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Abstract 
In the last years, researchers and energy utilities are 
showing a rising interest in the study and definition of 
actual buildings’ energy uses. A key aspect of this 
investigation is the description of daily energy use 
patterns and their variability over the time. This paper 
discusses the application of machine learning techniques 
for pattern recognition with the implementation of a Self-
Organizing Map (SOM) algorithm coupled with a k-
means clustering algorithm on a dataset of registered 
electrical energy use in a residential building located in 
Milan. In the study, five clusters emerged with different 
daily patterns, that can be ascribed to different uses of 
electric appliances by people inside the flats.  
Introduction 
The European Union, with the directives and regulations 
of the last decades, is highlighting the importance of 
increasing the energy performance of new and existing 
buildings (Panapakidis et al., 2014). In Italy, in 2016, the 
most financed energy conservation measure, with 
1,17 billion euros spent, was the installation of heat 
pumps, together with new lighting systems and the 
increase of thermal insulation of building envelopes. 
(Joule Assets Europe, 2017). Thus, new and renovated 
efficient buildings are implementing electricity not only 
for lighting and appliances, but also for HVAC purposes. 
Indeed, during the last years, also due to the increase of 
competitiveness in electricity markets, utility companies 
are facing new challenges to decrease service costs, while 
maintaining a high-efficiency distribution (Chicco et al., 
2004). Accordingly, energy management in buildings is a 
fundamental issue to improve energy efficiency, comfort 
and equipment life, as well as in reducing energy 
consumption and operational costs (Capozzoli et al., 
2018). The temporal assessment of electricity use is of 
major importance also because it is still expensive to store 
it, and thus, it is usually produced at the consumption rate 
(Rhodes et al., 2014). It is fundamental for utility 
companies to maintain and improve their services 
continuously, to guarantee a sufficient energy supply to 
communities (Tso and Yau, 2007).  In this electricity 
scenario, it is highly desirable for decision-makers, to 
identify and study the electrical behaviour of customers 
(McLoughlin et al., 2015). The installation overall Europe 
of advanced metering infrastructures, such as building 

automation systems, Internet of Things solutions, smart 
meters and smart grids, is increasing the information on 
energy usage that can be registered and analysed (Rhodes 
et al., 2014). This quantity of collected raw data requires 
suitable processing and insight to extract fit for use 
information (Panapakidis et al., 2014). The datasets, 
which typically have 15-minute or 1-hour granularity 
(Rhodes et al., 2014), could be exploited to study the 
dynamic behaviour of electricity use (Capozzoli et al., 
2018). To help the energy management of buildings, data 
mining techniques are available and beneficial tools. For 
example, clustering algorithms (a typical machine 
learning technique), are an effective approach to analyse 
time series data to extract pattern and recurrent 
behaviours (Rhodes et al., 2014). 
This paper will focus on the application of machine 
learning techniques for pattern recognition with the 
implementation of a Self-Organizing Map (SOM) 
algorithm coupled with a k-means clustering algorithm on 
a registered dataset of electrical energy use. The case 
study is a residential estate composed of two buildings 
located in the South-East area of Milan, comprehending 
approximately 70 flats. While industrial parks and offices 
show regular operation behaviour due to working hours 
and closing days, thus are well documented (Capozzoli et 
al., 2017; Chicco et al., 2004; Dudek, 2016), the 
residential sector remains a more complex and unexplored 
area of study. The electricity patterns of residential loads 
depend from numerous variables, such as the number of 
people composing the family, as well as their activity, 
age, lifestyle, installed equipment, and appliances 
(Chicco, 2012). These characteristics are intrinsically 
stochastic and bring to a variety of daily patterns that 
cannot be easily analysed. Occupats’ behaviour can bring 
to great differences in energy use among the same 
typology of buildings (Carlucci et al., 2017; O’Brien et 
al., 2017). For this reason, in the last years, researchers 
started to analyse data registered by energy companies 
and to exploit the results to improve the description of the 
stochastic nature of energy use in buildings (Carlucci et 
al., 2016). In particular, energy modellers could take 
advantage of these results to create internal heat gain 
schedules due to electrical energy uses to be used in 
dynamic simulation software. 
In literature, numerous researches deal with the clustering 
and classification of electrical energy use datasets, 

________________________________________________________________________________________________ 

________________________________________________________________________________________________ 
Proceedings of the 16th IBPSA Conference 
Rome, Italy, Sept. 2-4, 2019

 
2246

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.26868/25222708.2019.210750 
 



however, they are mainly focused on large-scale (city-
level, regional, state (Deshani et al., 2014; Dudek, 2016; 
Tsekouras et al., 2007)) and/or non-residential buildings 
(Chicco et al., 2004; Hernández et al., 2012). 
Unsupervised machine learning algorithms are the typical 
method to identify patterns in datasets with any prior 
knowledge (Capozzoli et al., 2017).  
Even in the less numerous researches about residential 
buildings, machine learning algorithms emerged as the 
leading method to perform pattern recognition of energy 
and electrical uses (Ali et al., 2016; McLoughlin et al., 
2015; Rhodes et al., 2014; Viegas et al., 2015). Data 
mining and unsupervised machine learning methods fitted 
in the specific case study reported in this paper, because 
of their capacity of reducing noise in datasets and 
identifying patterns in multi-dimensional data. The case 
study here presented concerns a data sample of a 
residential building with 24 flats and no surveys. 
Dataset 
The dataset presented in this paper concerns the 
anonymous registration of electrical uses, with a 15-
minutes time step, from the 1st of February to the 31st of 
August 2016, for 24 flats in a residential estate. The multi-
storey building built in the ‘80s, is part of the public 
housing stock owned by the Municipality of Milan that 
accounts for about 27 945 flats and 50 500 inhabitants (i.e. 
24 684 families) (MM 2014). The population of the public 
housing stock includes people with different ages: 0-14 
(8,36 %), 15-18 (4,49 %), 19-25 (23,50 %), 46-65 (30,54 
%), over 66 (32,90 %). A few different nationalities are 
also represented, with the following share: Italy (83,17 
%), Egypt (2,91 %), Morocco (2,30 %), Philippines (1,56 
%), Sri Lanka (1,12 %), Peru (1,08 %), Ecuador (0,85 %), 
other (7,01 %). The multi-storey building follows the 
characteristics of the building stock, although a specific 
ethnographic analysis of its population is not available.  
Since it is made of raw data collected onsite, the database 
accounts some missing values and possible recording 
errors. Initially, the dataset has been investigated with 
Python 3.6 via Jupyter notebook. For this step, the 
following packages were used: pandas, matplotlib.pyplot 
and numpy. The loaded dataset has been converted to 
YYYY-MM-DD hh:mm:ss series format, according to 
ISO 8601, and all missing values have been changed to 
NaN (Not a Number). Afterword, line plots have been 
built for three, randomly chosen, flats. This step makes 
easier to track missing values in the collected data and to 
get insides on data spread. As result, in the example 
Figure 1, it is possible to spot abnormal ‘jumps’ among 
available data. After further checks, it was determined 
that, during dataset creation, some data were organised in 
the wrong order. To overcome it, data have been sorted 
using the sort_index command. This step helped to 
organize data flow with respect to the day and the time. 
The new line plots are presented in the example Figure 2. 
Scatter plots have been, then, built to describe the overall 
distribution of energy use during the period of recording. 
As it can be seen in Figure 3, data distribution for each of 
the apartments has a high variation, and it is not possible 

to determine any evident pattern in the data to create 
clusters. As last step in getting to know the dataset, a 
kernel density estimation was built for each of the 24 flats. 
Graphs may be observed at the example Figure 4. 

 
Figure 1: The Line Plot #4 Flat (original). 

 
Figure 2: The Line Plot #16 Flat (sorted). 

 
Figure 3: Scatter Plot for 24 Flats. 

 
Figure 4: Kernel Density Distribution Flat 14-17. 

Methodology 
The aim of the study is to derive from the raw registered 
data of electric use, different daily clusters resulting from 
different households’ features and occupants’ habits. The 
daily load curves present in the dataset will be clustered 
into few meaningful groups, each described by the first, 
the second and the third quartiles. These three curves will 
define three different scenarios of occupants ascribed to 
austere, normal and wasteful users. To implement the 
steps of the methodology, IBM SPSS Statistics 24 and 
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MATLAB R2017a are used. Figure 5 shows a schematic 
of the followed methodology. 

 

 
Figure 5: Methodology Schematic.

Data processing 
Data processing is the first and fundamental phase to 
obtain meaningful results. Usually, the collected raw data 
is incomplete and contains errors; therefore, several steps 
are required to create a working dataset that can be used 
for statistical analyses. The steps are: (i) data cleaning, 
consisting of identification of outliers and inconsistency 
removal; (ii) data reduction/discretization, that helps in 
simplifying data, while maintaining the meaningful 
characteristics; (iii) data transformation, consisting in the 
normalization or aggregation of data; and, (iv) data 
integration, where multiple datasets and attributes are 
unified into a single useable format. 
Data understanding 
Data understanding gives an insight into the dataset 
through statistical techniques and basic summaries. The 
goal is to comprehend the dataset features and the 
relations between the different variables. The hypothesis 
is that some drivers (characteristics of the family or of the 
apartment) can trigger and hence explain the use of 
electricity in the residential sector. Thus, some statistical 
analyses are performed to validate this hypothesis. The 
data understanding is organized into four steps: (i) 
statistical analyses of the possible drivers (using 
univariate analysis, descriptive statistics, graphs to 
describe and explore the data) ; (ii) correlation analyses 
among drivers (using Pearson and/or Spearman 
correlations, T-test analysis and ANOVA analysis); (iii) 
statistical analyses of the registered data (using univariate 
analysis, descriptive statistics, graphs to describe and 
explore the data); (iv) correlation analyses between the 
registered data and the possible drivers (using Pearson 
and/or Spearman correlations, T-test analysis and 
ANOVA analysis).  

Clustering 
Clustering means grouping a dataset into a N number of 
clusters Ci, I = 1, 2, …, N. To solve the clustering 
problem, a two-level approach is implemented, that is 
formed by a combination of the SOM (Mitchell, 1997) 
and k-means (Piech, 2013) algorithm. The coupling of the 
two methods is effective to minimize the errors, the 
computational cost and to reduce the noise in the dataset 
(Hernández et al., 2012; Vesanto and Alhoniemi, 2000). 
The SOM creates protoclusters that are then grouped with 
the k-means in the final clusters. The protoclusters consist 
of local averages of the original samples and, thus, they 
are less sensitive to outliers. The set-up of the SOM 
algorithm, particularly the number of final protoclusters 
in which the dataset should be subdivided, is a 
fundamental step that can ease or jeopardize the results. 
In this paper, a 2-dimensional map with hexagonal lattice 
is used, sized with the heuristic formula suggested by the 
SOM Toolbox for MATLAB Report (Vesanto et al., 
2000): 

𝑚𝑚 = 5√𝑛𝑛               (1) 
in which 𝑚𝑚 is the final number of protoclusters, 𝑛𝑛 is the 
number of data sample given as input. The ratio of the 
side-lengths of the lattice is set as the ratio between the 
two biggest eigenvalues of the covariance matrix of the 
given data, and the actual side-lengths are then set so that 
their product is as close as possible to the desired 𝑚𝑚. 
Moreover, a normalization on the daily maximum is 
performed to improve the results. To help in defining the 
number of clusters resulting from the k-means algorithm 
the Davies-Bouldin Index is used. After several analyses, 
the number k of the final clusters in the k-means was fixed 
at 5.  
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Results and discussion 
Data processing 
During this phase, the records affected by inconsistency 
are deleted. Overall, 12 % of the dataset is missing or 
affected by errors and the registrations for flat 3 and 13 
are completely missing, because, respectively, with 
closed contract and empty. Regarding the reduction of 
data, the time-step is increased from 15 minutes to 1 hour; 
thus energy records, being extensive variables are 
accumulated for each hour. This action also allows 
reducing the impact of possible eluded outliers. 
Afterwards, numerous drivers that are proved to influence 
the electric use in residential buildings are identified from 
the scientific literature and contrasted with the data 
available in the dataset. Table 1 summarizes the results of 
this analysis and shows the final exploitability in this case 
study. Table 2 reports the drivers that are integrated into 
the dataset with intervals of variation or options in order 
to run statistical analysis. 
The used weather dataset is given by A.R.P.A. 
Lombardia. Precisely, the weather station of Via Juvara in 
Milan (Agenzia Regionale per la Protezione 
dell’Ambiente della Lombardia, 2019) is used (the closest 
registration point to the building site). The registrations 
include the External-radiation, the External-temperature 
and the hourly cumulative Precipitation. The Month, 
Day-of-the-month, Day-of-the-week, Hour-of-the-day are 
just temporal annotative variables that can help to 
understand the general trend of the electric use. The 
distinction between Workdays or Not-working days is set 
in accordance with the national holidays of the year 2016 
and counting Saturday and Sunday as not working days, 
since usually, people in Italy go to work from Monday to 
Friday. The driver Season-heating/cooling is set 
according to Art. 9 of D.P.R. 26/08/93 (Presidenza della 
Repubblica Italiana, 1993). Milan, belonging to the 
climatic zone E, is characterized by a heating season that 
starts on the 15th of October and ends on the 15th of April. 
The driver Day/Night, Day is related to the time in which 
there is solar radiation during the shortest day of the year 
(from 8 a.m. to 4 p.m. on the 21st of December), whilst 
Night is set as the hours without solar radiation in the 
shortest night of the year (from 10 p.m. to 4 a.m. on the 
21st of June). A third group is composed by the hours in 
between, that can change to be day or night during the 
year. In the building under study, bi-hourly tariffs 
contracts are used, thus electricity costs less during the 
nights, weekends and national holidays; the Availability-
of-cost-of-electricity driver explicates this. The 
Orientation, Flat-number, Floor-number and Number-of-
bedrooms, floor-area are all drivers used to describe the 
position of the flat in the building and its characteristics. 
Data understanding 
In this step, the dataset is investigated through 
visualization graphs, descriptive statistics and correlation 
tests, to understand its characteristics and the relations 
among data samples. Along the registration period, the 

electric use of the building decreases. However, 
calculating the hourly mean electric load per Month, July 
shows an hourly average comparable to February; January 
shows the highest value, whilst, August the lowest ones. 
Calculating the hourly mean electric load per Day-of-the-
week, it is clear that the weekends correspond to a higher 
hourly average value compared to the weekdays, probably 
due to the increase of time spent at home by people. The 
daily curve of the hourly electric use of the building gives 
a first glimpse in the general usage pattern. The minimum 
use is registered around 4 a.m. in the early morning. The 
electric use increases till lunchtime around noon and stays 
constant during the afternoon, increasing again, till the 
maximum, that is registered in the evening, between 7 and 
10 p.m. This period shows higher values than the rest of 
the day, but it is in line with the Italian lifestyle, i.e. people 
coming home from work in the evening, cooking dinner, 
using artificial lighting and leisure electric equipment 
(e.g., television, computers and radio).  
The Spearman's rho correlation test is exploited in this 
case study because, working in ranks, it is able to evaluate 
the monotonic relationship between two continuous or 
ordinal variables. In the results, just weak or very weak 
correlation coefficients are registered (Rumsey, 2016). A 
moderate and an almost moderate correlation (0,39 and 
0,29) is registered respectively with the number of rooms 
and with the floor area, justifiable with the probability of 
a higher number of installed electric appliances in larger 
flats. 
Clustering 
In this section, the results of the two-levels approach 
composed by a SOM with the k-means algorithm are 
described. The final size of the SOM lattice is 8 x 42, for 
a total of 336 protoclusters. Before running the k-means 
algorithm the average of the normalized daily use in each 
protocluster is calculated. The final five clusters are 
shown in Figure 6. The light-grey lines represent the 
protoclusters in each cluster, and for each, the first, second 
and third quartiles are underlined.  
The SOM plus k-mean method is able to subdivide into 
groups, days with similar daily patterns. 28 % of the days 
of the original dataset are grouped in cluster 5, 25 % are 
in cluster 4, 20 % are in cluster 1, 14 % are in cluster 2, 
and 13 % are in cluster 3. The green line is used for the 
first quartile and it could be the representation of the 
austere users (Q1 in the legend), the blue line represents 
the second quartile and the normal users (Q2 in the 
legend) and the orange line represents the third quartile 
and the wasteful users (Q3 in the legend). 
Figure 7 shows the distribution of the five clusters in each 
dwelling. Flat number 9 and 19 are represented for more 
than 80 % of the days from just one cluster, respectively 
number 5 and 1. Others (i.e., numbers 6, 7, 12, 13, 14, 17) 
are mainly represented by two clusters. On the other hand, 
for some flats (e.g., number 1, 4) none of the five clusters 
is predominant respect to the others. 
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Table 1: List of drivers that can affect the electric energy use with related references. 

 
Table 2: List of selected drivers and their features. 

 Name Unit of measure Type of variable 
Range of variation 

- Continuous [Interval, step] 
- Categorical {discrete values} 

A
M

O
N

G
 H

O
U

R
S/

D
A

Y
S 

External-radiation W/m2 Continuous [0 ≤ x ≤ 931,3] 
External-temperature °C Continuous [1,6 ≤ x ≤ 33,8] 

Precipitation mm Continuous [0 ≤ x ≤ 29,6] 
Month - Categorical {2-8} 

Day-of-the-month - Categorical {1-31} 
Hour-of-the-day - Categorical {0-23} 
Day-of-the-week - Categorical {1-7} 

Day/Night - Categorical {-1; 0; 1} 
Workdays/Not-working - Binary {-1; 1} 
Season-heating/cooling - Binary {-1; 1} 

Availability-of-cost-of-electricity - Categorical {-1; 1} 

A
M

O
N

G
 

FL
A

TS
 Orientation - Categorical {1-4} 
Flat-number - Categorical {2; 4-7; 14-29} 

Floor-number - Categorical {0-3} 
Number-of-bedrooms - Categorical {1; 2; 3} 

Floor-area m2 Continuous [37,9 ≤ x ≤ 95,3] 

Class of drivers Driver Reference 
Location/Weather/Habit External radiation♠ (Mardaljevic et al., 2009) 

External temperature♠ (Sandels et al., 2015) 
Workdays / Holidays♠ (Paatero and Lund, 2006) 

Day of the week♠ (Buttitta et al., 2017) 
Precipitation♠ - 

Cost of electricity♠ - 
Hour of the day♠ (Paatero and Lund, 2006) 

Heating/Cooling season♠ (Paatero and Lund, 2006), (Sandels et al., 2015) 
Renewables energy source available on site♦ (Galvin, 2016) 

House demand limit♦ (Capasso et al., 1994) 
Flat and physical 

characteristics 
Main orientation♣ (Mardaljevic et al., 2009) 

Floor number♣ (Menezes et al., 2012) 
Number of rooms♣ (Yohanis et al., 2008) 

Floor area♣ (Yohanis et al., 2008) 
Typology♦ (Yohanis et al., 2008) 

Insulation level♦ (Sandels et al., 2015) 
g-Value♦ (Mardaljevic et al., 2009) 

Shading type♦ (Tzempelikos and Athienitis, 2007) 
Indoor environmental 

parameters 
Indoor air temperature♥ (Sandels et al., 2015) 

Daylight Factor♥ (Mardaljevic et al., 2009) 
Individual or family feature Number of people♥ (Capasso et al., 1994), (Yohanis et al., 2008) 

Sex♥ (Capasso et al., 1994), (Yohanis et al., 2008) 
Age♥ (Shimoda et al., 2004) 

Income♥ (Capasso et al., 1994), (Yohanis et al., 2008) 
Occupation♥ (Capasso et al., 1994), (Yohanis et al., 2008) 

Shading operation♥ (Tzempelikos and Athienitis, 2007) 
Appliances Efficiency♥ (Menezes et al., 2012) 

Availability of an electric car♥ (Clement-Nyns et al., 2010) 
Kind and number of Installed equipment♥ (Capasso et al., 1994), (Menezes et al., 2012) 

♥ drivers that are not available. 
♦ drivers that are not exploitable in this case study because they are constant all over the dataset. 

♠ drivers that are exploitable in our data sample and mark a difference among hours. 
♣ drivers that are exploitable in our data sample and mark a difference among flats. 
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Figure 6: Scenarios and protoclusters in each cluster. 

 
Figure 7: Distribution of clusters for each household. 

Description 
Cluster 1, in Figure 6,  is characterized by all the days with 
no evident peaks. These types of daily loads could be 
representative of the days in which the house is 
completely empty or the ones in which the dwellers are at 
home constantly, but using not so many electric 
appliances. For example, a couple of retired people could 
stay at home all day long but using a few electric devices. 
Around lunchtime and in the evening, the first graph 
shows, in all the three quartiles, a slight increase in the 
electric demand. 
Cluster 2, shown in Figure 6, presents a two-peaks daily 
load. The average electric use is not far from the value of 

cluster 1, but the third quartile shows higher values, that 
reach almost 500 W. The load rises around 8 a.m. and then 
increases progressively during the afternoon with 
maximum uses around 6 p.m. This cluster could be 
representative of days in which the occupants go out in 
the morning and gradually go back home during the 
afternoon. This could be a family with children, that go 
back to school in the afternoon, and preparing dinner 
around 7 p.m. Looking at the protoclusters, which visually 
appear noisier, the same trend is present, and just a few 
days show peaks during lunchtime and in the late evening. 
Cluster 3, described in Figure 6, shows a daily load 
without very high peaks. This cluster is characterized by 
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a low consumption all day, with a small peak in the 
morning around 7 a.m., but quite high values during the 
night. This cluster could be representative of people that 
are out all day long, going out in the morning and coming 
home in the late evening, having dinner outside or around 
9 p.m. The increase in the electric load during the night 
could be attributable to the use of a washing machine, 
dishwasher and/or appliances used for leisure in these 
hours.  
Cluster 4, in Figure 6, shows peaks during the evening, 
around 8 p.m. This daily load could be typical of dwellers 
that are out in the morning, and in the afternoon. In terms 
of pattern and values it is not very different from cluster 
1, except from the absence of the morning load and the 
shifting of the evening peak from 7 p.m. to 8 p.m. This 
could be an indication of different habits in the same 
typology of family composition. For example, cluster 1 
could be characterized by electric usage during the 
morning, such as for the television, radio, razors, or 
kitchen tools, differently from cluster 4. In addition, the 
dinnertime could be different for the two cases. Even if 
the general trend is similar to cluster 1, cluster 4 shows a 
higher difference in terms of hourly values along the day. 
Cluster 5, shown in Figure 6, is characterized by a two-
peaks load. The maximum values are reached around 
noon and 8 p.m. These could be respectively the lunch 
and dinner time for any typology of family. During the 
afternoon a relatively low electric use is registered, almost 
similar to the one registered around 4 a.m. in the morning. 
This could be a sign of the absence of people inside the 
house, or of the limited use of electric appliances during 
these hours. 
Conclusions and future outlooks 
In this paper, a clustering methodology is presented and 
is applied to the energy recordings of a multi-family 
residential building located in Milan, Italy. It aims at 
determining a few representative electrical energy use 
profiles generated from the case study, and, potentially, it 
is extendable to the larger residential sector in Italy, to 
provide results with a higher statistical value. The 
implementation of machine learning techniques was 
found to be appropriate for the nature of the data sample 
and its complexity. A two-levels approach was 
implemented; it couples a SOM with the k-means 
algorithm. The analysis results in five daily energy 
profiles, that can be ascribed to different types of family 
and/or habits. In each cluster, the first, second and third 
quartiles are highlighted and considered representative of 
three types of energy use: austere, normal and wasteful.  
These profiles, and further ones derived from larger 
datasets, might be used by energy modellers to, indirectly, 
include occupant behaviour, in their simulations. 
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