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A B S T R A C T   

Conductive metallic Periodic Open Cellular Structures (POCS) are considered a promising solution for the 
intensification of heat-transfer limited catalytic processes thanks to their enhanced thermal conductivity. Herein, 
the heat conduction in the solid matrix has been investigated through 3D numerical simulations. The porosity 
together with the intrinsic conductivity of the material have a major effect on the effective thermal conductivity, 
while a negligible influence of the cell shape and size is found. A correlation previously derived for the 
description of open cell foams shows an excellent agreement with the results of POCS structures. 

POCS are produced by additive manufacturing, e.g. 3D printing, providing degrees of freedom in the geometry 
design. Anisotropic cubic cell structures have been investigated for the first time to explore the possibility to 
promote or decrease preferentially the heat conduction in the radial or the axial direction. At constant solid 
fraction and cell size, these structures can improve the effective thermal conductivity of the solid matrix up to 40 
% and 100 % for structures thickened in two or one direction respectively. This concept paves the way to the 
design of metamaterials with tailored properties, granting additional degrees of freedom for the intensification of 
heat-transfer limited catalytic processes.   

1. Introduction 

Operation and design of reactors for many energy-intensive catalytic 
processes depend on their heat exchange capacity, which makes the 
enhancement of the heat transfer efficiency one of the most relevant 
routes for process intensification [1,2]. 

Multi-tubular packed beds are often employed for strongly 
exothermal reactions, such as selective oxidations [3] and hydrogena
tions [4], or for endo-thermal processes like steam reforming [5]. A poor 
heat transfer between the reactor and the heating/cooling medium may 
cause excessive temperature gradients in the radial and axial direction, 
with loss of activity and selectivity. Besides, in the case of an exothermal 
reactions, the formation of hotspots may lead to catalyst deactivation 
and thermal runaway [6]. Heat transfer in packed beds is granted by 
heat conduction, through the catalytic pellets, convection in the fluid 
phase and radiation [7,8]. However, packed beds are characterized by a 
poor static heat conduction, since this mechanism is limited by 
pellet-to-pellet or pellet-to-wall random contacts. Hence, packed bed 
systems mainly rely on convective heat transfer, that is enhanced by 

operating the reactor at high specific mass flow rates [9]. To ensure a 
sufficient contact time, such an operation mode poses design constraints 
on the length of the reactor tubes, making the intensification of these 
reactors extremely difficult. 

Structured catalyst carriers have been proposed in the last decade to 
overcome heat transfer limitations in tubular reactors [10]. Different 
structures have been proposed for the intensification of catalytic pro
cesses, including wire meshes [11], structured packings, open cross flow 
structures [12], metallic washcoated and packed honeycombs [3,13] 
and, more recently, open cell foams [14]. These supports may be pro
duced in ceramic or metallic materials. The former ones are poorly 
conductive, therefore the heat transfer is mainly associated with con
vection in the gas phase and with radiation in case of high temperatures 
applications [15,16]. Instead, when they are manufactured with 
conductive metals, the heat transfer performance is mainly associated 
with the thermal conduction in their solid matrix [17], which grants 
flow-independent performances and becomes the dominant contribu
tion to the overall heat transfer [18,19]. The open cell foams, in 
particular, are considered one of the most promising options to intensify 
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heat-transfer limited processes since the interconnected solid matrix 
grants high effective thermal conductivities [20], enabling at the same 
time an efficient radial and axial mass transport through the open pores 
combined with low pressure drop. 

Structured supports are usually activated by washcoating [21], 
which however limits the catalyst inventory to 20 % of the reactor 
volume at best, i.e. much less than the catalyst loading of conventional 
packed beds. To overcome such a limitation, Tronconi and co-workers 
proposed the concept of packed foams [22] where the catalytic pellets 
are loaded in the open pores of the foam structure. This enables to 
achieve high catalyst loadings [23] while maintaining the enhanced 
heat transfer performances due to the presence of the continuous 
conductive support embedded in the packed bed [18,24,25]. 

The potential of structured supports for heat transfer enhancement is 
not confined to open-cell foams but, in principle, is retained by every 
structure which simultaneously exhibits an interconnected solid matrix 
along with an open cellular geometry. In this view, Freund and co- 
workers [26,27] proposed the concept of Periodic Open Cellular Struc
tures (POCS). They consist in a collection of repeated elementary cells in 
the three spatial directions, resulting in perfectly ordered and regular 
structures. Plenty of unit cells with different geometries are available, as 
shown in Fig. 1, from the simple cubic and face centered cubic (FCC) 
cells to more complex diamond and tetrakaidekahedral (TKKD) cells. 
Many others can be developed according to specific process re
quirements showing an unprecedent degree of freedom for the advanced 
design of chemical reactors. These structures combine a regular geom
etry with high surface area, low pressure drop and high effective thermal 
conductivity due to the totally interconnected solid matrix [27,28]. 
POCS can be nowadays easily manufactured via additive manufacturing 
methods and are a promising alternative to open-cell foams to intensify 
energy intensive processes. Structures with great geometrical flexibility 
can now be produced with conductive metals thanks to modern 3D 
printing techniques such as Selective Electron Beam Melting (SEBM) 
[28], Selective Laser Melting (SLM) [29] or Selective Laser Sintering 
(SLS), enabling their facile manufacturing in a variety of shapes and 
sizes. Moreover, 3D printing shows a great potential also in the analysis 
and investigation of transport properties of cellular materials, such as 
open cell foams [30] and POCS. A combination of numerical simulations 
on virtual models and experiments on 3D printed replicas can greatly 
facilitate the development of engineering correlations and design 
guidelines. 

Recently, POCS have been studied as efficient catalyst supports due 
to their improved heat transfer properties. Grande and coworkers [31, 
32] studied the heat transfer in 3D printed cubic cell structures, man
ufactured in AlSi10, for the intensification of catalytic NO oxidation in 
nitric acid production. Based on non-reactive heat transfer tests, they 
investigated the effect of the geometry on the overall heat transfer, 
which ranges 800 − 2000 W m− 2  K-1 mainly due to the presence of the 
interconnected solid matrix. Danaci et al. [33] employed 3D printed 
stacked structures (3DFD) manufactured in copper and stainless steel for 
the intensification of CO2 methanation thanks to the improved tem
perature control in the reactor ensured by the conductive structure. 

Fratalocchi et al. [34] demonstrated the superior heat management in 
the strongly exothermic Fischer-Tropsch synthesis by comparing POCS 
with open cell foams as reactor internals in packed bed. They showed 
that packed POCS allows for higher CO conversions per pass (up to 80 %) 
while avoiding thermal runaway, reaching performances impossible for 
a packed bed working in the same conditions. 

A quantification of the overall heat transport properties of these 
structures was performed by Busse et al. [27] through dedicated heat 
transfer tests under non-reacting flow conditions. Focusing on cubic 
cells, engineering correlations for the description of the convective and 
wall heat transfer coefficients were developed based on empirical ob
servations. Recently, Ambrosetti et al. [35] have performed an experi
mental assessment of the heat transport properties of packed POCS 
aiming at the development of an heat transfer model for these systems. 
Once again, the analyses carried out on different manufacturing mate
rials reveal a strong dependency of the overall heat transfer perfor
mances on the thermal conductivity in the solid matrix. 

As documented by literature, the thermal conductivity of the solid 
matrix of structured substrates plays a major role in determining the 
overall heat transfer performances in reacting and non-reacting systems. 
Hence, engineering quantification of the effective thermal conductivity 
of these structures is of utmost importance to enable a rational reactor 
design. Even if some methods for the measurements of the thermal 
conductivity are available (i.e. laser flash methods [36]), the direct 
measurement of this property is not trivial for macro-porous highly 
conductive structures, therefore the effective thermal conductivity is 
usually indirectly obtained from global heat transfer measurements 
[37]. Conversely, numerical 3D simulations can be directly employed to 
investigate the intrinsic performances of the solid matrix. In doing so, it 
is possible to directly determine the thermal conductivity of the solid 
structure, to perform sensitivity analyses of the structure properties and 
to develop engineering correlations for this crucial property. In fact, the 
same approach has been already employed for the analysis of open-cell 
foams. Several authors performed numerical simulations over μ-CT 
scans of open-cell foams to determine the structure thermal conductivity 
[38,39], whereas Randrianalisoa et al. performed simulations over 
virtual-reconstructed open-cell foams [40]. Bracconi et al. [20] reported 
a systematic study of the effective thermal conductivity of synthetic 
foams structures, which addressed the effects of the main geometrical 
parameters (porosity, cell size and node-to-strut ratio), leading to the 
derivation of a theoretically grounded correlation for the effective 
thermal conductivity. Open cell foams are intrinsically characterized by 
a random structure with a distribution of cell, pore and strut sizes [41]. 
Moreover, these structures are characterized by convex parabolic strut 
profiles that limit the thermal conductivity, as clearly demonstrated by 
our previous work on virtually generated foams with different strut 
geometries [20]. 

The first numerical study on the effective thermal conductivity of 
POCS was reported by Bianchi et al. [42], who investigated both two 
unit cells (e.g. cubic and TKKD) and different strut cross sectional shapes 
in a range of void fractions from 0.75 to 0.95. First, the analysis revealed 
a quasi-negligible influence of the strut cross-sectional shape on the 

Fig. 1. Unit cells considered for the analysis: cubic (a), diamond (b), TKKD (c) and FCC (d).  
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effective thermal conductivity which is observable only at low void 
fractions. Moreover, the authors investigated the effect of different 
distributions of solid material along the strut by computing the heat 
transfer performances for different ratios between node diameter and 
the strut diameter at the mid length. In full analogy with foams, they 
observed that an increment of the ratio reduces the effective thermal 
conductivity. Finally, a negligible effect of the two different cell shapes 
was recovered resulting in the development of an empirical correlation 
for the effective thermal conductivity of these structures. 

In view of the great potential of POCS structures for the intensifi
cation of heat transfer in energy-intensive catalytic reactors, a funda
mental investigation of the effective thermal conductivity is crucial for 
their adoption in industrially relevant systems. 

In this work, we present a systematic investigation of the effective 
thermal conductivity in the solid matrix using numerical simulations for 
several unit cells (cubic, diamond, TKKD, FCC) on a broad range of void 
fractions and cell sizes, aiming at extending and generalizing the work of 
Bianchi et al. [42]. In this view, a wide range of porosities (from 0.65 to 
0.97) and cell shapes has been considered while addressing the influence 
of the cell size. Our analysis reveals that the thermal conductivity 
strongly depends on the void fraction, whereas the performances are 
almost cell-independent, apart from minor deviations. 

Conventional POCS unit cells are isotropic (i.e. show the same 
property in all the directions of the space), therefore, it is not possible to 
design structures that show different properties in the three spatial di
rections, which limits the optimization of these structures. A possibility 
to introduce additional degrees of freedom in their design is the adop
tion of anisotropic elementary cells. In this work, we also propose, to the 
best of our knowledge, for the first time in literature, the concept of 
anisotropic POCS aiming at a selective tuning of the thermal conduc
tivity performances in a specific (axial or radial) direction. As a matter of 
fact, several catalytic processes may benefit from either an enhanced 
radial conductivity (e.g. externally heated or cooled reactors) [1] or an 
enhanced axial conductivity (e.g. Lumped Thermal Reactors) [43]. 
Herein, we quantify the performances of anisotropic POCS by consid
ering a cubic unit cell, since its simple geometry readily enables a to
pological optimization aimed at enhancing/decreasing the thermal 
conductivity in a given direction. As a result, we find that anisotropic 
structures, at fixed porosity, can increase the effective heat conductivity 
up to 40 % and 100 % for structures thickened in two or one direction, 
thus providing one additional degree of freedom for the design of opti
mized catalytic reactors. 

2. Methods and models 

In this section, we briefly describe the procedure for the generation 
of the virtual POCS model required for the numerical simulation of the 
thermal conduction in the solid matrix along with the details of the 
meshing procedure. Then, we introduce the equations adopted for the 
evaluation of the stagnant thermal conductivity of the solid matrix. 

2.1. POCS generation 

The numerical analysis of the thermal conduction in the solid matrix 
requires the generation of a representative computational domain of the 
POCS structure. 

The three-dimensional structures are generated by the repetition of 
the unit cell in the three spatial directions. In this work, we consider 
different unit cells, i.e. cubic, diamond, TKKD, face centered cubic 
(FCC), respectively, as shown in Fig. 1. FCC is a cubic-like structure with 
additional ligaments in diagonal position on the faces of the structure. 

The cell size (dc), the strut size (ds) and the porosity (ε) of these 
structures are linked by characteristic relationships. The geometrical 
correlations proposed in the literature for cubic, diamond, TKKD cells 
[20,28,44] are reported in Table 1 together with the correlation for the 
FCC cell, which is developed in this work as described in the Appendix 
A1. These correlations are herein adopted to compute the strut diameter, 
required to generate the virtual structures, by starting from the cell 
diameter and the porosity, which are selected as primary design 
parameters. 

The generation of the tridimensional structures required for the 
numerical analysis is carried out by means of OpenSCAD, a parametric 
CAD software. 

2.2. Numerical simulation of heat conduction in the solid structure 

The temperature distribution in the three-dimensional POCS domain 
is computed by solving the steady-state Laplace equation, Eq. (1). 

ks∇
2T = 0 (1)  

where T is the temperature in the solid matrix and ks is the intrinsic 
thermal conductivity of the solid material, which is assumed to be 
constant in this work. 

A temperature gradient is imposed between two opposite faces of the 
computational domain along the considered axis. All the other surfaces 
are considered adiabatic. 

Eq. (1) is solved by the finite volume method implemented in the 
OpenFOAM framework [45]. A second order discretization scheme is 
employed for the Laplacian operator and the simulations are assumed to 
converge when the temperature residual is below 10− 10. 

The thermal conduction through the solid matrix is quantified in 
terms of mono-directional stagnant effective thermal conductivity (keff ) 
computed according to Eq. (2). 

keff =
− L
∫

A J dA
ΔT S

(2)  

where J is the heat flux obtained from the simulation, A is the actual area 
of the POCS where the temperature is imposed, S and L are the area of 
the face and the thickness of the computational domain, ΔT is the 
temperature difference imposed in the considered direction. 

A proper meshing procedure is pivotal for the faithful description of 
the transport properties. The computational domain for the solid phase 
is generated from a CAD file of the POCS, in turn obtained by means of 

Table 1 
Analytical relationships between cell size (dc), strut diameter (ds) and the void fraction (ε).  
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the freeware CAD software OpenSCAD by a regular repetition of the 
single unit cell in the three-dimensional space. The computational 
domain is then built by employing the snappyHexMesh utility part of the 
OpenFOAM framework [45]. The utility starts from a uniform hexahe
dral background mesh, refines the region of the initial computational 
domain close to the CAD surface by means of the cut-cell methodology 
and, finally, snaps the mesh onto the CAD surface to obtain a 
body-fitting mesh. In this work, we employed a high-quality refinement 
(four levels) along the POCS surface. In doing this, the resulting 
computational domain exhibits all the details of the original CAD files. 
Mesh convergence has been carried out to obtain a domain independent 
solution of the target quantity, i.e. the effective thermal conductivity. 
Several background meshes with different mesh density have been 
tested. Herein, the computational domain is deemed to converge when 
the influence on the effective thermal conductivity is below 0.5 %. This 
is obtained by employing a background mesh for which the ratio be
tween the strut diameter and the grid size is equal to 4. Additional de
tails on the mesh convergence are reported in the Supplementary 
material. 

The analysis of the transport properties in cellular materials requires 
the definition of a representative elementary volume (REV) suitable to 
describe the real structure behavior without any sample size effect on 
the calculation of the target transport property. POCS are regular and 
periodic structures for which the definition of REV is straightforward. 
The entire unit cell or even a cell portion [42] are intrinsically the 
representative elementary volume for the analysis related to the solid 
properties. In this work, we have numerically investigated structures 
consisting of 1, 3, 5, and 7 cells to span a large range of sample di
mensions. The results are reported in the Supplementary material. As 
expected, the analysis revealed that one cell is enough to properly 
describe the stagnant effective thermal conductivity. 

3. Results and discussion 

A parametric analysis of the effect of different geometrical and to
pological parameters is performed. First, the effect of the direction is 
analyzed followed by the effect of cell size and solid fraction. Finally, a 
comparison between the performances of the unit cell shape is carried 
out. 

3.1. Effect of direction 

According to their periodically ordered structure, isotropic proper
ties in the three space directions are expected for POCS obtained by the 
repetition of identical and isotropic unit cells Accordingly, we have 
hereby checked the proper choice of the unit cell geometry by evaluating 
the effective thermal conductivity along the three directions of the space 
for each elementary cell shown in Fig. 1. Results listed in Table 2 confirm 
that the effective thermal conductivity is independent of the direction, 
since the calculated values are the same along the three axes. This 
confirms that a correct unit cell (both in terms of geometry and physical 
properties) is effectively chosen for the calculations. 

3.2. Effect of the cell size 

The effect of cell size is investigated by parametrically changing the 
cell diameter in the range 1.5–5 mm with a constant void fraction. 

The results are shown in Fig. 2. For any cell shape, once the void 
fraction is fixed, the effective thermal conductivity is not changing with 
the cell size. Hence, the effective thermal conductivity of the solid phase 
is practically independent of the cell diameter as already observed for 
open-cell foams [20]. 

3.3. Effect of the porosity 

To investigate the effect of the porosity, several samples have been 
generated characterized by a broad range of different void fractions 
covering the interval between 0.65 and 0.97. Fig. 3 shows the effective 
thermal conductivity as a function of the solid fraction (i.e. the com
plement to one of the porosity) for all the unit cells investigated in this 
work. 

The numerical simulations reveal that the solid fraction has a strong 

Fig. 3. Dimensionless effective thermal conductivity as a function of the solid 
fraction for diamond (green upward triangle), cubic (blue square), TKKD (or
ange diamond), FCC (red downward triangle) cells and open-cell foams [20] 
(black circle) along with numerical results from Bianchi et al. [42] for cubic 
(empty blue square) and TKKD (empty orange diamond) cells. 

Fig. 2. Dimensionless effective thermal conductivity as a function of the cell 
diameter for diamond (green upward triangle), cubic (blue square), TKKD 
(orange diamond), FCC (red downward triangle) cells. 

Table 2 
Dimensionless effective thermal conductivity for three different directions for 
cubic (ε = 0.835 - dc = 3 mm), diamond (ε = 0.810 - dc = 3 mm), TKKD 
(ε = 0.850 - dc = 3 mm) and FCC (ε = 0.900 - dc = 3 mm) cells.   

keff/ks [-]  

Structure x y z 

Cubic cell 0.07509 0.07509 0.07509 
Diamond cell 0.08700 0.08648 0.08596 
TKKD cell 0.06994 0.06994 0.06994 
FCC cell 0.04102 0.04110 0.04105  
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effect on the effective thermal conductivity as also observed by Bianchi 
et al. [42], whose findings for cubic and TKKD cells are in excellent 
agreement with our calculations. The results highlight a slightly more 
than linear dependence on the solid fraction. In particular, an increment 
of the solid fraction determines an increase of the effective thermal 
conductivity. By keeping the cell diameter constant, indeed, an incre
ment of the solid fraction has the effect to generate structures with larger 
strut diameters resulting in an improvement of the heat transfer effi
ciency. A similar behavior has been already reported in the literature for 
open-cell foams [20]. 

3.4. Effect of the elementary cell shape 

Fig. 3 also shows the influence of the unit cell shape on the effective 
thermal conductivity. Interestingly, the effective thermal conductivity 
appears to be almost independent of the unit cell shape. This result 
confirms and extends the findings of Bianchi et al. [42], who observed 
the same behavior in the analysis of cubic and TKKD cells in a narrower 
range of porosities. 

In the region of low solid fraction (1-ε < 0.12), the performances of 
the different POCS unit cells are perfectly superimposed one to the other, 
resulting in a negligible effect of the topology of the unit cell on the 

intrinsic heat transfer performances of the solid matrix. By increasing 
the solid fraction, the POCS shapes still show similar performances 
although some minor differences appear. In particular, TKKD cells 
provide the highest effective thermal conductivity, while the FCC cells 
show the poorest performances. This could be ascribed to an effect of the 
junction between struts which provides cell-specific heat transfer re
sistances. Nevertheless, the magnitude of the deviations is not signifi
cant (±7%) resulting in comparable performances of all the POCS in the 
entire range of solid fraction investigated. 

The performances of POCS have been also compared with those of 
open-cell foams. Fig. 3 shows that in the region of high void fractions, 
which is typical of metal foams, POCS overcome the open-cell foams 
performances by up to 15 %. On the other hand, the performances of 
foams and POCS are superimposed when the solid fraction (1-ε) is higher 
than 0.12. 

Rather than to intrinsic differences between ordered and random 
structures, this is ascribed to the different distribution of the solid ma
terial along struts and in the nodes which characterizes POCS and open- 
cell foams. POCS, in fact, are characterized by a constant strut diameter 
which results in a uniform distribution of the solid material along the 
strut. Conversely, open-cell foams show a non-uniform diameter along 
the strut axis which increases moving from the middle section to the 
nodes (i.e. the regions where the struts join). These struts can be 
approximated by a parabolic trend along the strut axis as reported by 
Ambrosetti et al. [46]. The effect of the distribution of the solid material 
in open cellular structures has a significant impact on their effective 
thermal conductivity, as reported by Bracconi et al. [20] for open-cell 
foams and by Freund and coworkers [42] for POCS. These studies 
revealed that the uneven distribution of solid material along the struts 
reduces the effective heat transfer performances with respect of a cor
responding structure with the same solid fraction but uniformly 
distributed. Bracconi et al. [20] also showed that ideal foams (e.g. 
manufactured via 3D printing) with a uniform strut profile exhibit 
improved effective conductivities, mostly in the region of low solid 
fractions. In this view, Fig. 4 compares the performances of both POCS 
and ideal open-cell foams with a uniform strut diameter (R = 1) [20], 
showing that the effective conductivity of ordered and random struc
tures are indeed superimposed in the region of high void fraction. 

The parabolic model of the strut profile shows that the ratio between 
the strut diameter at the nodes and at the middle of the struts decreases 
on increasing the solid content [20]. This is the reason for the fading 
difference between POCS and foams on decreasing the porosity. At high 
solid fractions, the decreasing effect of the strut profile is compensated 
by secondary effects of the topology of the nodes. It is worth noting that 
TKKD, whose topology more closely resembles the foam one [41], 
exhibit slightly superior effective conductivity performances in the 
entire investigated range of porosity. 

3.5. Engineering correlation 

We have derived an engineering correlation for the effective thermal 
conductivity of POCS as a function of the geometrical properties of the 
unit cell. According to our results, the only relevant dependence is the 
one on the solid fraction, which is derived in analogy with our previous 
work on open-cell foams [20]. The effective thermal conductivity is 
modeled according to Eq.(3), originally suggested by Freund and 
co-workers [42]: 

keff

ks
=

1 − ε
τ (3)  

where ε is the void fraction and τ is a tortuosity parameter. Recently, 
Bracconi et al. [20] proposed a correlation for the tortuosity of open-cell 
foams according to Eq. (4). 

τ =
1

(A(1 − ε) + B)
(4) 

Fig. 5. Comparison between the dimensionless effective thermal conductivity 
of several POCS elementary cells (full symbols) and the correlation proposed by 
Bracconi et al. [20] (solid continuous line). 

Fig. 4. Dimensionless effective thermal conductivity as a function of the solid 
fraction for POCS and for open-cell foams with constant strut (grey circle) and 
parabolic strut (black circle) [20]. 

M. Bracconi et al.                                                                                                                                                                                                                               



Chemical Engineering and Processing - Process Intensification 158 (2020) 108169

6

where A and B are constants evaluated from the asymptotic results of 
Maxwell [47] and Lemlich [48] valid for the porosity approaching zero 
and one, respectively. Lemlich [48] theoretically derived that the tor
tuosity of soap froth in the limit of porosity approaching one is equal to 
3. On the other hand, the tortuosity of a full brick of solid material, 
corresponding to the limit of porosity approaching zero, is equal to one. 
By imposing the two asymptotes, it is possible to recover the value of 
A = 2/3 and B = 1/3 without any fitting of numerical or experimental 
data. 

The effective thermal conductivity assumes therefore the expression 
of Eq. (5). 

keff

ks
=

1 − ε
(

2
3 (1 − ε) + 1

3

)− 1 (5) 

Fig. 5 shows that Eq. (5) matches well the results of the numerical 
simulations carried out in this work. Thus, the correlation proposed by 
Bracconi et al. [20] for open-cell foams is able to accurately describe the 
effective thermal conductivity of POCS, too, without any additional 
adjustment of the parameters. 

4. Cell anisotropy 

The parametrical analysis carried out on POCS reveals that the 
effective thermal conductivity of the sole solid matrix is neither signif
icantly affected by the cell shape nor by the direction of the cell in space. 
Hence, the cell topology does not provide additional degrees of freedom 
besides the solid fraction to tailor the heat transfer performances of the 
structure. In contrast, the distribution of the solid material along the 
struts has been observed to play a significant role in the definition of the 
structure performances [20,42]. By combining these results, we propose 
to modify the solid distribution within the cell by engineering the ge
ometry of the struts in order to, consequently, tune its effective thermal 
conductivity. 

Notably, the redistribution of the solid material in the cell at constant 
porosity determines the generation of anisotropic unit cells. Since the 
performances of the structure are independent of the cell shape, the 
analysis of the effect of the local anisotropy has been carried out for the 
cubic cell only. In fact, the simple geometry of this cell allows for a facile 
derivation of dedicated geometrical models useful for the generation of 
the virtual structure and for the analysis of the data. 

The anisotropy is introduced in the structure by modifying the strut 
diameters along different directions. The expected effect is the tuning of 
the effective thermal conductivity in specific directions according to the 
specific process requirement. In this view, the generation of the struc
ture is carried out by defining the amount of solid material loaded in the 
structure and, then, by evaluating the different distributions along the 
three spatial directions. 

Fig. 6 shows two possible configurations of anisotropic cells char
acterized by the same amount of solid material (i.e. solid fraction), 

where the material is preferentially distributed along one or two di
rections. Fig. 6(a) represents a cubic POCS with an increment of the strut 
diameter in one direction, consequently the struts in the other two di
rections shrink to allow for conservation of the solid fraction. This 
structure, named cubic mono-preferential (C1P), is expected to promote 
the effective thermal conductivity in one direction, reducing, at the 
same time, the performances in the other two, resulting in an effective 
solution for the development of Lumped Thermal Reactors [43], where 
the main target is the promotion of axial thermal conductivity [49]. 
Conversely, Fig. 6(b) shows the other possible structure characterized by 
an enlargement of the strut diameter in two orthogonal directions, 
named cubic bi-preferential (C2P). This structure may be an interesting 
option when the promotion of radial thermal conductivity is the key 
target for energy intensive catalytic processes in tubular reactors. 

4.1. Geometrical model 

The geometry of the isotropic elementary cells is totally character
ized once two out of three of the following quantities are defined: the 
cell size dc, defined as the distance between the axes of two parallel 
struts, the porosity ε and the diameter of the struts ds. Anisotropic 
structures are characterized by two different strut diameters dM and dm 
corresponding to the larger and smaller diameter, respectively. It is 
possible to introduce a parameter θ as the ratio of the diameter of the 
larger to the smaller strut, Eq. (6): 

θ =
dM

dm
(6) 

This parameter accounts for the distribution of the solid material in 
the structure and it can be regarded as an extent of anisotropy. 

The four geometrical properties (i.e., cell size, porosity, maximum 
strut diameter and θ) are not independent. The definition of three of 
them is sufficient to totally characterize the geometry of the structures. 
In this work, we develop geometrical relationships which link the 
porosity, the cell size and the ratio between the strut diameters. For the 
generation of the structures, the diameter of the larger strut dM is then 
calculated. 

4.1.1. Mono-preferential (C1P) structures 
The geometry of the cross element at each node of the cubic cell 

structure in Fig. 6(a) could be represented as a cylinder with dM size with 
a length equal to cell size from which four smaller cylinders depart. The 
geometrical model is derived according to this description of the cells. 
As a result, the unit cell solid volume is equal to the sum of the volume of 
the large-diameter strut (VM) along with the contribution of the small- 
diameter struts (Vm). 

1 − ε =
VM + 4 Vm

Vcell
(7) 

The volume of the strut with dM diameter is computed according to 
Eq. (8), 

VM =
π
4

d2
Mdc (8) 

On the other hand, the volume of the struts characterized by dm size 
can be evaluated as in Eq. (9). Additional details on the derivation are 
reported in Appendix A2. 

Vm =
π
8

d2
M

θ2

(

dc − dM

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1
θ2

√ )

−
d3

M

4θ

(

arcsin
(

1
θ

)

−
1
θ

̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
1
θ2

√ )

(9) 

Finally, the solid fraction is evaluated according to Eq. (10) 

Fig. 6. Cubic cell with local anisotropy: mono-preferential (a) and bi- 
preferential (b) directions. The enlarged (dM) and shrunk (dm) strut sizes are 
highlighted along with cell dimension (dc). 
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(1− ε)C1P =

π
4d

2
Mdc +

π
2

d2
M

θ2

(

dc − dM

̅̅̅̅̅̅̅̅̅̅̅
1 − 1

θ2

√
)

−
d3

M
θ

(

arcsin
(

1
θ

)

− 1
θ

̅̅̅̅̅̅̅̅̅̅̅
1 − 1

θ2

√
)

d3
c

(10)  

4.1.2. Bi-preferential (C2P) structures 
The geometrical model for the structure in Fig. 6(b) is developed 

based on the cubic cell model by Klumpp et al. [44]. The porosity of the 
structure is evaluated as the complement to one of the solid fraction of 
one cell. The unit cell consists of 8 nodes, positioned at the virtual 
vertices of the cube, and 12 struts, positioned at the edges of the cube. 
Within the structure, each strut and node are shared among 4 and 8 cells 
respectively. As a result, the unit cell solid volume is equal to the sum of 
the volume of one node and three struts: 

1 − ε =
Vstruts + Vnode

Vcell
(11)  

where Vcell is the volume of the cubic cell, Vstruts represents the volume 
occupied by the struts and Vnode is the volume of the node. 

The volume of the node is represented by the intersection of liga
ments of different diameters. However, the mathematical modeling of 
such entity in the case of the anisotropic structures is complex and would 
involve the solution of non-analytical integrals. Hence, the volume of 
the node is calculated as reported by Klumpp et al. [44] for isotropic unit 
cells by considering the node with diameter dM. 

Vnode =

(
3
4

π −
̅̅̅
2

√
)

d3
M (12) 

Since the node is assumed to be of dM size, all the strut volumes are 
computed by considering a cylinder shortened by the node characteristic 

size. 
The C2P elementary cell consists of two struts with diameter dM and 

one with diameter dm. Hence, the volume of the struts is evaluated ac
cording to Eq. (13): 

VC2P
strut =

π
4

(
dM

θ

)2

(dc − dM) +
π
2

d2
M(dc − dM) (13) 

Finally, the solid fraction is evaluated according to Eq. (14): 

(1 − ε)C2P =

(
π

4θ2 +
π
2

)
(dc − dM)d2

M +

(
3
4 π −

̅̅̅
2

√
)

d3
M

d3
c

(14)  

4.1.3. Geometrical model results 
Eq. (10) and Eq. (14) are cubic equations in the large strut diameter, 

dM. The equations have three real solutions: one of them is negative, one 
is larger than the cell size, and the physically meaningful one is 
comprised between zero and the cell size. The value of dm can be easily 
recovered once the solution of dM is found for the assigned values of dc, ε 
and θ. In this view, θ up to 2.4 have been considered since larger values 
might lead to structures with very thin ligaments or with a slenderness 
(i.e. ratio between the strut length and diameter) which prevents the 
manufacturing via 3D printing. 

Several CADs of the structures with various porosity, cell diameter 
and ratio θ have been generated to assess the accuracy of the geometrical 
models. The solid fraction evaluated on the CAD has been compared 
with the one predicted by the geometrical model, and an excellent 
agreement has been observed with a relative variation at most of 2% for 
the mono-modified structure at porosity 0.7. 

Fig. 7 shows the trends of dM and dm normalized by the cell diameter 
for the two anisotropic structures as a function of θ for ε = 0.9. The C1P 

Fig. 8. Effective thermal conductivity of C1P (a) and C2P (b) anisotropy structures normalized by the isotropic one as a function of the anisotropy factor θ.  

Fig. 7. Dimensionless strut diameters in enlarged (full square) and shrunk (empty square) for C1P (a) and C2P structures (b) for ε = 0.9.  
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cell shows an almost symmetrical behavior with an increment of dM in 
one direction up to 40 % and a corresponding 40 % reduction of dm in the 
other two directions for a value of θ = 2.4. On the other hand, the C2P 
cell shows an asymmetrical behavior with a lower increment (i.e., 16 % 
for θ = 2.4) of the strut size for the large ligaments compensated by a 
larger reduction of the strut size for the smaller ligament (i.e., 51 % for 
θ = 2.4) to guarantee a constant solid volumetric fraction. 

4.2. Effective thermal conductivity of anisotropic structures 

The effective thermal conductivity of the anisotropic structures has 
been investigated by parametrically changing both θ and the porosity. A 
porosity range between 0.75 and 0.9 has been explored covering a broad 
interval of possible geometries. All the structures have been generated 
with a cell size equal to 3 mm since the results are independent of the cell 
size. 

Fig. 8(a) shows the effective thermal conductivity as a function of θ 
for C1P structures normalized to the effective thermal conductivity of 
the isotropic structure with the same porosity. First, the presence of the 
preferential solid distribution is clearly able to differentiate the perfor
mances and to selectively increase or decrease the thermal conductivity 
in a specific direction. By considering the direction in which the struts 
are enlarged, the effective thermal conductivity increases with θ for 
every void fraction. For instance, in the case of a 0.9 porosity the 
different distribution of the solid material provides an effective heat 
conductivity up to twice the value of the isotropic structure. This is 
ascribed to the larger strut diameter in that direction which provides a 
higher cross-sectional area and consequently lower resistance to the 
conductive heat transfer. It is worth noticing that the porosity influences 
the relative increment in the thermal conductivity. In particular, the 
lower is the porosity the smaller is the relative gain in terms of effective 
thermal conductivity. This is due to the different contributions of struts 
and nodes to the overall solid distribution. The relative amount of the 
solid volume allocated in the nodes decreases with the porosity, moving 
from 40 % at 0.75 to 20% at 0.9. In this view, the solid available for the 
redistribution, which is mainly located in the struts, increases with 
growing porosity. Hence, the effect of redistribution of the solid material 
due to the anisotropy is stronger at high porosity. 

It is possible to predict the asymptotic behavior of the structures at 
large values of θ (θ→∞), which represents the maximum possible per
formance improvement. Such evaluation is quite simple in the case of 
C1P structures since they would collapse in an ensemble of parallel 
cylinders in the direction of the increased strut diameter with no con
nections in the other directions. The schematic representation of the unit 
cell becomes a single cylinder with a diameter equal to dM. Hence, the 
effective thermal conductivity can be estimated simply as: 

keff

ks
= 1 − ε (15) 

Eq (15) is notably the same equation of the effective axial thermal 
conductivity of honeycomb monoliths [50]. 

By employing Eq. (5) for the description of the isotropic structure the 
asymptotic relative increase of the effective thermal conductivity in the 
preferential direction becomes as in Eq. (16): 

keff

k0
eff

=
1

2
3 (1 − ε) + 1

3
(16) 

Eq. (16) reveals that the asymptotic value is a function of the porosity 
of the structure: the higher is the porosity the larger is the asymptotic 
value and the potential gain of the anisotropic structure. For example, 
the asymptotic performance gain observed in two structures with a 
porosity of 0.9 and 0.7 are 2.5 and 2.0, respectively. 

The effective thermal conductivity in the direction where the struts 
are thinner decreases with θ. This is ascribed to the lower strut diameter 
in this direction and, consequently, to the higher heat transfer resis
tance. A reduction of the thermal conductivity up to 2 times is observed 
with respect to the isotropic case. In this direction, the effect of the 
porosity is negligible since the profiles for the different porosities are 
superimposed. This is explained by the fact that the limiting heat 
transfer resistance is due to the cross section of the struts rather than to 
the cross section of the node, therefore, a negligible influence of the 
porosity is observed. 

Fig. 8(b) shows the effective thermal conductivity of C2P structures 
normalized by the effective thermal conductivity of the isotropic 
structure with the same porosity as a function of θ.

Similarly to C1P structures, it is possible to increase the perfor

Fig. 9. Simplified model of the unit cell of a C1P structure (a) along the equivalent electrical network (b) and heat flow lines in the structure (c); simplified model of 
the unit cell of a C2P structure (d) along the equivalent electrical network (e) and heat flow lines in the structure (f). 
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mances in the two directions characterized by the larger ligaments by 
increasing θ. In particular, the effective thermal conductivity in the 
privileged directions can be increased up to 40 % with respect to the 
isotropic structures. It can be noticed that the improvement is lower than 
in the previous case. This is due to fact that the increment of the cross- 
sectional area of the struts is distributed onto two ligaments resulting in 
a lower gain. On the other hand, a decrement of the performances in the 
remaining direction is still present. Moreover, the porosity is observed to 
have an impact on the performances in the directions of larger strut 
diameters while a minor effect is observed in the other direction. The 
reason of this behavior is ascribed once again to the non-linear effect of 
the nodes in the distribution of the solid material, resulting in different 
effects over the directions. 

4.3. Engineering correlation 

In this section, we propose engineering correlations aiming at the 
prediction of the effective thermal conductivity of anisotropic structures 
based on their geometrical parameters. 

First, the derivation of the model in the case of C1P structures is 
presented. We consider the anisotropic cubic cell POCS shown in Fig. 9 
(a) and we derive a model for the keff by means of an approximate 
analysis of the thermal conductivity in the unit cell according to an 
electrical network analogy. In case of a uniform temperature difference 
along the vertical direction, heat flows through the unit cell by con
duction in the solid matrix. We decompose the unit cell into a set of 
cylindrical elements characterized by three specific thermal resistances 
as shown in Fig. 9. In this view, the cell resistance and therefore the 
effective thermal conductivity (keff = 1

Rc

Lcell
Acell

) is computed through an 
electrical analogy by means of a combination of resistances in series and 
in parallel, as shown in Fig. 9(b). 

The resistance to heat transfer R1 is evaluated as follows: 

R1 =
1
ks

0.5 (dc − dm)
π
4d

2
M

(17) 

The heat resistance of the portion of structure generated by the node 
and the lateral branches requires to account for the progressive variation 
of the cross-section on the lateral struts which depends on the position 
along the vertical direction in Fig. 9(a). In this view, the equivalent 
resistance for this portion is equal to the series of an infinite number of 
parallel entities generated by the core cylinder (R2) and the lateral struts 
(R3) 

In particular, the differential resistance to heat transfer dR2/dz of the 
core of the node is evaluated as follows: 

dR2

dz
=

1
ks

4
πd2

M
(18) 

The differential resistance of the lateral branches can be calculated 
with similar equations. However, one additional parameter is required 
to consider the elongation of heat flux lines present when moving from 
the straight central strut to the lateral branches. For this reason, we 
consider ψ as a solid tortuosity of the lateral branches to properly ac
count for their effective length. The heat flux lines in the solid structure, 
which are straight and parallel until they reach the node, slightly deviate 
due to the presence of the lateral branches (Fig. 9(c)), implying an 
additional resistance. 

dR3

dz
=

1
ks

ψ

(dc − dM)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2

m
4 − z2

√ (19) 

The tortuosity factor ψ accounts for two effects. On one side, the 
longer path that the heat flow lines have to travel in the region of the 
intersection between the nodes and the lateral branches. Analytically, 
we can compute the maximum length of a heat flux line for our geometry 
as reported in Eq. (20). It is evident that the heat flow lines can be 
extended at most by a quantity equal to a lateral strut length. On the 
other hand, the region of change in the cross-section introduces addi
tional and localized heat transfer resistances which are hard to be 
analytically quantified. The thermal conductivity model herein devel
oped for anisotropic POCS structures was applied to isotropic structures, 
where numerical correlations have been previously described. In this 
case a correction factor equal to 2 was necessary to reconciliate the re
sults of the model and the previous simulations. We observed that a 
tortuosity factor as reported in Eq. (20) can accurately describe such 
phenomena in the range of solid fraction of interest (i.e., 1 − ε < 0.4) 
also for anisotropic structures. 

Hence: 

ψ = 2
dc + dm − dM

dm
(20) 

The equivalent resistance of the node-strut intersection is as reported 
in Eq. (21). 

Req =

∫
dm
2

−
dm
2

(
4dz
dR2

+
dz

dR3

)− 1

dz =
1
ks

∫
dm
2

−
dm
2

dz
π
4d

2
M + 4

ψ (dc − dM)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2

m
4 − z2

√

=
1
ks

∫r

− r

dz
a + b

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
r2 − z2

√ (21)  

where a = π
4d

2
M, b = 4

ψ (dc − dM) and r = dm
2 . 

The integral has an analytical solution which is reported in Eq. (22): 

Rmono
eq =

1
ks

(
a

b
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − b2r2

√

(

2arctan
(

br
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
a2 − b2r2

√

)

− π
)

+
π
b

)

(22) 

Fig. 10. Effective thermal conductivity of C1P (a) and C2P (b) anisotropy structures evaluated based on the heat conductivity models normalized by the isotropic one 
as a function of the anisotropy factor θ. 
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The cell resistance becomes: 

Rmono
c = 2 R1 + Rmono

eq (23) 

Finally, the normalized effective thermal conductivity reads as Eq 
(24): 

keff

ks
=

1
dcRmono

c
=

1
dc

1
⎛

⎝ (dc − dm)
π
4d2

M
+ a

b
̅̅̅̅̅̅̅̅̅̅̅̅
a2 − b2r2

√

(

2arctan
(

br̅̅̅̅̅̅̅̅̅̅̅̅
a2 − b2r2

√

)

− π
)

+ π
b

⎞

⎠

(24) 

In Fig. 10(a), the normalized effective thermal conductivity pre
dicted by the model is plotted against the value obtained by the nu
merical simulations. An excellent agreement is observed with deviations 
at most of the 3% at low θ and high porosity. Moreover, it is possible to 
demonstrate that the model correctly predicts both the asymptotic be
haviors at θ→1 and θ→∞. 

The effective thermal conductivity of the C2P structure is evaluated 
along the same lines. Once again, the structure is sketched as resistances 
in series and in parallel, as shown in Fig. 9(d). In particular, three re
sistances in series are considered. In total analogy with C1P, the first 
resistance is that of the strut with dM size followed by the resistance of 
the node and, finally, by a resistance of the strut with dM size, as shown 
in Fig. 9(e). 

The resistance to heat transfer R4 is evaluated as follows: 

R4 =
1
ks

0.5 (dc − dM)
π
4d

2
M

(25) 

The heat resistance of the portion of structure generated by the node 
and the lateral branches requires to account for the progressive variation 
of the cross-section on the lateral struts which depends on the position 
along the vertical direction keeping in mind also the presence of struts 
with different diameters. 

The resistance to heat transfer dR5/dz of the core of node is evaluated 
as follows: 

dR5

dz
=

1
ks

4
πd2

M
(26) 

The differential resistance of the lateral branches can be calculated 
with similar equations but requires once again a tortuosity factor. The 
different size and structures of the lateral branches requires to introduce 
a different factor for each to account for the enlengthened flow lines and 
additional thermal resistance in the node. These two coefficients are 
calculated in analogy with the C1P structure. 

dR6

dz
=

1
ks

ψI

(dc − dM)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2

M
4 − z2

√ (27)  

dR7

dz
=

1
ks

ψII

(dc − dM)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
d2

m
4 − z2

√ (28)  

where ψ I = 2 dc
dM 

and ψ II = 2 dc+dm − dM
dm 

The equivalent resistance for this portion is equal to the series of an 
infinite number of parallel entities generated by the core cylinder (R5) 
and the lateral struts (R6 and R7). 

Rbi
eq =

∫−
dm
2

−
dM
2

(
dz

dR5
+

2dz
dR6

)− 1

dz +
∫

dm
2

−
dm
2

(
dz

dR5
+

2dz
dR6

+
2dz
dR7

)− 1

dz

+

∫
dM
2

dm
2

(
dz

dR5
+

2dz
dR6

)− 1

dz (29) 

By combining Eq (25)–(29), we obtain 

Rbi
c = 2 R4 + Rbi

eq

=
1
ks

(dc − dM)
π
4d

2
M

+

∫−
dm
2

−
dM
2

(
dz

dR5
+

2dz
dR6

)− 1

dz

+

∫
dm
2

−
dm
2

(
dz

dR5
+

2dz
dR6

+
2dz
dR7

)− 1

dz +
∫

dM
2

dm
2

(
dz

dR5
+

2dz
dR6

)− 1

dz (30) 

The expression of Eq. (30) is not analytically determinable, therefore 
it should be integrated numerically. 

Finally, the normalized effective thermal conductivity reads as Eq 
(31): 

keff

ks
=

1
dcRbi

c
(31) 

The model is in excellent agreement with the results of the simula
tions with minor deviations (< 3%) at low θ, as shown in Fig. 10(b). 

Finally, the thermal conductivity in the direction characterized by 
the reduced strut diameter can be modeled by considering the heat 
transfer resistances of the strut with reduced sections for both the 
anisotropic structures. All the heat transfer resistances are located in the 
strut with small diameter while the effect of the resistance in the nodes 
can be considered negligible. Hence, the ratio between the effective 
thermal conductivity of the anisotropic and the isotropic structures is 
proportional to the ratio of the thermal resistances of the struts as re
ported in Eq. (32) 

keff

keff ,0
=

π
4 (dc − ds)d2

m
π
4 (dc − dM)d2

s
(32) 

A good agreement is obtained with the numerical simulations as 
illustrated in Fig. 10. 

5. Conclusions 

In this work, we have extensively analyzed the effective solid ther
mal conductivity of isotropic and anisotropic periodic open cellular 
structures by means of 3D simulations on virtually generated samples. In 
case of isotropic structures, our analysis revealed that, among the main 
geometrical properties of the structures, the only relevant parameter for 
the determination of the thermal conductivity is the porosity, whereas 
other features such as the cell size and shape do not significantly affect 
this parameter. Accordingly, it is possible to correlate the effective 
thermal conductivities of different cell shapes using a single correlation 
that matches the physical behaviors at the boundaries of the porosity 
range. Finally, these structures offer an advantage with respect to open- 
cell foams, thanks to their optimal solid distribution inside uniform 
ligaments. 

In this work, we have also proposed two anisotropic structures, based 
on the cubic unit cell, where the ligaments in two or one direction are 
thicker. With the envisioned solution, at fixed porosity of the material, it 
is possible to increase the thermal conductivity by up to 100 % or 40 % 
with respect to the conventional structure in the axial or in the radial 
direction, respectively. Thanks to the thinner strut in the opposite di
rection, the thermal conductivity in the other direction is reduced by a 
factor up to 5, which is a particularly relevant result for insulation ap
plications. Finally, mathematical correlations based on the geometrical 
features of the structures were derived for the quantification of the 
effective thermal conductivities of the anisotropic structures. 

As a whole, we have fully characterized the effective thermal con
ductivity of a solid matrix for a wide set of geometries and configura
tions. These solutions are extremely promising for the intensification of 
many energy-intensive processes and, specifically, they can provide 
additional degrees of freedom when it is required to boost the heat 
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transfer either in the radial direction (e.g. in the case of multi-tubular 
reactors with heat exchange) or in the axial direction (e.g. in adiabatic 
and lumped thermal reactors). In view of the design of such reactors, 
additional investigations (e.g. on pressure drop, convective heat trans
fer) will be required towards the optimal design of the next generation of 
process technology. 
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Appendix A. Geometrical model for face-centered-cubic (FCC) cells 

The FCC unit cell is constituted by 8 nodes, positioned at the virtual vertices of the cube, along with 18 struts, 12 positioned at the edges of the cube 
and 6 crossing the faces according to Fig. 1. Within the structure, each node is shared among 8 cells. Moreover, each edge strut is shared among 4 cells 
while the face-transversal struts are shared between two faces. 

As a result, the unit cell solid volume is equal to the sum of the volume of one node, three edges and three face-transversal struts. 

1 − ε =
3 Vedges

struts + 3 Vfaces
struts + Vnode

Vcell
(A1) 

The volume of the node is represented by the intersection of ligaments. The number of ligaments which converges in each node can be either 6 as in 
conventional cubic cells or 9 according to the position. The mathematical modeling of such entity in the case of conventional cubic cell can be 
analytically modeled by the Steinmetz solid [44]. However, the description in case of FCC is much more complex and would involve the solution of 
non-analytical integrals. Hence, the volume of the node is assumed to be the same employed in the regular cubic cell, i.e. by considering the inter
section of three struts. 

Vnode =

(
3
4

π −
̅̅̅
2

√
)

d3
s (A2) 

The volume of the edge struts is computed as in the case of conventional cubic cell as a cylinder characterized by a length equal to the cell size 
reduced by the node diameter (ds) [44] 

Vedges
strut =

π
4

d2
s (dc − ds) (A3) 

The volume of the face struts is approximated as a cylinder with a diameter equal to ds and a length equal to the diagonal of the face shortened by 
the region of intersection between faces struts with edges and nodes as shown in Fig. A1 

Hence, the volume of the strut is computed according to Eq. (A4) 

Vedges
strut =

π
4

d2
s

( ̅̅̅
2

√
dc −

( ̅̅̅
2

√
+ 1
)

ds

)
(A4) 

As a result, the solid fraction is computes as follows. 

Fig. A1. Detail of the strut intersection in node for an FCC cell.  
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1 − ε =

(
3
4 π −

̅̅̅
2

√
)

d3
s +

3
4

( ( ̅̅̅
2

√
+ 1
)
dc − (

̅̅̅
2

√
+ 2) ds

)
d2

s π

d3
c

(A5)  

Appendix B. Geometrical model for strut volume with dm size in configuration mono-modified 

The geometrical model for the anisotropy unit cell with the increment in a single direction requires to compute the volume of the struts with dm 
diameter. The strut is modeled as a cylinder intersecting the strut in the other directions, as shown in Fig. A2. 

The volume Vm of the strut is computed as the difference between the volume of a cylinder of length l and diameter dm and the volume of the red 
region in Fig. A2 which represents the intersection between the two cylinders. The length l of the cylinder is evaluated by considering the semilength of 
a strut reduced by the distance ha (see Fig. A3). 

l =
dc

2
− ha =

dc

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m

√

(A6) 

The volume of the intersection Vint (red region in Fig. A2) is computed by integrating the area of the intersection between − rm and rm. 

Vint =

∫rm

− rm

A(z)dz (A7) 

The area is function of the position along the large strut axis as shown in Fig. A3. By considering a general position z, the area can be computed as 
the sum of a rectangular region Ar (blu area in Fig. A3) plus the circular segment As (green area in Fig. A3). 

A(z) = Ar(z) + As(z) (A8) 

The area of the rectangle is computed as reported in Eq. A9 

Ar(z) = 2 hr t = 2
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − t2

√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
m − z2

√

= 2
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m + z2
√

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m

√ ) ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
m − z2

√

(A9) 

The area of the circular segment is equal to the difference of the area of the circular sector characterized by a central angle of 2φ and the area of the 
triangle. 

As(z) = φr2
M − (ha + hr) t = φr2

M −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m + z2
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
m − z2

√

(A10)  

where φ = arcsin

( ̅̅̅̅̅̅̅̅̅̅
r2
m − z2

√

rM

)

Hence, the volume of the strut reads as follows: 

Fig. A3. Geometry of the intersection between struts for the mono-modified structures.  

Fig. A2. Intersection between struts for the mono-modified anisotropic cell with the intersection region highlighted.  
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Vm =
π
4

d2
m l −

∫rm

− rm

A(z)dz (A11) 

The integral in Eq. A11 does not have an analytical solution hampering this approach. To overcome such a limitation, a simplified model of the 
intersection is proposed. The volume of the intersection is approximated to be equal to the volume of a prism with the circular segment evaluated at 
z = 0 as base and height the strut diameter dm as height. 

Vint =

∫rm

− rm

A(z)dz ≈
(

arcsin
(

rm

rM

)

r2
M −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m

√

rm

)

dm (A12) 

The simplified model evaluates a volume of the intersection which is around 13 % more than the value obtained by the rigorous model. Despite 
such difference, the volume of the four intersections in the node accounts for the 0.2 % of the total node volume. Thus, the overall error introduced by 
the simplified model in the evaluation of the strut volume and of the solid fraction is negligible. 

As a whole, Vm is computed as follows 

Vm =
π
4

d2
m

(
dc

2
−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m

√ )

−

(

arcsin
(

rm

rM

)

r2
M −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

r2
M − r2

m

√

rm

)

dm (A13)  

Appendix C. Supplementary data 

Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cep.2020.108169. 
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