in con-
tact, chip thickness and grain forces, wheel wear and nature of
wheel wear, surface roughness and contact temperatures. In
addition to the contact length, variability in material properties
of the grinding wheel and workpiece, systematic precision/
error of the manual setup done by the operator as a parameter,
should be tackled in overall calculations with a robust ap-
proach, in order to reach accurate results.

Considering the various combinations of process geometry
and grinding wheels, a proper estimation of all required pa-
rameters is very time-consuming and barely robust. Many

Fig. 1 Centreless grinding
geometry
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researchers tried to develop algorithms to consider a reduced
set of input data, such as workpiece diameter, wheel diameters
and wheel properties, for suggesting an optimal grinding set-
up. Hashimoto [15] developed a model, named Opt-Setup
Master that can generate the optimum setup conditions to
ensure safe operations, better roundness and chatter-free
grinding. This model, referring to Fig. 1, finds the sets of blade
angle (γ), centre-height angle (β) and workpiece rotational
speed (Ωw) satisfying all three stability criteria and then deter-
mines the optimum set by calculating the so-called PI (perfor-
mance index) function, based on the process targets in terms
of accuracy and productivity. Zakharov et al. [16] showed that
the setup of centreless superfinishing machine tools entails the
creation of geometric, kinematic and mechanical models of
the shaping process and the use of formal optimization
methods. Moreover Barrenetxea [17] developed an assistant
tool for the setup and optimization of the centreless grinding
process, optimizing productivity considering process data and
machine characteristics (dynamics included).

All aforementioned approaches need a series of complex
machine and process manual characterization in order to pro-
vide realistic output. Those characterizations are time-
consuming and results uncertainty is usually not explicitly
taken into account. Furthermore, traditional parametric iden-
tification does not allow to automatically alleviate epistemic
errors by learning new functional relationships. These prob-
lems are amplified by the fact that the system is often inher-
ently unstable and sensitive to initial states and parameters
perturbation. A relevant known issue is concerned with non-
linear system identification, including structural dynamics,
which is still an open problem in literature.

In addition to models based on first principles, as the one in
the studies discussed above, an empirical approach is possible.
We will focus on process characterization by artificial intelli-
gence techniques in the following section.

1.2 Parameters selection based on AI

As Sjöberg et al. [18] suggest, a widespread approach to per-
form an input/output regression is based on artificial neural
networks (NN). Many researchers have used those methodol-
ogies for prediction of chatter and surface roughness, both in
grinding and other process domains. Rowe et al. [19] have
suggested the application of AI technologies in grinding using
modern computers and controllers as a way forward to pro-
duce higher quality components more efficiently. Junkar et al.
[20] usedmachine learning technics for classification, through
grinding signal detection, to assess performance classes, and
discussed the possibility of upgrading this approach to a con-
trol algorithm by associating class assignments with appropri-
ate control actions by a binary tree approach. Moreover Filipic
et al. [21] used the same method to classify dielectric fluids in
electrical discharge machining and for tool selection in an

industrial grinding process, showing that the approach is ben-
eficial in preventing poor process performance and improving
product quality. Cherukuri [22] applied an artificial neural
network (NN) to model stability in turning operations using
analytical stability study to generate a dataset that trains the
NN. Additionally, Khasawneh [23] had combined supervised
machine learning with topological data analysis to obtain a
descriptor of the process which can detect chatter in turning.
And Zhang et al. [24] usedGaussian process regression (GPR)
for modelling and predicting surface roughness in end face
milling with accuracy of 84%. Furthermore, Aguiar et al.
[25] have developed a neural network using a multisensor
method to predict the final roughness on the grinded work-
piece with 70% success rate. Lela et al. [26] examined the
influence of cutting speed, feed and depth of cut on surface
roughness in face milling by three different modelling meth-
odologies, namely, regression analysis (RA), support vector
machines (SVM) and Bayesian neural network (BNN), and
found out that, when the training dataset is small, both BNN
and SVR modelling methodologies are comparable with RA
methodology and, furthermore, they can even offer better re-
sults. In particular, the best results were achieved by BNN,
with less error with respect to SVR.

Human learning builds on observations and empirical evi-
dence from the surrounding world: this accumulated knowl-
edge is synthetized, through scientific development, in first
principles (FP) models. Similarly, data-driven AI approaches
use machine learning (ML) to derive models based on collect-
ed data. A combined model allows physical models to be
enhanced by AI solutions, to enhance performance and trust.
In this paper, a hybridmodel structure is proposed: a FPmodel
is built, based on known physical characteristics of the system,
and coupled with three data-driven models, to minimize resid-
ual errors. In particular, an SVR model with polynomial ker-
nel function, a back-propagation NN with Bayesian regulari-
zation and a GPR model with ardexponential kernel function
are used as novel methods to attune the FP output to be closer
to experimental results. The improved prediction capability of
the proposed hybrid models could be profitably used to drive
setup of process parameters.

2 Process model

2.1 First principle model

2.1.1 Nonlinear process kinematic

As Rowe [27] describes, considering a plunge centreless
grinding, the shape of the cylindrical WP is defined by the
radial reduction r(θ) occurring at the grinding point (i.e. at the
contact between wheel andWP), where θ definesWP rotation,
starting from zero at the beginning of grinding. The reduction
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r(θ) cumulates during grinding and it is equal to the reduction
at the previous revolution r(θ − 2π) summed to the current
wheel WP depth of cut I(θ) (also known as infeed). Namely:

r θð Þ ¼ I θð Þ þ r θ−2πð Þ ð1Þ

He [28] also mentions that, assuming a perfectly rigid system,
the depth of cut is obtained from a pure kinematic model, com-
puting the intersection between the grinding wheel and the WP,
taking into account the feed movement X(θ), projected along the
WP radius at grinding point, andWP centre displacement due to
WP profile contacts at work rest and rubbing wheel.

Given its physical meaning, I (θ) cannot become negative,
as the process either subtracts material, or leaves the surface
unvaried when the wheel detaches: thus, the actual depth of
cut must be “clipped” to zero if negative:

I θð Þ ¼ yNL X θð Þ þ K1r θ−αð Þ−K2r θ− π−βð Þð Þ−r θ−2πð Þð Þ ð2Þ
where

& K1 and K2 are the well-known coefficients relating WP
displacement at the grinding contact to radius variation
a t wo r k r e s t a n d r u bb i n g whe e l c o n t a c t s ,
respectively: K1 ≜ sin β/ sin (α + β) and K2 ≜ sin α/
sin (α + β). The contact angles depend on work-height
hw and work rest angle γ where α = π/2 − γ − β and
β = βs + βc (Fig. 1). Angles βs and βc are given by βs =
sin−1(2 · hw/(ds + dw)) and βc = sin−1(2 · hw/(dcw + dw)). By
introducing υ ≜ β/βs, the grinding setup is completely de-
fined by the 3-uple {γ, β, υ}.

& yNL(·) is a two-segment piecewise function expressing the
“clipping” nonlinearity due to wheel WP detachment:

yNL uð Þ≜ u if u≥0
0 otherwise

�
ð3Þ

Substituting Eq. (2) into Eq. (1), it yields:

r θð Þ ¼ yNL X θð Þ þ K1r θ−αð Þ−K2r θ− π−βð Þð Þ−r θ−2πð Þð Þ þ r θ−2πð Þ ð4Þ

Knowing that θ =Ωt, the phase associated to a pulsation
ω can be written as ωt = (ω/Ω)θ = nθ, where n is the number of
oscillation cycles in a WP revolution, i.e. the number of lobes.
Then, in order to study system stability, Eq. (4) can be rewrit-
ten in Fourier domain with s = jn (for sake of readability, the
dependency on jn is omitted in the notation):

r ¼ yNL X þ K1re−jn∝−K2re−jn π−βð Þ−re−2jnπ
� �

þ re−2jnπ ð5Þ

2.1.2 Wave filtering

Due to a well-known geometrical interference phenomenon,
once a critical limit is exceeded, the amplitude of the waves
engraved inWP profile becomes smaller than the amplitude of
the relative vibration. According to Hashimoto, contact filter-
ing occurring at regulating wheel/WP contact (denoted with
cr) and at wheel/WP contact (denoted with cs) is modelled as:

Zcs=cr nð Þ ¼ 1

2
1þ cos

lcs=cr
dw

n
� �� �

ð6Þ

where lcs/cr is the contact length at the interface and dw is the
WP diameter.

The actual contact length depends both on geometrical fac-
tors and bodies compliance:

lcs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2g þ l2f

q
ð7Þ

where lg is the geometric contact length (lg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I d−1w þ d−1s
� 	−1q

)

and lf the deflection contact length, estimated as:

Fig. 2 Model block diagram
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l f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 � R2

r � F
0
n � d−1w þ d−1s

� 	−1
πE*

s
ð8Þ

where

& Rr is a roughness factor equal to 1 for a smooth cylinder
but typically ranges from 5 to 15 for a grinding wheel.

& F
0
n is the normal grinding force per unit width.

& E∗ is the combined elastic properties of the grinding wheel

and workpiece, i.e. 1
E* ¼ 1−ν1

E1
þ 1−ν2

E2
, where E1, E2, ν1, and

ν2 are the Young modules and Poisson ratio, respectively.

2.1.3 Stiffness factor

Grinding machines static and dynamic compliance affects
wheel-workpiece relative displacement. At very low frequen-
cies—namely, lower than the first significant natural
frequency—only static compliance can be considered; thus,

deflection is approximately in phase with the depth of cut.
Static deflection Δel is given by:

Δel ¼ KS= KmIeð Þ ð9Þ
where KS (process stiffness) is the ratio between normal grind-
ing force and actual infeed Ie and Km is the wheel-workpiece
static stiffness. Whereas the actual infeed Ie depends on the
nominal infeed I by Ie = I −Δel, Eq. (12) yields:

Ie ¼ KI ð10Þ

with K≜
Km

Km þ KS
stiffness factorð Þ ð11Þ

2.1.4 Simulation model

The obtained process model is represented by the block dia-
gram of Fig. 2. Based on it, a numeric simulation code has
been developed in MATLAB™ to estimate the WP profile,
discretized by a circular array of 7200 elements, representing
WP radial reduction at a given angular position. The contact
filtering illustrated in Section 2.2 has been implemented by a
0-phase symmetric FIR filter: a high order of 361 has been
selected to fit properly the Zcs(n) of Eq. (8). Contact length lcs
has been computed using Eqs. (9), (10) and (11). All the

Fig. 3 Time-frequency analysis of the sample simulated WP profile

Fig. 4 Sample WP profile after 950 revolutions

Table 1 DOE-controlled parameters

Control parameters Ranges and discrete values

1 Workpiece height From -5 mm to +30 mm

2 Workpiece diameter (WPD) Ø5; Ø20; Ø60

3 Workpiece length (WPL) 50 mm; 100 mm;150 mm

4 Supporting blade angle (γ) 20°; 30°; 40°

5 Feed rate From 0.010 mm/s to 0.004 mm/s

6 Regulating wheel velocity From 10 rpm to 30 rpm

7 Infeed From 0.15 mm to 20 mm
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necessary parameters, such as Rr, Fn′, E1, E2, ν1 and ν2, have
been taken from literature, given theWPmaterial and grinding
wheel type and status. Stiffness factor K has been estimated
fitting an exponential decay on wheel spindle current signal
during spark-out tests, as described in, par. 19.11.4.

Figure 3 depicts the Short-time Fourier transform (STFT)
of the WP profile for a simulated unstable operation. It can be
observed the transition from an initial linear unstable condi-
tion, with exponential growth, to a steady state condition due
to clipping nonlinearity. Moreover, only one dominant har-
monic component raises: the simulated profile, with “number
of lobes” equal to 16 lobes, is plotted in Fig. 4 and used to
compute the “simulated roundness”. Additionally, a “detach
index” is evaluated, indicating the processing time percentage
when detachment occurs. Exploiting the conceptual process
model of Fig. 2, an analytical stability analysis is performed
by the Nyquist criterion, delivering the exponential growth
rate that, multiplied by the number of WP revolutions, pro-
duces the so-called “stability index”. The simulated
roundness, detach index, simulated number of lobes and

stability index plus dullness level of the grinding wheel, which
is calculated after each test, will be used as additional inputs
by the hybrid model described in the following.

2.1.5 Experimental verification

To validate the obtained model, a series of experimental tests
were done, varying seven independent control parameters
(Table 1) by a randomly generated “latin hypercube” ap-
proach, while keeping 7 fixed parameters (Table 2), for a total
of 100 samples. Ranges have been selected according to the
industrial practice, by surveying technologists experience.
The discrete variables (γ, WPD, WPL) have been chosen by
discretizing the continuous random variables.

The test has been executed on a Monza 520 M6 century
edition grinding machine by “Monzesi srl”, with manual work
rest blade adjustment (Fig. 5). The WP roundness has been
measured with a “Mitutoyo Roundpack 400” system, at three
different highs along the WP, producing then an average
roundness for each WP.

Table 2 DOE-fixed parameters
Fixed parameters Values

1 Grinding wheel linear velocity (Vs) 32 m/s

2 Regulating wheel diameter (nominal) 300 mm

3 Operating wheel diameter (nominal) 500 mm

4 Operating wheel type (ANSI B74 13–1977) 500X165X254A 24A80L4V19

5 Regulating wheel type (ANSI B74 13–1977) 300X157X127A 10A80RR

6 Workpiece material C45

Fig. 5 Monza 520 M6 century
edition (working zone)
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When the process is unstable, waviness grows exponential-
ly until grinding wheel/workpiece detachment occurs.
Roundness final value, both experimentally and in simula-
tions, is very sensitive to several system parameters. To effec-
tively support industrial production, the analysis must be able
to discriminate between acceptable and excessive roundness
errors “RE”. Instead of adopting a discrete classification ap-
proach, this judgement is reproduced computing a normalized
roundness error “REN” by a pseudo-sigmoid function, adapted

from [29], that mitigates the disrupting effect of uncertainty
and epistemic uncertainty:

REN ¼ RE
RE0:6 þ 2

ð12Þ

The relationship between normalized roundness RN pre-
dicted by the FP model and measured from the experiments
is plotted, for all samples, in Fig. 6, showing an R correlation
value around 0.45.

3 Machine learning techniques

3.1 Learning setup

In the pre-processing stage, data has been checked for
missing values and outliers and, in case of existence, they
were removed which in this case only one point was elim-
inated. For reducing the effect of different scales across
input variables on numerical conditioning during training,
input data normalization has been performed to have
values between −1 and 1. Then, a random selection of
20% of dataset was separated and kept aside as final test
data, while the remaining 80% of original data was used
to train the models. Furthermore, since the dataset was
small, to improve prediction generality and remove effects
of the initial random values, all algorithms were trained
separately 100 times. At each single model training, the
training dataset was randomly divided into two parts, 70%
of the data was used for training and the remaining 30%
was used for testing of that model.

3.2 Neural network model

In this approach, the system was modelled using a pure NN
method (Fig. 7). For this aim, Kayri [30] has suggested
using a Bayesian regularized artificial neural network
(BRANN), because they limit overtraining and overfitting.
The input vector of independent variables ui is linked to the
target using the design represented in Fig. 8, with one hid-
den layer. Each single node is associated to those of the
previous layer by compliant weights. In each neuron, in-
puts are multiplied by the corresponding weight and
summed. Nevertheless, Alados et al. [31] propose to apply
an activation function to the resulting sum, producing the
neuron output, which is transferred to the next layer. After
the feed forward step, the variance between the real output
and predicted output of the network is defined as error. In
the back-propagation phase, the error signal is transmitted
from the output to the input layer via a layer-by-layer man-
ner, adjusting the network weight. As Okut [32] explicates,

Fig. 6 Correlation between simulated and experimental workpiece
normalized roundness error RN

Fig. 7 The architecture of an artificial neural network
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the objective function used in BRANN has an additional
term that castigates large weights: because of this contrac-
tion, the effective number of parameters attained by
BRANN can be less than the total number of available
parameters. In this way, a smoother mapping is achieved,
with reduce overfitting and improved model generalization
ability.

3.2.1 Neural network-only model

The neural network model is defined via few hyperparameters,
as the number of hidden layers and the number of neurons in
each layer, etc. They must be selected before the training stage
but there is no unique or predefined way of selecting them. In
this study, a series of experiments has been done with different

Fig. 8 Neural network
architecture

Fig. 9 NN test regression plot Fig. 10 NN hybrid test regression plot
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hyperparameters arrangement and it was observed that the best
network performance was achieved with the parameters report-
ed in the following. The performance of the networks is mea-
sured by the achieved minimum mean square error (MSE) and
maximum correlation value R.

A network with one hidden layer has been considered since
the number of effective parameters and overall performance of
model in terms of its prediction precision did not change sig-
nificantly by adding more hidden layers. The number of neu-
rons in each hidden layer is selected accordingly to the num-
ber of input parameters (NI): 2 ·NI − 1, according to the rule
of thumb suggested by João [33]. As Kayri [30] mentioned,
adding more neurons resulted in increasing computation time
without performance improvements: the effective number of
parameters is unchanged. During BRANN training, the less
relevant weights are set to zero. In the hidden layer, a tan-
gent hyperbolic activation function was chosen as sug-
gested [34], since they reduce the number of training iter-
ations and because the output of the system is a real num-
ber. On the other side, for the output layer, a “purelin”
activation function is used.

MATLAB (2020a) Statistics and Machine Learning tool-
box was employed for exploring the BR artificial neural net-
work. In this study, as Reece [35] reported, the training pro-
cess is halted if (a) it reaches the maximum number of itera-
tions (2000); (b) the maximum amount of time is exceeded (no
limit has been considered); (c) the estimation error is below

the target (0.003); (d) the performance gradient drops below
minimum gradient; or (d) theMarquardt adjustment parameter
(μ) becomes larger than 1010.

To improve generalization, taking into account the small
dataset used, Shaikhina [36] suggested to train multiple NNs,
selecting a random training dataset (while preserving the ini-
tial 20% of the data for the final evaluation). Therefore, 100
neural networks, with the previously described architecture,
were trained, with all seven independent parameters used in
FP plus the dullness level of the grindingwheel. Then only top
10 models, based on their R value, were selected for final
testing stage: the average output of these models was used
for roundness predictions based on the 20% dataset kept as
final test data. The resulting correlation between them and the
actual roundness values for each test is represented in Fig. 9,
with an R value around 0.7, i.e. a 52% increase over the FP
model R value.

3.2.2 Neural network-hybrid model

It is clear that both the FP and NN approaches have their
advantages and drawbacks. But as Driscoll et al. [37] reported,
generally physic models tend to have higher bias but lower
variance. On the other hand, machine learning models tend to
have a high variance and low bias. It is therefore suggested to
combine both methods to deliver a further robust system. In
the proposed hybrid model structure by Ahmad [38] g(z), the

Table 3 SVR optimal SVR hyperparameters

Kernel function Box constraint Epsilon (ε)

Polynomial order 3 0.32966 0.00055033

Fig. 11 SVRs test regression plots: a SVR only, b SVR hybrid

Table 4 GPR parameters

Kernel function Sigma Predict method Optimizer

Ardexponential 0.02 Exact fmincon
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output ƒ(x) of the FP model, based on known parameters “x”,
is exploited as an additional input for the NN model, together
with the global inputs “z” to the process. Parameters “x” are a
subset of “z”, as wheel dullness indicator (that is considered
by the ML models) does not play any role in the adopted
physical model:

y ¼ g z; ƒ xð Þð Þ ð13Þ

For doing so, an NN model is considered as before, with
one hidden layer and number of neurons selected, based on
previously explained method. The input parameters of this
new NN are the ones from NN in the previous section plus
primary and secondary outputs from the FP (explained in
Section 2.1.4.) such as expected roundness, detach index, ex-
pected number of lobes and stability parameter. As previously
explained, inputs are normalized and a BRANNwith the same
activation functions was adopted. Then, 100 models were

trained and tested as before and consequently, top 10 models
were selected, to perform the final test.

The results obtained from the hybrid model (Fig. 10) illus-
trate that with this approach, in the test dataset, the average
correlation value R between data and predicted value reaches
0.9, with an improvement of 28% with respect to the NN-only
method with same architecture and an improvement of 89%
with respect to the sole FP method.

3.3 Support vector regression (SVR)

Support vector machine (SVM) analysis is a widespread ma-
chine learning tool for classification and regression, first pro-
posed by Vapnik [39]. SVM regression is contemplated as a
nonparametric technique because it depends on kernel func-
tions. As Campbell [40] describes, SVMs have properties
such as good generalization ability and a small number of free

Fig. 12 GPRs test regression plots: a GPR only, b GPR hybrid

Fig. 13 Precision comparison
between models

Int J Adv Manuf Technol



adjusting parameters, and unlike NN approach, it has no pre-
requisite for designing the architecture of themachine learning
model. They were initially established for classification tasks,
but they can be employed in regression problems as support
vector regression (SVR) by including of a loss function based
on a distance measure. SVR constructs a linear model after the
input has been mapped into a higher dimensional feature
space using some nonlinear mapping (usually by reproducing
kernels). The estimation accuracy of SVR depends on three
hyperparameters:

& Kernel function, such as linear function, polynomial func-
tion, radial basis function and sigmoid function.

& Box constraint: parameter that controls the maximum pen-
alty imposed on margin-violating observations and aids in
preventing overfitting (regularization). If the box con-
straint is increased, the SVM classifier assigns fewer sup-
port vectors. However, increasing the box constraint can
lead to longer training times.

& Insensitive loss function (ε): the value of ε influences the
number of support vectors used to form the regression
function. If ε increases, fewer support vectors are chosen,
and the smoothness of the regression function increases
too, explains [26].

For finding those parameters, an automatic hyperparameters
optimization was conducted on the dataset: the best combination
based on model MSE is reported in Table 3.

3.3.1 SVR model

Once SVR hyperparameters are selected, the SVR model is
ready for the learning process. As explained in Section 2.2.1,
two different SVR models were created: one using the seven
input parameters from FP model and one using primary and
secondary inputs, by the hybrid method.

As before, the top 10 models from each approach were
selected and averaged, to perform the final test. Figure 11
shows average R values achieved with these two models: in
the SVR only approach, the correlation between predicted and
actual roundness was less than in the FP model, but, by the
hybrid approach, the correlation value was doubled and per-
formed even better than FP model with 73% improvement.

3.4 Gaussian process regression (GPR)

Gaussian process regression (GPR) models are nonparametric
kernel-based probabilistic models, whichmake them powerful
tools for Bayesian supervised learning. They have in common
with support vector machines and regularization networks the
theory of regularization via reproducing kernels that allow the
straight specification of the smoothness properties of the class
of functions under consideration. As Smola [41] stated, this
makes them popular for regression of small datasets. Through
a series of experiments and automatic hyperparameters opti-
mization bringing the least MSE, a GPR model with custom-
ized parameters (Table 4) is selected for roundness prediction.

Employing top 10 models from 100 trained and tested
models and averaging results obtained from each of them for
roundness prediction, the difference in terms of correlation
between predicted and actual values is much more significant
between two approaches. As shown in Fig. 12, the correlation
value obtained by GPR hybrid method is raised by 100%with
respect to FP model and 50% with respect to GPR only
method.

4 Discussion

This paper presents results from attempting to combine first
principle and machine learning techniques into hybrid models
to forecast performance of a centreless grinding process in
terms of workpiece final roundness. The FP model is
established on theoretical calculations and assumptions that
need prior understanding of the system under the study. The
adopted FP model, while similar to models discussed in sim-
ilar literature, exhibits an unsatisfactory accuracy, probably
because of improperly treated phenomena, e.g. contact length

Fig. 14 Primary model inputs sensitivity

Fig. 15 Primary and secondary model inputs sensitivity
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dependency on local compliance, on contact force and on
grinding wheel roughness; variability in material properties
of the grinding wheel and workpiece; and progressive grind-
ing wheel wear and dullness. On the contrary, NN, SVR and
GPR models are established straight from experimental data,
engaging a range of statistical techniques to identify suitable
mathematical models. However, precise estimates are possible
only if a large training set is available, with accurate data.
Therefore, for obtaining the benefits of both methods, they
have been combined into a hybrid modelling approach.
From NN approach, it was observed that the hybrid model
with one hidden layer leads to significant reduction in predic-
tion error. It was also noticed that, using the SVR and GPR
approaches, the improvement from normal model to the hy-
brid model was more significant. Comparing these seven
models, the best test results was obtained by hybrid GPR
model that, in addition, takes considerably less time for train-
ing with respect to an NN hybrid with a similar precision.
Figure 13 presents a brief comparison between all seven
models in terms of precision.

For understanding what causes this difference between
pure machine learning (ML) models and hybrid models, a
sensitivity analysis has been conducted by automatic rele-
vance determination (ARD) based on GPR model, on both
input datasets [42]. Figure 14 illustrates that in standard
data-driven models, the roundness value is most sensitive to
the Beta angle and then to WP diameter, infeed rate (Inf) and
Gamma angle. However, by adding primary and secondary
outputs of FP model as secondary input in ML models, new
parameters are more interrelated with WP roundness: Fig. 15
shows that simulated roundness (SRN) and simulated number
of the lobes (NLb), estimated by the FP model, do not help
ML model as expected. The secondary outputs of the FP
model, such as the detach index (DI) and the stability index
(SI), have the highest correlation with WP roundness.

5 Conclusion

A hybrid approach has been suggested to improve roundness
predicted by the numerical models based on first principles.
Data-driven models, based on nominal process parameters
augmented by additional outputs provided by a Physics-
based model, deliver an optimal estimation that alleviates the
effect of the unavoidable uncertainties and epistemic errors.
The results presented in this paper indicate that even a first
principal model with mediocre primary output performance
includes other secondary outputs which are beneficial to en-
hance machine learning techniques, compared to black box
approaches with the same techniques.

Future activities will be aimed at improving the first prin-
ciple model. A larger campaign on a commercial centreless

grinding machine will be used to examine more combination
of parameters and further improve prediction accuracy.
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