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Abstract 18 

We start from the well-documented scale dependence displayed by the probability distribution and 19 

associated statistical moments of a variety of hydrogeological and soil science variables and their 20 

spatial or temporal increments. These features can be captured by a Generalized Sub-Gaussian 21 

(GSG) model, according to which a given variable, Y, is subordinated to a (typically spatially 22 

correlated) Gaussian random field, G, through a subordinator, U. This study extends the theoretical 23 

framework originally proposed by Riva et al. (2015a) to include the possibility of selecting a 24 

general form of the subordinator, thus enhancing the flexibility of the GSG framework for data 25 

interpretation and modeling. Analytical expressions for the GSG process associated with 26 

lognormal, Pareto, and Gamma subordinator distributions are then derived. We demonstrate the 27 

ability of the GSG modeling framework to capture the way key features of the statistics associated 28 

with two datasets transition across scales. The latter correspond to variables which are typical of a 29 

geochemical and a hydrogeological setting, i.e., (i) data characterizing the micrometer-scale 30 

surface roughness of a crystal of calcite, collected within a laboratory-scale setting, resulting from 31 

induced mineral dissolution; and (ii) a vertical distribution of decimeter-scale porosity data, 32 

collected along a deep km-scale borehole within a sandstone formation and typically used in 33 

hydrogeological and geophysical characterization of aquifer systems.The theoretical 34 

developments and the successful applications of the approach we propose provide a unique 35 

framework within which one can interpret a broad range of scaling behaviors displayed by a variety 36 

of Earth and environmental variables in various scenarios. 37 

Plain Language Summary 38 

Characterization of hydrogeological and geochemical systems aims at assessing the heterogeneity 39 

and scale dependency exhibited by their attributes and the associated key statistics. It has been 40 

shown that complex scaling features documented for the statistics of a wide range of Earth, 41 

environmental (and several other) variables and their spatial/temporal increments can be captured 42 

through a Generalized Sub-Gaussian (GSG) model. The latter relies on the subordination of a 43 

Gaussian random field through a subordinator. This study extends the theoretical framework 44 

originally proposed for the GSG model to include multiple choices of the subordinator distribution. 45 

We provide the theoretical formulation and discuss the main features of the GSG model resulting 46 

from (i) a general form of the subordinator and (ii) three selected distributional forms. We show 47 
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the effectiveness of the GSG modeling framework for the interpretation of real data encompassing 48 

a considerably wide range of scales by analyzing (i) a set of surface topography (roughness) data 49 

collected on a calcite sample in a laboratory-scale geochemical setting; and (ii) a field-scale 50 

distribution of porosity data, collected along a deep borehole within a sandstone formation. 51 

1 Introduction 52 

Geostatistical models adopted for the interpretation of key features of spatial heterogeneity 53 

of quantities related to subsurface flow and transport processes consider available observations of 54 

a variable of interest as samples from a random field with a given distribution. Analyses of a wide 55 

collection of datasets of hydrogeological attributes, including, e.g., (log) hydraulic conductivity 56 

and permeability (Liu & Molz, 1997; Meerschaert et al., 2004; Painter, 2001; Painter, 1996, Riva 57 

et al., 2013a, 2013b; Siena et al., 2012, 2019), electrical resistivity (Painter, 2001), and neutron 58 

porosity (Guadagnini et al., 2015; Riva et al., 2015a) observations, clearly document the 59 

occurrence of distinct non-Gaussian features characterizing their distributions. Notably, it has been 60 

shown that spatial increments, ( ) ( ) ( )Y Y Y = + −s x s x , evaluated over separation distance (or lag) 61 

s (x being a position vector) of a given quantity Y are characterized by distributions displaying 62 

peaks that become sharper and tails that tend to become heavier with decreasing lag. A similar 63 

behavior, corresponding to distributions transitioning from heavy tailed at small lags to seemingly-64 

Gaussian at increased lags, is documented by analyses of a variety of spatial and/or temporal 65 

increments of environmental data, including sediment transport processes (e.g., Ganti et al., 2009) 66 

and fully developed turbulence (Boffetta et al., 2008) as well as datasets of Earth, environmental 67 

and several other variables (see Neuman et al., 2013 and references therein). Such a scale 68 

dependence is directly imprinted to the associated (statistical) moments of increment distributions. 69 

All of these evidences suggest that modeling the (spatially correlated) variability of Y 70 

through a Gaussian model is not generally warranted. With specific reference to the spatial 71 

variability of hydrogeologic quantities, a number of studies evidence that the heterogeneity of 72 

natural aquifers is generally more complex than what can be captured through a Gaussian model 73 

(e.g., among others, with reference to hydraulic conductivity, Gómez-Hernández & Wen, 1998; 74 

Haslauer et al., 2012; Mariethoz et al., 2010; Xu & Gómez-Hernández, 2015 and references 75 

therein). 76 
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In this context, it is also noted that attributes/properties of porous media that at some scale 77 

can be considered as composed by distinct facies/regions, each corresponding to a given material 78 

characterized by an internal degree of heterogeneity, could be represented through multi-modal 79 

distributions (see, e.g., Desbarats, 1990; Lu & Zhang, 2002; Rubin, 1995; Russo, 2002, 2010; 80 

Winter et al., 2003 and references therein). The latter are representative of a conceptual (and 81 

mathematical) model that views the otherwise composite nature of the system as a unique 82 

continuum at the given scale of observation, natural variability within each region being 83 

characterized by a statistical behavior of the kind described above. 84 

Riva et al. (2015a, b) show that the above illustrated scale-dependent behavior of the 85 

probability density function (pdf) of Y  can be captured through a Generalized Sub-Gaussian 86 

(GSG) model. This theoretical framework relies on the idea that the spatial random field 87 

( ) ( )Y Y Y =   +x x , Y   and ( )Y  x  being respectively the ensemble mean and a local zero-mean 88 

fluctuation, can be interpreted through the following model 89 

( ) ( ) ( )Y U G =x x x . (1) 90 

where ( )G x  is a zero-mean, Gaussian random field and ( )U x  is a so-called subordinator, 91 

independent of G, consisting of statistically independent identically distributed (iid) non-negative 92 

random variables. The underlying Gaussian random field generally (but not necessarily) displays 93 

a multi-scale nature which can be captured, for example, through a geostatistical description based 94 

on a Truncated Power Variogram model (e.g., Di Federico & Neuman, 1997; Neuman & Di 95 

Federico, 2003). 96 

As opposed to mathematical models based on multifractals (e.g., Boffetta et al., 2008; Frisch, 97 

2016; Lovejoy & Schertzer, 1995; Mandelbrot, 1974; Monin & Yaglom, 1975; Veneziano et al., 98 

2006) or fractional Laplace approaches (e.g., Kozubowski et al., 2006, 2013; Meerschaert et al., 99 

2004), which have been employed to mimic the above-mentioned pattern of increment frequency 100 

distributions, the GSG model enables one to represent jointly within a unique theoretical 101 

framework the documented behavior (as described by probability distributions and/or moments) 102 

of a quantity and its incremental values. 103 

Riva et al. (2015a) provide the first analytical formulation of the GSG model, illustrating 104 

that the characteristic scaling behavior of the increments results from the decay of the correlation 105 

function of the underlying Gaussian random field with increasing lag. Riva et al. (2015b) illustrate 106 
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an approach for the generation of unconditional random realizations of statistically isotropic or 107 

anisotropic GSG fields in multiple dimensions. Panzeri et al. (2016) develop an algorithm for the 108 

generation of GSG fields conditional to a given set of data. Siena et al. (2019) rely on the GSG 109 

model for the interpretation of the spatial variability of a set of air permeability data collected 110 

along a core of limestone. Guadagnini et al. (2018) present a 9-step procedure for the detection of 111 

GSG signatures in a given dataset. Notably, theoretical developments and applications to date rest 112 

solely on a lognormal distribution of U characterized by a single parameter, thus limiting the range 113 

of possible applications of the GSG model. 114 

The present study focuses on a generalization of the GSG framework by extending the 115 

formulation of Riva et al. (2015a) to include a generic subordinator. This enables us to enhance 116 

the flexibility of the model for data interpretation and modeling by taking into account specific 117 

features exhibited by the way statistics of a given dataset transition across scales. We then 118 

demonstrate the applicability of the general theoretical framework by considering a (i) two-119 

parameter lognormal; (ii) Pareto; and (iii) Gamma distributional form of U and developing the 120 

ensuing analytical expressions for the GSG process. We analyze in this context two datasets 121 

associated with differing processes and observation scales. The first application includes direct 122 

observations of µm-scale surface topography (or roughness) of mm-scale calcite crystals resulting 123 

from induced mineral dissolution. Calcite is a common mineral in the Earth’s crust and is 124 

characterized by significant dynamics of its surface, depending on environmental conditions (e.g. 125 

Fischer et al., 2012; Jordan & Rammensee, 1998; Noiriel et al., 2009, 2020). Acquisition of the 126 

type of data we consider is subject to increased interest to characterize micro-scale geochemical 127 

processes deriving from interactions taking place at fluid-rock interfaces (e.g., Bouissonnié et al., 128 

2018; Pollet-Villard et al., 2016a, b and references therein). While the possibility of acquiring 129 

these direct observations is continuously enhanced through the use of modern atomic force 130 

microscopy and vertical scanning interferometry, statistical analyses of available datasets are still 131 

limited to standard variography (Pollet-Vilard et al., 2016a). As an additional test-bed, we analyze 132 

a vertical profile of neutron porosity data, collected along a deep borehole in a sandstone formation 133 

and encompassing a vertical depth of about 1 km at a 15-cm resolution (Dashtian et al., 2011). As 134 

these types of data are routinely available in (hydro)geological and geophysical subsurface 135 

exploration, they constitute a remarkable dataset to assess the applicability of our statistical scaling 136 

framework at such scales. 137 
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The work is structured as follows. Section 2 illustrates the key features of the GSG model 138 

and describes a moment-based method of inference of model parameters. The detailed original 139 

analytical formulation of the GSG model associated with a generic subordinator and the ensuing 140 

derivations for the three subordinators here considered are provided in Appendix A and B, 141 

respectively. In Section 3 we compare the performance of these three alternative GSG models for 142 

the interpretation of the two datasets illustrated above. Concluding remarks are provided in Section 143 

4. 144 

2 Generalized Sub-Gaussian model 145 

2.1 Theoretical framework 146 

Zero-mean fluctuations, Y  , at two spatial locations, 1x  and 2x , can be expressed as 147 

( ) ( ) ( )i i i i i iY U G Y U G = = =x x x ,      with i = 1, 2. (2) 148 

The bivariate pdf of 1Y   and 2Y   is (Riva et al., 2015a) 149 

( ) ( ) ( )
1 2 1 2 1 2

1 2 2 1
, 1 2 1 2

1 2 2 10 0

, ,Y Y U U G G

y y du du
f y y f u f u f

u u u u

 

 

  
  =  

 
  . (3) 150 

Here ( )
iU if u  is the pdf of iU  and 

1 2G Gf  is the bivariate pdf of 1G  and 2G , given by 151 
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, (4) 152 

where, 2

G  is the variance of G and G  is the correlation coefficient between 1G  and 2G , which 153 

typically decreases as the separation distance (or lag) 1 2s = −x x  increases. Starting from Riva et 154 

al. (2015a), who developed the analytical framework for the specific case of a single-parameter 155 

lognormal subordinator, we provide in Appendix A an original theoretical formulation of the GSG 156 

model considering a generic distributional form of U. It is worth noting that, regardless the 157 

distributional form of U, the variogram of Y'  is always characterized by a nugget effect (see Eq. 158 

A14), rendered by the product of the variance of G and the variance of U. This result implies that 159 

nugget effects, which are typically considered to appear due to variability of Y'  at scales smaller 160 

than the sampling interval and/or to measurement errors, may in fact be (at least in part) considered 161 

as a symptom of non-Gaussianity of the type embedded in the GSG theoretical framework. 162 



manuscript submitted to Water Resources Research 

 

The general framework introduced in Appendix A encompasses multiple possible 163 

formulations of the GSG model. In this context, we evaluate three possible alternative models for 164 

U , corresponding to a lognormal, Pareto, or Gamma distribution. Each of these models is 165 

characterized by NP = 2 parameters, respectively controlling the shape (shape parameter) and the 166 

spreading (scale parameter) of the pdfs of the ensuing GSG formulation for Y' . Hereinafter, we 167 

denote the latter as LN-GSG, P-GSG, and Γ-GSG for the lognormal, Pareto, and Gamma 168 

subordinator, respectively. The theoretical formulation of each of these GSG models is provided 169 

in Appendix B. 170 

Equation (A7) indicates that the pdfs Yf  of incremental values ( Y ) corresponding to 171 

differing lags depend on (i) 2

G  and the NP parameters of U ; and (ii) G . While the former 172 

parameters are constant for all lags, the correlation function of G is lag-dependent, thus imprinting 173 

a scaling behavior, i.e., an intrinsic variability with lag, to the shape of the pdf of incremental 174 

values of Y' , independent of the GSG model considered. This feature is clearly illustrated in 175 

Figures 1a-c, where we depict Yf  for selected values of the three GSG model parameters 176 

(analytical expressions being collected in Eq. (B8)) and three values of G  corresponding to short, 177 

intermediate and large lags. The pattern associated with the behavior of peaks and tails of the pdfs 178 

of Y'  and Y  can be described quantitatively by analyzing their standardized kurtosis, Y   (see 179 

Eq. (A6)) and Y  (see Eq. (A11)), respectively, deviations from Gaussianity being clearly 180 

revealed by the excess kurtosis, 3Y  −  and 3Y − . As these quantities increase, the peak of the 181 

pdf of Y'  or Y  grows sharper and the associated tails become heavier. Figures 1d-f depict the 182 

excess kurtosis of Y' , as well as of Y , as a function of G  for selected values of the shape 183 

parameter  (for the LN-GSG model, Fig. 1d), a (for the P-GSG model, Fig. 1e), and k (for the Γ-184 

GSG model, Fig. 1f). Inspection of these figures, together with Eqs. (B7) and (B11), suggests that 185 

for all GSG models (i) ' 3Y −  and 3Y −  do not depend on the scale parameter of the subordinator 186 

and on the variance of G; (ii) for a given value of G , 3Y  −  and 3Y −  increase as the shape 187 

parameter of U decreases; (iii) for a given value of the shape parameter, 3Y −  increases as G  188 

increases (or, equivalently, as lag decreases), i.e., the pdfs of Y  transition with lag. One can note 189 

that, in all cases, 3Y −  exceeds zero by a significant margin at small lags (i.e., as 1G → ), even 190 
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for the largest values of the shape parameter of U considered. With reference to the LN-GSG 191 

model, Figure 1d and Eqs. (B7) and (B11) highlight that there is a threshold value of the shape 192 

parameter, corresponding to 2 ln3 0.95T = −  , such that (i) for 
T  , the pdfs of Y  are 193 

characterized by lower peaks and lighter tails than those of Y   at all lags; while (ii) for 
T  , 194 

3Y −  is higher/lower than ' 3Y −  at small/large lags (see also Riva et al., 2015a). An analogous 195 

behavior is exhibited by the results associated with the Γ-GSG model (Fig. 1f), the threshold value,196 

Tk , of the shape parameter being equal to 1.0. Otherwise, one can demonstrate analytically (see 197 

also Fig. 1e) that 3Y −  is always larger than 3Y  −  at small lags for the P-GSG model, 198 

regardless the value of the shape parameter a. Besides, the range of values of G  for which (199 

3Y − ) > ( ' 3Y − ) (i.e., the range of lags where the pdfs of the increments display sharper peaks 200 

and heavier tails than the pdf of Y  ) tends to increase as a decreases. 201 

2.2 Parameter estimation methods 202 

The Method of Moment (MOM) is a straightforward way to infer model parameters from a 203 

dataset. Here, we illustrate two approaches to estimate model parameters through MOM. These 204 

are respectively based on (i) sample statistics of the parent variable (Method A) and (ii) sample 205 

statistics of both the parent variable and the incremental data at multiple lags (Method B). Sections 206 

2.2.1 and 2.2.2 examine merits and drawbacks of these methods. 207 

2.2.1 Parameter estimation Method A 208 

Method A (henceforth denoted as MOM_A) relies on the marginal frequency distribution 209 

and associated moments of 'Y . Estimates of GSG model parameters are obtained by replacing 210 

2Y   and 
4Y   in Eqs. (A3) and (A6) with their sample counterparts, 2

YM

 and 4

YM

, inferred 211 

from data. The shape parameter of U for the LN-GSG, P-GSG, and Γ-GSG models can be 212 

estimated by making use of Eq. (B7) as 213 
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Then, by making use of Eq. (B5), one can estimate the product between G  and the scale 215 

parameter of U (e.g., e
, b, and , for LN-GSG, P- GSG and Γ-GSG model, respectively) as 216 

( )
2

2 2 2

2 2

Y
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e
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( )
2 2 2

1

Y

G

M

k k
 



=
+

 for Γ-GSG. (8) 219 

It is noted that the analytical expressions of the marginal pdf (as well as its statistical 220 

moments) of Y   for all GSG models are characterized by the scale parameter of the subordinator 221 

being always coupled with the scale parameter, G , of the underlying Gaussian process (see Eqs. 222 

(B4) - (B6)). It then follows that the set of Eqs.(5)-(8) fully determines ( )Yf y
 , i.e., it is not 223 

necessary to estimate G  and the scale parameter of U independently to determine ( )Yf y
 . As an 224 

additional remark, it is noted that one cannot estimate G  with the methodology here implemented. 225 

As such, its application, while straightforward, does not allow ascertaining the degree of spatial 226 

correlation of the random field Y  . 227 

2.2.2 Parameter estimation Method B 228 

Method B (henceforth denoted as MOM_B) yields estimates of GSG model parameters by 229 

relying jointly on sample statistics of Y   and Y . For any given lag, one replaces 
2Y  , 

2Y  230 

and 
4Y  in Eqs. (A3), (A8), and (A9) by their sample counterparts 2

YM

, 2

YM  , and 4

YM  , 231 

respectively. Making use of Eqs. (B5), (B9) and (B11), the resulting systems of equations are 232 
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  for Γ-GSG. (11) 235 

Equations (9)-(11) allow estimating all parameters characterizing the joint pdf of Y , i.e., 236 

(i) the product of the scale parameters of G and U, (ii) the shape parameter of U, and (iii) the 237 

correlation coefficient G , which enables us to diagnose the dependence on lag of increment 238 

statistics. We further note that relying on the joint use of Y   and Y  data is recommended because 239 

it leads to an (often considerably) augmented set of data upon which sample moments are 240 

evaluated, thus improving the accuracy of the estimates. This approach yields a set of three 241 

parameter estimates for each investigated lag. Riva et al. (2015a) document that MOM_B provides 242 

results of similar quality to those one could obtain upon relying on parameter estimation through 243 

analyzing incremental data at various lags via Maximum Likelihood (ML). This element, together 244 

with the high computational demand associated with ML, leads us to rely on MOM_B for the 245 

purpose of our analyses. 246 
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According to our theoretical framework (see Section 2.1), we expect that values of the shape 247 

parameter and of the product between the scale parameters of U and G remain (approximately) 248 

constant with lag. It then follows that an additional benefit of relying on MOM_B, as opposed to 249 

MOM_A, is that it enables one to assess the consistency of the parameter estimation results with 250 

these theoretical requirements. As already noted for the pdf of Y  , the pdf of Y  (as well as its 251 

statistical moments) for all GSG models is also characterized by the scale parameter of U being 252 

always coupled with G  (see Eqs. (B8) - (B10)). Therefore, the inability to provide unique 253 

estimates of the scale parameters of U and G (while only their product is estimated) does not 254 

hamper the use of the results of the analysis for further applications, typically involving 255 

generations of a collection of realizations of a given random field to be employed in the context of 256 

studies on flow and transport processes in a Monte Carlo framework. 257 

3 Application to laboratory- and field- scale datasets 258 

The three alternative GSG models illustrated in Section 2 and in Appendix B are here 259 

considered for the characterization of the spatial variability of two datasets. These are selected to 260 

represent two differing observation scales, i.e., a laboratory- and a field- scale setting. Both 261 

systems are characterized by the availability of a considerable amount of observations, which is 262 

achievable with modern measurement techniques, and are therefore well suited for the analysis. 263 

3.1 Micrometer-scale topography of a millimeter-scale calcite sample resulting from 264 

mineral dissolution 265 

The first dataset we consider (hereinafter denoted as Dataset 1) comprises direct observations 266 

of surface topography collected on a (104) calcite cleavage plan. While calcite is the main rock-267 

forming mineral of limestones and has a key role in a variety of geological and biological systems, 268 

its surface is characterized by remarkable dynamics when put in contact with aqueous fluid, which 269 

are still not completely characterized, the (104) surface plane being very common in natural 270 

settings. The sample consisted of a ~5mm-sized single crystal of calcite polished through a multi-271 

step abrasive sequence. The initial arithmetic roughness of the surface was on the order of 50 nm. 272 

The sample was introduced in a mixed-flow reactor set-up. The crystal was subject to reaction for 273 

8 days at room temperature and at a saturation index with respect to calcite of 0.8, corresponding 274 

to conditions where dissolution occurs while the nucleation of etch pits is thermodynamically 275 
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impossible. Measurements of surface topography, ( , )x y  being spatial coordinates in the horizontal 276 

plane, are collected by means of a vertical scanning interferometer (Zygo NewView 7300) with a 277 

vertical resolution of 3 nm, on a two-dimensional grid of N1 = 250×250 = 62500 cells, with lateral 278 

resolution dl = 2.2 μm. Additional details of the experimental set-up and procedure are offered in 279 

Bouissonnié et al. (2018). The surface is characterized by a slight curvature, resulting from the 280 

preliminary polishing of the sample. Mean-removed topography data, Y  , have been obtained by 281 

subtracting the best-fitting quadratic surface from the measurements. Figure 2a depicts the spatial 282 

distribution of Y  , the sample standard deviation being equal to 
2

YM


= 0.21 μm. 283 

3.2 Field-scale neutron porosity data 284 

Dataset 2 is a collection of neutron porosity data sampled from a (km-scale) deep vertical 285 

borehole in southwestern Iran. The data are part of a wider dataset comprising multiple wells, some 286 

of which have been recently analyzed by Dashtian et al. (2011), Riva et al. (2015a), and 287 

Guadagnini et al. (2015). The borehole considered here is drilled in the Ahwaz field (see Dashtian 288 

et al., 2011), where oil and natural gas are produced from a sandstone formation. A large number 289 

(N2 = 6949) of neutron porosity data collected at a uniform distance of dz = 15 cm is available. 290 

The one-dimensional profile of mean-removed porosity data is depicted in Fig. 2b, the associated 291 

sample standard deviation being equal to 
2 8.35%YM


= . 292 

3.3 Results and discussion 293 

Figures 3a and 3b depict sample pdfs of 'Y  for Dataset 1 and 2, respectively. Depictions are 294 

provided in linear and semi-logarithmic scales for ease of analysis. A slight bimodality and 295 

asymmetry are exhibited by the pdf of porosity observations in Dataset 2, the pdf of surface 296 

topography (Dataset 1) being left-skewed. A qualitative comparison (based on visual inspection) 297 

between each of these sample pdfs and a normal distribution with the corresponding variance, 2

YM


298 

, (also included in the figures) suggests deviation from Gaussianity for both variables. This 299 

qualitative result is also confirmed quantitatively by the outcomes of formal (Shapiro-Wilk, 300 

Kolmogorov-Smirnov, and Anderson-Darling) tests performed on randomly-sampled subsets of 301 

data, which reject the Gaussian model at a significance level of 0.05 for both datasets. 302 
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We compute sample statistics of incremental data, Y , evaluated (i) along all directions in 303 

the x-y plane for Dataset 1 and (ii) along the z axis for Dataset 2. The pdfs of Y  at three diverse 304 

lags (s = 1, 5, and 50 dl for Dataset 1; and s = 5, 50, and 250 dz for Dataset 2) are depicted in Figs. 305 

4a and 4b, respectively. As a term of comparison, corresponding normal distributions with the 306 

same variance are juxtaposed to the increment pdfs. These results illustrate that sample pdfs of 307 

increments (i) exhibit the characteristic scale dependence mentioned in Section 1; and (ii) 308 

progressively tend to distributions with lower peaks and lighter tails, resembling the Gaussian 309 

distribution as lag increases, this feature being particularly evident for Dataset 2. 310 

Figures 5a and 5b depict the dependence of sample values of 3Y −  on lag for Dataset 1 311 

and Dataset 2, respectively, dashed horizontal lines denoting values of excess kurtosis of the parent 312 

variable Y  . For both sets, incremental data excess kurtosis is significantly larger than zero at small 313 

lags. Excess kurtosis (EK) of (omnidirectional) incremental data associated with Dataset 1 314 

decreases rapidly as lag increases and tends to attain a quite stable value of ≈ 3.5 at large lags. 315 

Otherwise, values of EK for Dataset 2 tend to consistently decrease across the whole range of lags 316 

considered, attaining values smaller than 1 (i.e., approaching a Gaussian distribution, consistent 317 

with the qualitative result depicted in Fig. 4b) from s = 400 dz. 318 

To provide an appraisal of the accuracy associated with the sample estimates of EK, we apply 319 

a standard bootstrapping technique (Efron, 1992) to each set of incremental data. This procedure 320 

relies on sampling (with replacement) from a collection of Y  data related to a given lag a total 321 

of m (here we set m = 10,000) sets, each characterized by the same number of elements of the 322 

original collection of Y . The same procedure is then repeated for all lags considered. Figures 5a 323 

and 5b depict the 95%-confidence intervals, CI, associated with the estimates of EK at four 324 

representative lags. Uncertainties associated with EK estimates are (in general) negligible. 325 

Threfore, we consider the observed overall decrease of EK with the lag to be significant for both 326 

datasets. We note that 3Y −  > 3Y  −  at small lags for Dataset 1 (Fig. 5a), implying that 327 

frequency distributions of Y  exhibit sharper peaks and heavier tails than does that of Y  , whereas 328 

the opposite behavior is documented at large lags. Otherwise, 3Y −  > 3Y  −  over the whole 329 

range of lags considered for Dataset 2 (Fig. 5b). Considering the type of analyses documented in 330 

Figs. 1d-f, the behavior observed for both datasets is consistent with our theoretical models for (i) 331 

0.95 < α < 2 in the case of LN-GSG; (ii) a > 4 for P-GSG, and (iii) k > 1 for Γ-GSG. 332 



manuscript submitted to Water Resources Research 

 

Estimates of (i) the shape parameter and (ii) the product of the scale parameters of U and G 333 

(henceforth denoted only as global scale parameter for conciseness) obtained via MOM_A and 334 

MOM_B for each GSG model formulation are depicted in Fig. 6 (Dataset 1) and Fig. 7 (Dataset 335 

2) as a function of normalized lag. These results are complemented by Table 1 where we list 336 

parameter estimates obtained via MOM_A, together with mean and coefficient of variation (cv) 337 

evaluated over all lags of MOM_B estimates, obtained for all GSG model formulations and both 338 

datasets. 339 

Considering Dataset 1, results obtained via MOM_B for LN-GSG (i.e.,   in Fig. 6a and 340 

e G

  in Fig. 6d) and P-GSG (i.e., a in Fig. 6b and Gb  in Fig. 6e) do not vary appreciably with 341 

lag (cv ≈ 2-3%), consistent with our theoretical framework. Otherwise, MOM_B estimates of k 342 

and G  (Figs. 6c and 6f, respectively) associated with Γ-GSG are characterized by stronger 343 

oscillations around an average value, as indicated by larger values of the corresponding coefficient 344 

of variation, as compared to the other models. Nevertheless, values of cv range between 18% (for 345 

the shape parameter) and 22% (for the global scale parameter), which (also in view of ubiquitously 346 

present experimental uncertainties) can still be considered as a good approximation of the 347 

constraints associated with theoretical requirements. Figure 6 and Table 1 also document that 348 

MOM_A estimates are consistent with their counterparts obtained via MOM_B for all models. 349 

Results for Dataset 2 (Fig. 7) obtained through MOM_B generally reveal more pronounced 350 

oscillations around a constant value and larger values of cv than those observed for Dataset 1, in 351 

particular considering the Γ-GSG model. We remark that the two considered datasets are 352 

associated with differing dimensionalities (Dataset 1 and Dataset 2 being two- and one-353 

dimensional, respectively) and considering that N1 / N2  9, statistics of incremental data for 354 

Dataset 2 are evaluated on a much smaller sample of data as compared to Dataset 1. We regard 355 

this as the main reason related to the (slightly) increased deviations from the expected theoretical 356 

pattern. 357 

We rely on the bootstrapping procedure mentioned above to evaluate the uncertainty 358 

associated with the GSG parameter estimates obtained via MOM_B. Figures 6-7 include 359 

depictions of the 95% CIs related to the GSG parameter estimates evaluated at four representative 360 

lags. The width of these intervals is in general very limited. The results obtained via MOM_A (see 361 

Table 1 and dashed lines in Fig. 7) tend to overestimate all parameters, as compared to their 362 
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MOM_B-based counterparts (except for G  in Fig. 7f), a notable discrepancy between the two 363 

estimation methods being observed for the shape parameters of P-GSG (Fig. 7b) and Γ-GSG (Fig. 364 

7c). 365 

Results collected in Table 1 also evidence that estimates of the shape parameter stemming 366 

from the application of each GSG model to Dataset 1 are smaller than their counterparts related to 367 

Dataset 2. This finding is indicative of a stronger non-Gaussian signature in the former data set, a 368 

behavior that can also be inferred from the increased values of excess kurtosis exhibited by Dataset 369 

1 (see Figs. 5a and 5b). 370 

Figures 8a and 8b depict estimates of G  as a function of lag obtained for Dataset 1 and 2, 371 

respectively. These results show that the correlation function of the underlying Gaussian process 372 

is quite insensitive to the choice of subordinator adopted in the GSG model, in particular 373 

considering Dataset 1. Figure 8b suggests that the width of the 95% CIs for Dataset 2 is particularly 374 

wide in the range of lags where the results associated with the three models do not overlap. This 375 

observation suggests that differences observed between G  estimates obtained with the three GSG 376 

models may not be particularly significant in this dataset and can be related to effects of the limited 377 

size of this sample. This result (i) is in agreement with the theoretical framework according to 378 

which the subordinator should be statistically independent of G and (ii) suggests that the 379 

correlation structure provided by the underlying Gaussian process can be considered as a 380 

distinctive signature of the system. 381 

Figure 9 depicts sample pdfs of the parent variables (Figs. 9a, 9c) and their increments (Figs. 382 

9b, 9d) corresponding to two separation lags included in Fig. 4 and presented here for the sake of 383 

comparison against theoretical pdfs corresponding to the various GSG models considered. In these 384 

plots, Yf   and Yf  associated with GSG models are evaluated respectively on the basis of (i) 385 

parameters estimated via MOM_A and (ii) the mean values of shape and global scale parameters 386 

obtained via MOM_B, Yf  also including the lag dependent parameter, 
G , computed with 387 

MOM_B and depicted in Fig. 8. From a qualitative comparison between Figs. 9a-d and Figs. 3 and 388 

4, it can be appreciated that all GSG models are generally in better agreement with the target 389 

sample pdfs than the Gaussian model. The degree of similarity between sample and analytical pdfs 390 

is quantified through the Kullback-Leibler (KL) divergence (Kullback & Leibler, 1951), 
KLD . The 391 

latter is a measure of the information lost when a given distribution is used to approximate a target 392 
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one. As such, smaller values of KLD  are associated with reduced loss of information. Considering 393 

the pdf of Y  , (i) for Dataset 1 we obtain 
KLD  = 0.048 (for LN-GSG), 0.013 (for P-GSG), and 394 

0.071 (for -GSG), thus suggesting P-GSG as the best among the models considered; (ii) 395 

0.068KLD   for Dataset 2, regardless the subordinator employed. This latter outcome is consistent 396 

with Fig. 9c, where all GSG pdf are virtually overlapping. Therefore, when considering Dataset 2 397 

the sole analysis of the parent data population does not allow discriminating between alternative 398 

GSG models. We finally evaluate DKL between sample and theoretical pdfs of incremental data for 399 

diverse lags. Figure 10a depicts 
KLD  versus lag for Dataset 1, Fig. 10b showing a corresponding 400 

depiction for Dataset 2. These results highlight that, considering Dataset 1, the P-GSG model 401 

provides the highest degree of similarity between sample and theoretical pdfs of increments at 402 

almost all lags (s > 25 dl), and is consistent with the results obtained for the parent variable as well 403 

as with those collected in Table 1 and Fig. 6. Considering Dataset 2, Fig. 10b suggests that the 404 

three models provide results of similar quality for lags s > 200 dz, a feature that can also be noted 405 

from the almost overlapping analytical results depicted in Fig. 9d for s = 250 dz. Otherwise, LN-406 

GSG and Γ-GSG outperform P-SGS in the range 0 < s < 100 dz. This observation, in conjunction 407 

with the analysis performed in Fig. 7 and Table 1, leads to favoring LN-GSG for Dataset 2.  408 

Overall, our results support the ability of the GSG model to provide a theoretical 409 

interpretation of characteristic features associated with the statistics of both investigated datasets. 410 

We note that having at our disposal these tools forms the basis to achieve the overarching goal to 411 

quantify the way one can transfer the key statistics of a variable (and its increments) across scales, 412 

with direct implications on uncertainty quantification. With reference to the spatial distribution of 413 

surface roughness, these results constitute an important step to bridge across characterizations of 414 

reactive phenomena at microscopic and laboratory scales. In this context, there is documented and 415 

growing interest in the application of statistical methods (Fischer et al., 2012; Lüttge et al., 2013; 416 

Pollet-Villard et al., 2016; Trindade Pedrosa et al., 2019) to firmly ground the multiscale nature of 417 

such processes on rigorous theoretical bases. The quality of our results is encouraging to promote 418 

further studies targeting statistically-based descriptions of the temporal evolution of the surface 419 

topography of calcite minerals subject to precipitation/dissolution processes acting at diverse 420 

scales. We envision addressing this objective in the future by coupling our theoretical approach 421 

with direct in situ observations through, e.g., time-lapse nanoscale imaging. In this context, 422 
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characterizing porosity of natural porous media has the clear potential to link geochemical 423 

processes acting at small scales with descriptions of flow and transport at scales compatible with 424 

a continuum description of the system. Hydraulic conductivity is intimately related to porosity. As 425 

mentioned in the Introduction, statistics of its spatial increments have also been documented to 426 

display a behavior consistent with what we have observed here for porosity. These concepts have 427 

already been employed in the context of preliminary analytical and numerical studies of flow and 428 

transport in porous media associated with such a statistical description by Riva et al. (2017) and 429 

Libera et al. (2017). 430 

4 Concluding remarks 431 

We extend the Generalized Sub-Gaussian (GSG) stochastic model proposed by Riva et al. 432 

(2015a) by providing theoretical formulations of the GSG for a generic subordinator U. Properties 433 

of such an extended and more general model are analyzed and alternative formulations of the GSG 434 

model, derived for three selected subordinator forms, are considered to interpret observations 435 

associated with two datasets: (i) a set of observations characterizing the surface-roughness 436 

resulting from the dissolution of a crystal of calcite, collected in a geochemical laboratory-scale 437 

setting under given environmental conditions (Dataset 1); and (ii) a field-scale spatial distribution 438 

of porosity data, collected along a deep borehole within a sandstone formation (Dataset 2). Our 439 

study leads to the following key conclusions. 440 

1. For any subordinator type associated with the GSG, the analytical formulation of 441 

standardized kurtosis, Y   and Y , governing the behavior of peaks and tails of the pdf of 442 

Y   and Y , respectively, does not depend on scale parameters of U and G. Values of 'Y  443 

and Y  increase as the shape parameter of U decreases, Y  decreasing as the separation 444 

distance (or lag) at which increments are evaluated increases. Thus, GSG models are suitable 445 

to capturing the extensively documented peculiar features of Earth and environmental 446 

variable whose distributions transition from heavy tailed at small lags to seemingly-Gaussian 447 

at increased lags. 448 

2. The proposed theoretical framework successfully captures the main features of the 449 

distributions of the variables analyzed as well as their spatial increments. Results of 450 

statistical analyses performed on both datasets are consistent with theoretical expectations: 451 

(i) estimates of shape and (global) scale parameters of the GSG models are nearly constant 452 
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with lag; (ii) the correlation coefficient ( G ) of the underlying Gaussian process decreases 453 

as lag increases, according to a trend that is almost insensitive to the type of subordinator 454 

considered. The latter results suggest that the correlation structure provided by the Gaussian 455 

process underlying the GSG field can be considered as a distinctive signature of the system 456 

behavior. 457 

3. The Kullback-Leibler (KL) divergence is adopted to evaluate degree of similarity between 458 

theoretical (i.e., based on the various GSG model formulations) and sample Y   and Y  pdfs 459 

in each dataset. Our results indicate that the implementation of multiple subordinators within 460 

the GSG framework can enhance the flexibility of the model and improve the accuracy of 461 

the interpretation of statistical behavior of a given dataset. 462 

The approach and theoretical developments we propose provide a unique framework within 463 

which one can interpret a broad range of scaling behaviors displayed by a variety of Earth and 464 

environmental variables in various settings. The successful demonstration we present imbues us 465 

with confidence about research applications targeting hydrogeological and geochemical scenarios 466 

upon leveraging on modern experimental investigation techniques leading to characterize natural 467 

systems across a diverse range of scales. These include, for example, further experiments and 468 

theoretical analyses devoted to the assessment of micro-scale reaction rates taking place at rock-469 

liquid interfaces. 470 

  471 



manuscript submitted to Water Resources Research 

 

 472 

  Dataset 1 Dataset 2 

  LN-GSG P-GSG Γ-GSG LN-GSG P-GSG Γ-GSG 

Shape 

parameter 

MOM_A 1.34 4.14 2.10 1.86 9.05 46.12 

MOM_B (mean) 1.43 4.36 1.76 1.56 4.96 3.96 

MOM_B (cv) 0.02 0.02 0.18 0.04 0.06 0.48 

Global 

scale 

parameter 

MOM_A 0.16 0.16 0.08 8.18 7.37 0.18 

MOM_B (mean) 0.15 0.16 0.11 6.88 6.44 2.12 

MOM_B (cv) 0.02 0.03 0.22 0.05 0.02 0.30 

Table 1. Parameter estimates obtained via MOM_A; mean and coefficient of variation (cv) 473 

evaluated over all lags of MOM_B estimates obtained for all tested GSG model formulations and 474 

both datasets. 475 

  476 
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 477 

Appendix A: Analytical formulation of the GSG model for a general distributional form of 478 

the subordinator 479 

The theoretical framework of the GSG model is here presented considering a general 480 

distributional form of the subordinator. We do so by deriving analytical expressions for (i) pdf, 481 

statistical moments and standardized kurtosis of the parent variable Y   and of increments, Y , as 482 

a function of separation lag; and (ii) covariance and variogram functions as well as integral scale 483 

of Y  . 484 

Substituting Eq. (4) into Eq. (3) yields 485 

( ) ( ) ( )
( )

2 2
1 2 1 2

2 22 2
1 2 1 2

1 2 1 2

1
2

2 1
2 1

, 1 2 1 2
2 2

2 10 0

1
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2 1

G

G G

y y y y

u u u u

Y Y U U

G G

du du
f y y f u f u e

u u


 

 

    
− + −    −  

 
  =

−
  . (A1) 486 

The marginal pdf of Y   can then been obtained from Eq. (A1) as 487 

( ) ( ) ( )

2

2 2

1 2

1

2

, 1 2 1

0

1
, ' .

2

G

y

u

Y Y Y U

G

du
f y f y y y dy f u e

u





  −

  

−

   = = =   (A2) 488 

All odd-order statistical moments of Y   identically vanish, whereas variance, kurtosis and 489 

(in general) q-th even order moments can be respectively expressed as 490 

( )2 2 2 2 2 2

0

' ( ') 'Y G U GY = y f y dy u f u du U 
+ 



−

 = =  , (A3) 491 

( )4 4 4 4 4 4

0

' ( ') ' 3 3Y G U GY' = y f y dy u f u du U 
+ 



−

= =  , (A4) 492 

( )
2

0

2 1
' ( ') '

2

q

q q q q q q

Y G U

q
Y' = y f y dy u f u du G U


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

−

+ 
=  = 

 
  . (A5) 493 

The standardized kurtosis of Y   is then given by 494 

4 4

2 2
2 2

3
Y

Y' U

Y' U
  = =  (A6) 495 

and depends only on the subordinator (and not on G). 496 

The pdf of incremental values, ( ) ( ) ( )Y Y Y  = + −s x s x , can be evaluated as  497 
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( ) ( ) ( ) ( )
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with 2 2

1 2 1 22 Gr u u u u= + − . Odd-order moments of Y are identically zero, whereas variance, 499 

kurtosis, and moments of even order q can be respectively expressed as 500 

( ) ( )
1 2

22 2 2 2 2
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0 0
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 (A10) 503 

The standardized kurtosis of Y is derived from Eqs. (A8) and (A9) as 504 

( )
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, (A11) 505 

the latter depending on the subordinator and on the correlation coefficient G  (but not on 2

G ). 506 

The Covariance of Y'  between two points 1x  and 2x  is 507 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )2
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U U G G U U  
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 (A12) 508 

From Eq. (A12), one derives 509 

( ) 2 2 20Y Y GC U  = = , ( )
2 20Y G GC s U    = . (A13) 510 

Note that according to Eq. (A13) the covariance YC   of the Sub-Gaussian field is discontinuous at 511 

the origin, i.e., at s = 0, thus exhibiting a nugget effect. The variogram of Y'  can be evaluated from 512 

Eq. (A8) as 513 

2

2 2 2 22 2 2 2 2 2

2
Y G G G U G G U G
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 (A14) 514 
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and is characterized by a nugget effect, quantified by 2 2

G U  , ( )2 1G G G  = −  and 2

U  being the 515 

variogram of G and the variance of U, respectively.  516 

The integral scale of Y'  can be obtained by making use of Eq.(A12) as 517 

2 2

22 2Y G G

U

U U
I I I

U U
 = =

+
, (A15) 518 

so that one can recognize that 0 Y GI I  , independent of the type of subordinator considered. An 519 

increase of 2

U  results in a decrease of the (integral) correlation scale of Y' . 520 

 521 

Appendix B: GSG formulation for lognormal, Pareto, and Gamma distribution of U 522 

Here, we consider U1 and U2 to be described by (i) a lognormal distribution, 523 

( )( )2
~ ln , 2iU N  − , (ii) a Pareto distribution, ( )~ ,iU PD a b , and (iii) a Gamma distribution, 524 

( )~ ,iU k  , i.e., 525 
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k xk x e dx



− − =   (B1c) 528 

here, i = 1, 2; , a, and k are shape parameters, while e


, b, and  are scale parameters. Note that 529 

the exponential distribution can be obtained from Eq. (B1c) by setting k = 1. 530 

The q-th order raw moment of U is 531 
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the variance being equal to  533 
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As specified in Section 2.2, the application of Method of Moment (MOM) requires iU  to 535 

have finite raw moments up to order q = 2NP (thus implying a > 4 in (B2)). 536 

Substituting Eq. (B1) into Eq. (A2) yields the following marginal pdf of Y   537 
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Note that LN-GSG coincides with a normal-lognormal distribution (NLN) when  = 0. The 539 

latter has been shown to well represent some financial (Clark, 1973) and environmental 540 

(Guadagnini et al., 2015) data. Making use of Eqs. (A3) - (A6) and (B2), variance, kurtosis and 541 

standardized kurtosis of Y' are respectively given by  542 
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Substituting Eq. (B1) into Eq. (A7) yields the following expressions for the pdf of Y  546 
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with 2 2

1 2 1 22 Gr u u u u= + − .  548 

Making use of Eqs. (A8)-(A11) and (B2), variance, kurtosis and standardized kurtosis of Y  are 549 

respectively given by 550 
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The variogram, Y  , covariance, ( )YC s , for 0s   (note that ( )0YC s =  coincides with 
2Y   554 

evaluated in Eq. (B5)) and integral scale, 
YI  , of Y', can be derived from Eqs. (A13) – (A15) and 555 

(B2) as 556 
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It is thus seen that when the pdf of U tends to the Dirac delta function (i.e., when  → 2 for 560 

LN-GSG; a →  for P-GSG; or k →  for  -GSG), then YI   → GI . Otherwise, YI  is smaller than 561 

GI  (regardless the subordinator adopted), while never vanishing. The range of values which can 562 

be undertaken by YI   depends on the type of subordinator employed and on the threshold values of 563 

the shape parameters (see Section 2.1). The broadest range of variability of YI   is associated with 564 

the LN-GSG, where 0.33 / 1Y GI I  . Otherwise, the smallest interval is obtained through P-565 

GSG, where 0.89 / 1Y GI I  , -GSG being associated with 0.5 / 1Y GI I  . 566 

Data 567 

Datasets are available at: https://data.mendeley.com/datasets/trdgwfwsvn/draft?a=ee55e214-568 

386a-48f4-88bf-461c5ddaf7ec 569 
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