Thermal-Cycling-aware Dynamic Reliability
Management in Many-Core System-on-Chip

Mohammad-Hashem Haghbayanl, Antonio Miele?, Zhuo Zou®, Hannu Tenhunen?, Juha Plosilal
! Department of Future Technologies — University of Turku — Finland
2Dip. Elettronica, Informazione e Bioingegneria — Politecnico di Milano — Italy
3Fudan University — China
{mohhag, hannu.tenhunen, juplos}@utu.fi, antonio.miele @polimi.it, zhuo @fudan.edu.cn

Abstract—Dynamic Reliability Management (DRM) is a com-
mon approach to mitigate aging and wear-out effects in multi-
/many-core systems. State-of-the-art DRM approaches apply fine-
grained control on resource management to increase/balance
the chip reliability while considering other system constraints,
e.g., performance, and power budget. Such approaches, acting
on various knobs such as workload mapping and scheduling,
Dynamic Voltage/Frequency Scaling (DVFS) and Per-Core Power
Gating (PCPG), demonstrated to work properly with the various
aging mechanisms, such as electromigration, and Negative-Bias
Temperature Instability (NBTI). However, we claim that they
do not suffice for thermal cycling. Thus, we here propose a
novel thermal-cycling-aware DRM approach for shared-memory
many-core systems running multi-threaded applications. The
approach applies a fine-grained control capable at reducing both
temperature levels and variations. The experimental evaluations
demonstrated that the proposed approach is able to achieve 39%
longer lifetime than past approaches.

Index Terms—Lifetime reliability, Thermal cycling, resource
management

I. INTRODUCTION

The aggressive technological scaling of the last decade has
allowed the integration of hundreds of cores in the same
chip, thus leading to the design of many-core systems. The
counterpart of such a progress has been an increase of the
power densities and consequent heating within the device.
ITRS reports [17] show that this trend has caused an accelera-
tion of the device aging and wear-out. Aging mechanisms (e.g.
electromigration, NBTI and thermal cycling) may cause delay
errors and, eventually, device breakdowns [4]. Lifetime relia-
bility models show device’s Mean Time To Failure (MTTF)
to have an exponential relationship with the temperature; a
10-15° increase may halve the expected lifetime [10].

DRM has been a widely investigated approach to tackle
such an issue in multi-/many-core systems (e.g. [1], [9], [22]).
Properly controlling at system-level the activity of a system
executing a given workload allows to reduce the operating
temperatures and, thus, the aging process. A feedback loop
is generally exploited to monitor the aging status of the
various architecture’s cores and consequently take decision on
the system behavior. Since aging sensors are not generally
integrated in the devices, the common solution is to adopt
stochastic reliability models [4] based on per-core temperature
sensing. On the other hand, control decisions are actuated by
tuning various application-level knobs, such as the mapping

and scheduling, and architecture-level ones, such as DVFS
and PCPG while the reliability is co-optimized in conjunction
to other system-level requirements, such as the workload
performance and power consumption.

Taking all these elements under control is an extremely com-
plex task. We noticed that most of the previous approaches [1],
[6], [7], [9], [15], [22] focus on aging mechanisms but thermal
cycling. Thermal cycling is the only mechanism not only
depending on temperature levels but also on the amplitude
and the frequency of the temperature variations [4]; as a result
thermal cycling is a critical reliability issue [2]. The few works
addressing such an aging effect [2], [12] consider only the
output of the reliability model as the driver of the control
decisions; as we will show in this paper, this is an indirect
feedback that does not suffice for lifetime extension purposes.

Given these motivations, we here propose a novel thermal-
cycling-aware runtime resource management approach for
many-core architectures. The novelty of the approach is a fine-
grained direct control on both temperature levels and variations
and long-term monitoring of aging thus capable at sensibly re-
ducing the effects of thermal cycling w.r.t. the past approaches
while guaranteeing same performance and not violating the
power budget. The approach is based on state-of-the-art al-
gorithms for mapping, scheduling and power management,
each one of them enhanced with thermal cycling awareness.
An experimental evaluation shows that the approach achieves
54% longer lifetime than the reliability-agnostic counterpart
and 39% than the state-of-the-art techniques which address
only in a partial way the considered issue.

The rest of the paper is organized as follows. Next section
introduces the considered system architecture and reliability
model and later presents a motivating example, while Sec-
tion III discusses related work. The proposed thermal-cycling-
aware resource management approach is described in details in
Section IV and is later experimentally evaluated in Section V.
Section VI draws conclusions and presents future work.

II. BACKGROUND AND MOTIVATION

System Architecture. In this work we consider a classical
many-core architecture integrating a large number of homo-
geneous cores connected through a Network-on-Chip (NoC)
and organized in a mesh-based topology (Fig. 1). The system
has a unified shared memory, accessible through a number of

MTTF(year) MTTF(year)

7 7
6 6
12 12
5 1 s 11
10 10
4 5 4 9
8 8
3 73 7
2 e | L | :
1 g | | |
0 c ol MW
01434567 01434567

(b) Reliability-aware Scheduling

(a) Nominal baseline

MTTF(year) MTTF(year)

7 7

d |5 , ‘HENE b

* i HEEE i

4 9 4 9
2 - :

3. 23. g

d |5 e | | | | :

1 ™

o iGN d | | [

01 4 3 4 5 6 7 01 4 3 4 5 6 7

(c) Reliability-aware Mapping (d) Reliability-aware DPM

Fig. 2. The effect of reliability-awareness of the various units of the resource manager on cores’ MTTF.

NoC-Based Manycore System

"
7

6

I Core
/| [L1-Cache

Application 2 |/
Router

| App3 | App2 | Appl |5

Execution|Request 4
Global Controller | «—» 5
Memory

2 controller
(MC)

1

ek

0 1 2 3 4 5 6 7
Fig. 1. The target system architecture.

memory controllers connected to the NoC, a shared L2 cache
distributed all over the NoC and private L1 cache per each
core. The cores are dynamically tunable in terms of DVFS and
PCPG. Moreover the architecture exposes a per-system power
sensor and per-core temperature sensors. A global controller is
in charge of coordinating application’s execution and hardware
knob tuning. Such an architecture is commonly employed
for accelerating data-intensive multi-programmed workloads,
composed of multi-threaded applications entering and leaving
the system with an unpredictable fashion.

Reliability Model. As a common practice in approaches for
DRM (e.g. [1], [9], [22]), we here consider the classical
stochastic reliability model [4], [21] to estimate the aging ef-
fects caused by the heating in the device. The only requirement
is the architecture to be provided with per-core temperature
sensors. In particularly, since we here consider Thermal Cy-
cling, the expected lifetime of a single core working in a steady
state situation is estimated in terms of the number of cycle to
the failure by means of the Coffin-Mason equation:

Fapc

Nrco = Arc (6T — Tth)(ib) e*TMax (D)

where Arc is an empirically determined fitting constant, 7" is
the thermal cycle amplitude, T}, is the temperature where the
inelastic deformation begins, b is the Coffin-Mason exponent
constant, E,, . is the activation energy for thermal cycling,
and Thj., 1s the maximum temperature during the cycle.
To consider a more realistic situation where various thermal
cycles may occur with different amplitudes and maximum
temperature, it is necessary first to extract the list of the cycles
from a run characterizing the system activity, by means of the

00 Baseline [0 Scheduling [l 1 Mapping 1 8 DPM

ln 1
MIN STD AVG

Fig. 3. Analysis of the results in Fig. 2: Minimum (MIN), standard deviation
(STD), and average (AVG) MTTF values.

MTTF (year)
>

rainflow counting algorithm, and later, IN; of the various m
identified cycles can be aggregated in an average value by
means of the Miner’s rule (as discussed in [21]):

m
NTC_avg = Zm 1
i=1N;

(@)

It should be noted that the formula assumes the cycles to
be almost all of the same duration. To compute a weighted
average, the constant term 1 should be replaced with the proper
weight. Finally, the thermal cycling MTTF is calculated as:

NTC_avg - AT
m

MTTFrc = 3)

where AT is the overall duration of the characteristic run.

Motivating Example Let’s assume that the target platform
is a 8 X 8 many-core as shown in Fig. 1 where applications
enter and leave the system at run-time. We analyze the effect
of thermal cycling awareness of each part of the resource
management units on the system’s overall MTTF. Fig. 2 and 3
compare fine-grained and overall MTTF of the various cores
after certain time of system’s activity and while considering
thermal cycling in different resource management units. For
each resource management unit, reliability is improved by
deliberately considering the specific factors that have high
contribution on thermal cycling w.r.t. that unit. For example the
short-term history of thermal cycling frequency and average
temperature is fed to Dynamic Power Management (DPM) unit
to adopt it to be thermal cycling aware, and, mixture of long-
term profiled MTTF and short-term temperature fluctuation is
used for reliability-aware mapping unit. The overall results
in Fig. 3 shows that by considering relevant factors in each
management unit, we can partially improve the minimum,
average, and balance of the MTTF separately. In this paper, we
propose different separate techniques to consider the thermal
cycling in different resource management units, i.e., mapping,

scheduling, and DPM. Moreover, we show how putting all the
techniques together can lead to the best outcome w.r.t. the sin-
gle individual techniques and w.r.t. state-of-the-art approaches.

III. RELATED WORK

First works on DRM [10], [19] considered single-core
systems and acted on architectural knobs such as DVFS to
prolong MTTF. Indeed, they consider a simplistic reliability
model. Later, various approaches focused on shared-memory
multi-core systems [3], [11] thus acting on a larger set of knobs
comprising task scheduling and, the second one also PCPG to
satisfy a power budget. Unfortunately, they consider thermal
cycling with a simplistic reliability model or neglect it.

When considering, NoC-based many-cores architectures, the
picture becomes much more complex. In fact, applications fre-
quently consist of multiple concurrent threads or a task-graph
of pipelined tasks. Therefore, several approaches (e.g. [1],
[6], [7], [9], [15], [22]) defined an advanced reliability-driven
task mapping balancing performance and lifetime reliability.
Among the approaches dealing with task-graph applications
(e.g., [1], [9], [22]), one of the most comprehensive proposals
is presented in [7], where the run-time policy concurrently
maps incoming application task-graphs and acts on DVFS
and PCPG to optimize performance while satisfying both
the power constraints due to the dark silicon and the given
lifetime target. In the scenario of shared-memory many-cores
suffering dark silicon issues, it is worth mention the approach
in [6] where aging status prediction is used to estimate the
effects of a possible threads mapping decision. The technique
is specifically tailed for NBTI. Finally, a similar approach
using machine learning in the management policy is presented
in [16]. Unfortunately, none of them considers thermal cycling.
Moreover they cannot be adapted in a straightforward way
to consider such an aging mechanism since it requires both
temperature level and variations to be controlled.

The only works considering thermal cycling in the multi-
/many-core scenario have been proposed in [2], [12]. In [2]
the authors defined a run-time mapping policy for single-
threaded applications aimed at optimizing various lifetime
w.rt several aging mechanisms including thermal cycling.
The idea is to use the youngest core w.r.t. the various aging
models. Unfortunately, as shown later in the experimental
results, this does not suffice with thermal cycling, since it
is necessary a more direct control on the amplitude and
the frequency of the temperature variations. Nonetheless, the
approach considers a quite simplified scenario where only task
mapping is addressed. Finally, the approach in [12] considers
almost the same simplified scenario. In particular, the variance
in resource utilization is minimized so that indirectly temper-
ature levels and variations are minimized. In conclusion, such
proposals are weak in tackling thermal cycling and cannot be
straightforwardly adapted to the considered scenario.

IV. PROPOSED CONTROLLER ARCHITECTURE

The overall structure of the proposed reliability-aware run-
time resource manager is depicted in Fig. 4. The unit is

Application queue Thread Time-out 1
[Apps [App2 | Appt | [| Reliability-aware Thread .
Execution| Request Scheduling Unit g
>
Reliability-aware | Allocation Read Threai%pl @
Mapping Unit THSTT T T 1App2 || Thread |8
L] > : : []Scheduling| 2
- Reliability =T T T T JAppn g
g Analysis Blocked Thread 3
Ein . ocxe reads Event Wait| &
@ g Rainflow —] s
03) - Algorithm Allocation | 8
g z

o v l f Per-core T

— — PCPG N
Reliability-aware DPM Unit ! DVFS
Power Power

Monitorin Supply L

Fig. 4. The runtime thermal-cycling-aware resource manager.

hosted on the global controller and implements a feedback
control loop with the many-core system. We borrowed a
pretty standard internal organization (as in [14]) including
an application mapping unit, a thread scheduling unit and a
DPM unit. For such units state-of-the-art approaches has been
employed and enhanced to consider reliability-related data in
their decisions. Finally, a novel Reliability Analysis unit has
been added to compute the aging status of the system to feed
the other modules. The modules are discussed in the following.
Reliability Analysis unit. This unit analyzes the aging status
of the various cores in the many-core system. It takes as
input the temperature measures of each core in the system,
gathered from the available sensors with a fixed sampling
period (approximately 1 second). The unit first applies a
low-pass filter to remove high-frequency oscillations in the
temperature trace of each core, and then applies the rainflow
count algorithm to extract the thermal cycles [21]. Each cycle
is described in terms of the peak and valley temperatures. Both
the two algorithms are applied on-line on the incoming values.

With a given long-term control period (lasting 1-2 hours),
the unit analyzes the list of cycles detected for each core
and computes various reliability-aware metrics, in particular
MTT Fre, based on the current activity from the beginning
of the operational life. This value is obtained by means of
the steps shown in Algorithm 1, which applies on each core
the model discussed in Section II. Finally the unit identifies
a list of critical cores, having a MTTFrc lower than a

Algorithm 1 Reliability Analysis of a single core

Inputs: T: vector of temperature trace of a core for current control epoch ¢
t: number of epochs from the beginning

Nr6_overali_(¢—1): overall Nyc at the previous epoch ¢ — 1

Outputs: MTT Frc : MTTF given the overall history

Nrc, verali_t: overall N7c at the current epoch ¢

Body:

1: Tiow ¢ low_pass_filter(T);

2: cycles <« rainflow_count(Tow)

3: Nj < coffin_masson(cycles)

4. N7c_avg_i < miner_rule(INj)

5: NTC_ove'r'all_t — 1 + : t—1
Nrc_avg_i ' NTC_overali_(t—1)

6: MTTFrc < compute_MTTF(N7c_overali_t)

given percentage threshold w.r.t. the average cores’ status, thus
requiring to be put in power-gating mode to slowdown the
aging trend. Once, the metrics are computed, the list is emptied
to proceed with the subsequent long-term period.
Reliability-aware Mapping unit. This unit is in charge at
selecting a set of cores to be allocated for the execution of
a newly incoming application. Allocation is here performed
in a mutually-exclusive way; each single core can be at most
assigned to a single application. The manager has a queue of
applications to be executed. Thus, the unit is awoken when
a new application enters the queue or a running application
leaves the system and the queue is not empty.

The mapping policy selects the most suitable smallest
squared region, if any available, capable at hosting the number
of threads spawn by the application based on a reliability-
aware affinity metric RAF'. The affinity metric, assigned to
the central node of the region, has to consider four different
issues: 1) the application’s threads have to be concentrated in
the closest region possible to optimize communication over-
heads. 2) memory-intensive applications have to be mapped
near to the memory controllers while other applications may
be mapped farther. 3) it is necessary to reduce the overall
aging. 4) it is necessary to reduce temperature variations. The
former two issues are related to the nominal mapping, i.e. the
considered baseline; while the two latter ones are related to
thermal cycling, i.e. the core of our proposal. Thus, the affinity
metric RAF has been defined by combining these four factors.

The defined mapping approach is an extension of a state-
of-the-art policy for multi-task application mapping, called
MapPro [8]. MapPro solves the first issue by defining an
affinity metric called vacancy factor. Given the central node c
with coordinates w, h identifying a square region with radius
r, the metric is defined as

i+r Jj+r
VF, = Z Z Lijx (r—d+1) 4)
1=i—T j=j—7r

being I; ; = 1 when the core i, j is idle, otherwise 0, and d is
the Mahanattan distance of the same core to the central node.
It is worth mentioning that I; ; = 0 also for cores in the critical
list returned by the Reliability Analysis unit. If V F, is 0, then
the region cannot host the new application. The central node
maximizing the metric represents the best candidate since it
has the maximum number of idle nodes closer to itself.

The second issue is solved by means of another metric
MF,, borrowed from [5], which characterizes the affinity of
each region to the type of application in terms of memory
accesses (hits and misses), profiled at design time. Since the
affinity is computed per single core, M F, is defined for a
region as the minimum value among the involved cores.

The reliability-related aspects are considered by computing
two additional affinity metrics. The former, characterizing the
aging AF,, is computed from the cores’ MTT Frc. Each
central node is assigned with the maximum value in the square
region. In some extend, this factor is an extension of what the
past approaches do in the single-thread scenario [2]. Finally,

Algorithm 2 Reliability-aware Mapping

Inputs: appl: new application
typeqppi: pre-profiled type of the application w.r.t. memory accesses
arch: vector of cores in the architecture
T vector of temperatures of the core in mapList
MTTFc: vector of MTTF returned by the Reliability Analysis unit
Body:

s r < (y/|appl| — 1)/2;

RAF gy < —00

1
2
3: Cmap < None

4: for all ¢ € arch do

5: V F. < computeVF(c, r)

6: coreList < get_idle_cores(arch, c,)

7 MPFcores < get_memory_afﬁnity(coreList,typeappl)
8 MF, < min(MFcores)

9: AF. < min(MTTFrc[coreList])

10: TecoreList < T[coreList]

11: Tavg < compute_average(TcoreList)

12: Taig < abs(TcoreList — Tavg) //vectorized operation
13: TFe + avg(Tqirr)

14: if VF. # 0 then

15: RAF « yfedke

16: if cmap = None or RAF > RAFiqz then
17: Cmap < C

18: RAF 42 < RAF

19: if ¢map 7 None then
20: map(appl, Cmap,T)

the last metric T'F, is obtained by analyzing the average
temperature values returned by the Reliability Analysis unit
to compute the average temperature variation in the pool of
cores in the square region. Such a metric characterizes the
fluctuations of temperature in that area. Selecting the region
having the minimum value will reduce the number of thermal
cycles, similarly to what they do in [13] with the utilization
metric. Thus, choosing the minimum w.r.t. such metric will
reduce the temperature variations.

Algorithm 2 shows the steps performed on a newly incom-

ing application. For each core c in the architecture, the four
factors are computed (Line 5, Lines 68, Line 9, and Lines 10—
13, respectively) and then combined in the RAF if the region
can host the application (Lines 14-15). The algorithm selects
the core c¢,,ap with the maximum RAF (Lines 16-18) and
if exists, the application is mapped on the related region
(Lines 19-20).
Reliability-aware Thread Scheduling unit. The unit sched-
ules the threads of the running applications in the allocated
region. Since, the mapping policy partitions the cores among
the running applications, the scheduling is executed separately
per each application. The unit features a policy based on a
round-robin algorithm having the classical ready thread queue
and blocked thread list as shown in Fig. 4.

In details, Algorithm 3 describes the scheduling policy that
is awoken with a short-term control period (few milliseconds
as in a common operating system). Receiving as input from the
Reliability Analysis unit the current temperatures, the policy
computes the average temperature on the cores allocated for
the current application (mapList) and the absolute deviation
of the core’s temperature w.r.t. the average value (Lines 1-3).
Only idle cores are taken from mapList and the obtained
queue is sorted based on the temperature deviation (Lines 4—

Algorithm 3 Reliability-aware Thread Scheduling

Inputs: mapList: vector of cores allocated for the current application
T vector of temperatures of the core in mapList

readyQueue: queue of ready threads for the current application
Body:

I: TmapList < T[mapList]

2: Tavg < compute_average(T mapList)
3: Taif + abs(TmapList — Tavg) //vectorized operation
4: coreQueue <+ sort(mapList, Tqgis)
5: coreQueue «+ get_idle(coreQueue)
6: for all thread € readyQueue do

7: if coreQueue # () then

8: ¢ < pop(coreQueue)

9: schedule(thread, c)

10: else

11: break

5). This strategy selects cores in a way such that temperature
variations in the short term are minimized. Therefore, for each
thread in the ready list, the policy selects the first idle core in
the sorted coreQueue and starts its execution for the next
scheduling epoch (Lines 6-9). The procedure ends when no
more thread needs to be scheduled or coreQueue is empty
(Line 11), thus leaving some threads in the ready queue.

It is worth noting that the mapping and scheduling units one
works with two highly-different control periods. The former
in a long term, thus it is capable at perceiving the slow
variations in the aging metric M1 Fr¢ and to consequently
take decisions on that aspect, while the latter one in a short
term, thus it cannot. For this reason, the scheduling policy only
focuses on the minimization of the temperature variations.
Reliability-aware DPM. This last unit dynamically tunes
DVFES of the various cores to satisfy a required power budget,
in terms of Thermal Design Power (TDP). We here adopted
and extended MOC [14], a multi-objective power management
approach. In particular, the approach uses a PID controller in a
first stage to identify the necessity of voltage/frequency scaling
from the sensed power consumption. Then, an advanced multi-
objective control concurrently tunes the knobs of the various
cores to provide required computational power while not
violating the TDP. We here extend the approach to consider
among the optimization metrics also a thermal-cycling-related
one, defined for each cores as the product between the
temperature peak and amplitude of the last detected cycle:
avgAmplitude x mazT. Finally, the unit applies PCPG on
each core that is idle or in the critical list returned by the
Reliablity Analysis unit.

V. EXPERIMENTAL RESULTS

We experimentally evaluated the proposed approach in a
simulation environment by using Noculator [5], a shared-
memory NoC-based many-core simulator based on Intel PIN
binary instrumentation tool. Each core is modeled as a Ni-
agara2 processor with SPARC Instruction Set Architecture.
Each core has a private local L1 cache and a shared L2 cache
distributed all over the chip. The system has four memory
banks each of them connected to the NQC through a separate
memory controller. The architecture has been configured as

in [5]. Physical scaling parameters and other characteris-
tics such as power modeling and TDP were gathered from
MCcPAT and Lumos [20] and for the steady-state thermal
model Hotspot [18] has been integrated in the simulator.
For the experiments, we characterized a realistic 8x8 archi-
tecture with a squared floorplan, a chip area of 109mm?
in 16nm technology, and TDP of 90W. Thermal cycling
has been modeled as in [21] by characterizing parameters
of Equations 1-3 as follows: E,,. = 0.42eV, b = 2.35,
T, = 1°C, k = 8.62 - 107%eV/K, and we fitted Apc to
have a MTT Frc = 10 years in a steady state condition with
0T = 20°C, Trrqr = 70°C, AT = 1 hour and m = 10.
The workload executed by the system is composed of multi-
threaded PARSEC benchmarks that are randomly selected via
a repository and issued into the system in runtime.

We compared our proposed approach with three different
past works: 1) the nominal baseline, consisting in the basic
management strategies we considered ([5], [8], [14]) without
any reliability-enhancement, 2) MOC [14], a DPM option-
ally using MTTF in the decision process, 3) the reliability-
aware mapping defined in [2], which adopts only MTTF
to control thermal cycling by selecting the youngest core,
applied to our considered nominal baseline. The simulation
is lasted until completing 25 application executions randomly
selected from the PARSEC multi-threaded suite. Fig. 5 shows
a MTTF snapshot of the cores for the proposed approach and
the considered references. As it can be seen the proposed
approach significantly improves the MTTF in comparison
to the other approaches. The main key point for such a
significant improvement is to use different features in resource
management to relax the negative effect of specific factors
contributing on thermal cycling in each unit. Fig. 6 reports
some statistics on the obtained results. According to this
statistics the proposed approach improves the minimum MTTF
of the core in the system by 54%, 51%, and 39% and average
MTTF by 40%, 21%, and 20% w.r.t. the nominal baseline,
MOC, and reliability-aware mapping, respectively. Moreover,
the comparison of standard deviation shows that the proposed
approach is able to better balance the MTTF than the state-of-
the-art ones by 55%, 43% and 38% improvement of standard
deviation, respectively. As a final note, comparing the Fig. 6
and Fig. 3 shows that considering different factors in different
resource management units can complement each other for the
sake of thermal cycling improvement.

Finally, in Fig. 7 we report the number of completed
applications during the time for the proposed approach and
reliability agnostic baseline. As it can be seen the trend of
completing the applications for the proposed approach is very
close to the nominal baseline; this demonstrates the proposed
idea does not negatively affect the system performance.

VI. CONCLUSIONS

The paper presented a thermal-cycling-aware runtime re-
source management approach for many-core systems. The ap-
proach offers a fine-grained control on temperature variations
in mapping, scheduling and power management thus allowing

o H N W » U O N

MTTF(year) MTTF(year)

7

6
12 12
11 5 11
10 10
9 4 9
8 8
7 3 7
6 6
5 2 5
4 4

1

0

(a) Nominal baseline (b) MOC [14]

o = N W » U O N

(c) Reliability-aware mapping [2]

MTTF(year) MTTF(year)
. MC T T
6L
12 12
11 5 11
10 10
9 4r 9
8 8
¢ & 6
5 2f 5
4 1l — 4
| D o I ™

143456 7 0143456 7

(d) Proposed approach

Fig. 5. Comparison of the proposed approach w.r.t. the past works in terms of cores’ MTTF.

00 Baseline 1 0MOC [1RA-mapping I B Proposed approach

Lael el

ot

MTTF (year)

Fig. 6. Analysis of the results in Fig. 2: Minimum (MIN), standard deviation
(STD), and average (AVG) MTTF values.

Fig. 7.

Number of completed applications

25
220
< 15}
9
5 10 1
g' 5| — The proposed approach | |
* — Baseline

0 . L n n n
0 20 40 60 80 100 120

Execution cycles (min)

Performance of the proposed approach w.r.t. the nominal baseline.

to reduce thermal cycling effects. Experimental results have
shown the approach to outperform past work with a 39% life-
time improvement. Future work will focus on a more advanced
temperature control to handle multiple aging mechanisms.

ACKNOWLEDGMENT

The work has been partially funded by the Academy of
Finland project entitled “LARA: Learning and Assessing Risks
for Enhancing Dependability of Autonomous Socio-Technical
Systems”, and by the Shanghai Research and Innovation
Functional Platform Program under Grant 17DZ2260900.

[1]

[2]

[3]

[4]
[5]

REFERENCES
C. Bolchini, M. Carminati, A. Miele, A. Das, A. Kumar, and B. Veer-
avalli. Run-Time Mapping for Reliable Many-Cores Based on En-

ergy/Performance Trade-offs. In Proc. Intl. Symp. on Defect and Fault
Tolerance in VLSI and Nanotech. Systems (DFT), pages 58—64, 2013.
T. Chantem, Y. Xiang, X. S. Hu, and R. P. Dick. Enhancing Multicore
Reliability through Wear Compensation in Online Assignment and
Scheduling. In Proc. of Conf. on Design, Automation & Test in Europe
(DATE), pages 1373-1378, 2013.

A. K. Coskun, R. Strong, D. M. Tullsen, and T. S. Rosing. Evaluating
the Impact of Job Scheduling and Power Management on Processor
Lifetime for Chip Multiprocessors. In Proc. Intl. Conf. Measurement
and Modeling of Computer Systems, pages 169-180, 2009.

J. E. D. E. Council. Failure Mechanisms and Models for Silicon
Semiconductor Devices. Technical Report JEP122G, Oct. 2011.

R. Das, R. Ausavarungnirun, O. Mutlu, A. Kumar, and M. Azimi.
Application-to-core Mapping Policies to Reduce Memory Interference
in Multi-core Systems. In Proc. Intl. Conf. on Parallel Architectures
and Compilation Techniques (PACT), pages 455-456, 2012.

[6]
[7]
[8]
[9]
[10]
(11]

[12]

[13]
[14]
[15]
[16]

(17]
(18]
[19]
[20]
[21]

(22]

D. Gnad, M. Shafique, F. Kriebel, S. Rehman, Duo Sun, and J. Henkel.
Hayat: Harnessing Dark Silicon and variability for aging deceleration
and balancing. In Proc. Design Autom. Conf. (DAC), pages 1-6, 2015.
M. Haghbayan, A. Miele, A. Rahmani, P. Liljeberg, and H. Tenhunen.
Performance/Reliability-Aware Resource Management for Many-Cores
in Dark Silicon Era. IEEE Trans. on Computers, 66(9):1599-1612, 2017.
M.-H. Haghbayan, A. Kanduri, A.-M. Rahmani, P. Liljeberg, A. Jantsch,
and H. Tenhunen. MapPro: Proactive Runtime Mapping for Dynamic
Workloads by Quantifying Ripple Effect of Applications on Networks-
on-Chip. In Proc. Intl. Symp. Networks-on-Chip, pages 1-8, 2015.

A. S. Hartman and D. E. Thomas. Lifetime improvement through run-
time wear-based task mapping. In Proc. Intl. Conf. Hardware/software
codesign and system synthesis (CODES), pages 13-22, 2012.

E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-Mechanism
Reliability Modeling and Management in Dynamic Systems. [EEE
Trans. on VLSI Systems, 16(4):476-487, 2008.

K. Ma and X. Wang. PGCapping: Exploiting Power Gating for Power
Capping and Core Lifetime Balancing in CMPs. In Proc. Intl. Conf. on
Parallel Arch. and Compil. Techniques (PACT), pages 13-22, 2012.

Y. Ma, T. Chantem, R. P. Dick, and X. S. Hu. Improving System-Level
Lifetime Reliability of Multicore Soft Real-Time Systems. IEEE Trans.
on VLSI Systems, 25(6):1895-1905, June 2017.

Y. Ma, T. Chantem, R. P. Dick, S. Wang, and X. S. Hu. An on-line
framework for improving reliability of real-time systems on “big-little”
type MPSoCs. In Proc. of Design, Automation Test in Europe Conf.
Exhibition (DATE), pages 446451, 2017.

A. M. Rahmani, M. Haghbayan, A. Miele, P. Liljeberg, A. Jantsch, and
H. Tenhunen. Reliability-Aware Runtime Power Management for Many-
Core Systems in the Dark Silicon Era. IEEE Trans. on VLSI Systems,
25(2):427-440, Feb 2017.

V. Rathore, V. Chaturvedi, A. K. Singh, T. Srikanthan, R. Rohith,
S. Lam, and M. Shaflque. HiMap: A hierarchical mapping approach
for enhancing lifetime reliability of dark silicon manycore systems. In
Proc. Design, Autom. & Test in Europe (DATE), pages 991-996, 2018.
V. Rathore, V. Chaturvedi, A. K. Singh, T. Srikanthan, and M. Shafique.
LifeGuard: A Reinforcement Learning-Based Task Mapping Strategy
for Performance-Centric Aging Management. In Proc. of Design
Automation Conf. (DAC), pages 179:1-179:6, 2019.

Semiconductor Industry Association et al. International Technology
Roadmap for Semiconductors. http://www.itrs2.net/, 2011.

K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy,
and D. Tarjan. Temperature-aware Microarchitecture: Modeling and
Implementation. ACM Trans. on Arch. Code Optim., 1(1):94-125, 2004.
J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The Case for
Lifetime Reliability-Aware Microprocessors. In Proc. of Intl. Symp. on
Computer Architecture (ISCA), pages 276-287, 2004.

L. Wang and K. Skadron. Dark vs. Dim Silicon and Near-Threshold
Computing Extended Results. In University of Virginia Department of
Computer Science Technical Report TR-2013-01, 2012.

Y. Xiang, T. Chantem, R. P. Dick, X. S. Hu, and L. Shang. System-level
reliability modeling for MPSoCs. In Proc. Conf. Hardware/Software
Codesign and System Synthesis (CODES), pages 297-306, 2010.

A. Y. Yamamoto and C. Ababei. Unified reliability estimation and
management of NoC based chip multiprocessors. Microprocessors and
Microsystems, 38(1):53-63, 2014.

