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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

 
Considerable effort has been devoted so far in the scientific 

and industrial communities to understand the nature and the 
source of defects in additive manufacturing (AM) processes, 
their effects on product quality, and how they can be mitigated 
or avoided by acting on controllable parameters. In the 
framework of metal Powder bed Fusion (PBF) processes, their 
lack of repeatability and stability, together with several possible 
sources of defects, have been widely pointed out as major issues 
that deserve further technological advances to meet challenging 
industrial requirements [1-4]. The development and 
implementation of in-situ sensing and monitoring solutions 
represents a priority to push forward the industrial breakthrough 
of metal AM systems. 

The research in this field is growing and evolving very fast. 
First seminal studies were mainly aimed at demonstrating the 
feasibility of in-situ sensing methods and characterizing 
specific process phenomena with the support of in-situ gathered 
data. More recent studies have been proposing, testing and 
demonstrating in-situ measurement and monitoring 
methodologies. An increasing interest has also been devoted to 
the use of machine learning and artificial neural network 
techniques to make sense of large in-situ data streams for robust 
and reliable identification of defects and process errors [5-9]. 
Recent studies also proposed novel in-situ sensing solutions or 
the combination of multiple sensors to achieve better in-situ 
measurement and monitoring performance [10-11]. 

As far as the industrial implementation of these methods is 
concerned, it is worth noting that most PBF system developers 
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have equipped their systems with in-situ sensing and 
monitoring modules and toolkits. Most of these tools are mainly 
used to collect data during the process and provide the user with 
some post-process data reporting and/or datasets to support the 
investigation of specific problems and defects. Further 
development efforts are still needed to implement analytical 
tools that are able to quickly make sense of gathered data during 
the process and automatically signal the onset of defects and 
process instabilities. 

An exhaustive review of the rapidly evolving literature 
devoted to in-situ sensing, metrology and monitoring would 
require a much more extended paper. Nevertheless, this study 
aims to contribute to the AM community in two ways. On the 
one hand, it presents a framework to classify different methods 
and solutions presented in the literature into distinct categories 
in terms of monitoring levels and process signatures of interest. 
The increasing number of studies also caused an increasing 
variety of terminology and an increasing fragmentation of 
application fields. The proposed framework aims to simplify 

the mapping of the wide literature, aiding the identification of 
competitor methods belonging to the same family. On the other 
hand, it presents a summary of issues and challenges that still 
need to be tackled which may drive future research 
developments. 

Starting from the classification of in-situ sensing and 
monitoring methods into different levels (Section 2), Section 3 
includes a brief review of the mapping between measurable 
signatures of the process, categories of defects and sensing 
solutions. Section 4 finally reviews the major challenges and 
open issues in this field. 

 
2. Classification of in-situ sensing and monitoring methods 

 
Fig. 1 shows a classification of in-situ sensing and 

monitoring methods into four different categories of 
measurable process signatures. 

 
 

Fig. 1 – Classification of in-situ sensing and monitoring methods in PBF processes 
 

Table 1 – Mapping between in-situ measurable signatures, sensing methods and process defects in PBF. An “X” is shown in correspondence of known 
relationship demonstrated in the literature, while (X) is used to represent links still not deepened in the literature or other indirect links of potential interest 

 

Level Process signature In-situ sensing method Defects 
 

Porosity 

Residual 
stresses, 
cracks, 

delaminations 

 
Microstructural 
inhomogeneity 

 

Balling 

 
Geometrical 
distortions 

 
Surface 
defects 

 

1 
(powder 

bed) 

Powder bed 
homogeneity 

Off-axis imaging, visible 
range (X) X   X  

Slice geometry Off-axis imaging, visible 
range 

    X  

Slice surface pattern Off-axis imaging, visible 
range, fringe projection (X) X  X (X) X 

 
 

2 
(track) 

Hot and cold spots Off-axis video imaging, 
visible or infrared range X X  X X  

Temperature profile / 
cooling history Off-axis thermal imaging  X X    

Process by-products Off-axis video imaging, 
visible or infrared range X  (X)    

 
 

3 (melt 
pool) 

Size Co-axial video imaging, 
visible or infrared range X X  X  X 

Shape Co-axial video imaging, 
visible or infrared range X X  X  X 

Average intensity Co-axial pyrometry X X (X) X  X 

Intensity profile Co-axial video imaging, 
visible or infrared range X X (X) X  X 

 
 

Level 0 involves the use of signals from sensors that are 
already embedded into the AM system. This includes chamber 
pressure, temperature and oxygen content, current and torque 
signals from linear axis motors, etc. This type of signals 
potentially enables a process monitoring architecture that 
avoids the need for external or additional sensors. This is 
particularly attractive in electron beam PBF (EB-PBF), where 
hundreds of so-called “log signals” are freely available from 
embedded sensors and potentially usable in-process [12]. 

Level 1 consists of measurements gathered once (or more 
than once) per layer, with a field-of-view that covers the entire 
build area. This level includes quantities that are representative 
of the homogeneity of the powder bed, together with 
geometrical and dimensional features of the printed slice or its 
surface pattern and topography. Level 2 involves process 
signatures that can be measured while the laser or the electron 
beam is displaced within the build area to produce the current 
layer. This entails the capability to observe the interaction 
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between the beam and the material, the very fast cooling history 
of the solidified area after the beam has moved to another 
location and, in the laser PBF (L-PBF) process, the by-products 
of the process, i.e., spatters and plume emissions. Level 3 
finally consists of process signatures that are representative of 
the highest level of detail at which the PBF process can be 
observed, i.e., the melt pool. Further classifications of in-situ 
sensing and monitoring methods can be considered, in terms of 
sensing architectures (e.g., co-axial vs off-axis monitoring), 
sensing technologies (spatially integrated vs spatially resolved 
sensors), wavelength of the measured quantities (visible range, 
near infrared, middle and long infrared), etc. The reader is 
referred to [1-4] for an exhaustive classification of in-situ 
sensing and monitoring approaches. 

 
3. Mapping between in-situ sensing, process signatures 
and process defects 

 
Table 1 presents a mapping between the process signatures 

that can be measured in-situ, the corresponding defects that can 
be detected and the most suitable sensing methods. The 
relationships indicated with “X” have been already discussed 
and demonstrated in the literature through experimental studies. 
Some relationships, indicated with “(X)”, represent links 
between defects and process signatures that have not been yet 
demonstrated in the literature. Despite being of potential 
interest, they still need to be confirmed through further 
research. 

Embedded sensor signals (level 0) have been pointed out as 
possible sources of information in EB-PBF to gather 
information about the powder spreadability [13] and the 
occurrence of geometrical distortions caused by powder 
recoating errors [14], but various other potential uses have been 
pointed out in the literature and they can be explored in future 
studies [12]. Analogous solutions in L-PBF have been not 
explored so far. 

A lack of powder bed homogeneity (level 1) may change the 
local layer thickness leading to possible volumetric and 
geometrical defects because of improper energy density 
variations. Errors in the powder recoating of the slice can also 
lead to poor welding between one layer and the following layer, 
with consequent risk of delamination, together with possible 
geometrical distortion in the presence of severe recoating errors 
and contamination. Different authors have investigated in-situ 
sensing and monitoring methods suitable to characterize the 
surface pattern and surface topography of the printed slice and 
the entire powder bed as a possible source of information about 
process stability and surface and volumetric defects [10, 15-16]. 
The in-situ reconstruction of the layerwise geometry of the part 
has attracted an increasing attention in the literature too, to 
quickly detect geometrical distortions [17-18]. Regarding level 
2 process signatures, the detection of hot and cold spots may be 
suitable to identify either geometrical distortions (in case of 
excessive heat accumulations) or lack-of-fusion conditions [19- 
20]. Static and dynamic thermal mapping through in-situ 
thermography can provide information about geometrical 
distortions, variations in the microstructure of the part and 
thermal stress accumulation related to improper heat exchanges 
[21]. An increasing attention in the literature has been devoted 

 
to the use of process by-products, such as spatter and plume 
emissions in L-PBF, as potential proxies of volumetric defects 
[11, 22 – 27]. Spatters are caused by an ejection of material 
from the melt pool and the surrounding powder bed, leading to 
the formation of denudation zones around the melt pool and a 
possible lack of material in the solidified track, which may 
influence the formation of pores. Large and intense plume 
emissions may partially absorb and deflect the laser beam 
reducing the energy input provided to the part, with consequent 
lack-of-fusion porosity. 

Several information about the process stability and the part 
quality can be gathered by monitoring the melt pool signatures 
(level 3) and their evolution over time. Indeed, the melt pool 
properties are relevant to determine the possible formation of 
volumetric defects (both key-hole and lack-of-fusion porosity), 
thermal stress accumulation because of insufficient heat 
dissipation and surface defects related to the solidification 
properties of scanned tracks [5, 28]. 

 
4. Open issues and future challenges 

 
Despite continuous and fast technological developments 

related to in-situ sensing and monitoring methods, several 
challenges and open issues must be faced to develop new 
generations of smart PBF machines able to achieve first-time- 
right and zero-defect production capabilities [1, 29]. 

One challenge regards the limitation of the layerwise 
monitoring paradigm. Indeed, looking at the current layer 
prevents the gathering of information about physical 
phenomena that are occurring below the layer, involving partial 
re-melting, heat accumulation and dissipation, and consequent 
effects on volumetric, microstructural and thermal stress 
properties of the material. Another challenge regards the lack 
of robust in-situ porosity detection methods. Volumetric defects 
are particularly critical in many industrial applications, but 
accurate methods – so called “optical tomography” – for their 
robust identification by means of in-situ sensors are still 
missing. Several process signatures can be used as proxies of 
either lack-of-fusion or key-hole porosity, but further research 
efforts are needed to achieve robust in-situ porosity detection 
capabilities. One additional challenge regards the management 
of big data streams gathered with in-situ sensing methods. 
Several gigabytes of data may be generated during the 
production of a part, and this pushes the need for 
computationally efficient methodologies for in-situ and in- 
process data processing. There is also the need for transfer 
learning solutions, suitable to transfer knowledge and empirical 
models gathered on one part by using one AM system to other 
parts produced with the same machine or with different 
machines. As an example, it would be relatively convenient to 
carry out experimental conditions in a limited and controlled set 
of process conditions, and to transfer the acquired knowledge 
to other conditions, reducing experimental costs and time-to- 
market. However, this is still an open issue, inflated by the large 
system-to-system and lab-to-lab variability that characterizes 
metal AM applications. Only a small number of seminal studies 
have investigated the application of transfer learning methods 
to AM [30]. One interesting opportunity for future research 
regards the development and implementation of cyber-physical 
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approaches. Process simulations have a great potential as 
technological enablers of novel enhanced AM performance and 
zero-defect production capabilities. As an example, simulations 
enable feedforward control strategies for local process 
parameter adjustment, but they also allow the development of 
in-situ monitoring methods augmented by process simulations, 
and vice versa. The combination of real data with process 
simulation is a field that deserves novel and additional research 
effort. Eventually, the achievement of zero-defect and first- 
time-right production capabilities relies not only on in-situ 
sensing and monitoring technologies, but also on effective and 
robust process control strategies. Despite seminal studies on 
closed-loop control in L-PBF and a few recent developments 
[31], a wide gap still needs to be filled in order to make 
intelligent control solutions industrially available. Rather than 
adapting the process parameters based on model outputs or real- 
time sensor signals, other in-situ defect mitigation or defect 
correction solutions have been proposed in the literature [32- 
35]. In-situ defect correction represents a further research field 
that may contribute to the development of novel generations of 
smart AM systems, passing from highly sensorised machines to 
intelligent machines that are able to autonomously identify and 
remove the defect. 
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