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Abstract. Every disruptive event in a transportation network has costly 
consequences both for users and for managing companies. To prevent large 
declines in the desired level of mobility, it is important to locate the most important 
nodes of the network, and to strengthen them. In this paper, we focus on 
underground networks. We introduce a methodology based on graph theory to locate 
the most important nodes, and we apply it to Washington D.C. network as a case 
study, and to the underground networks of 34 cities all over the world. 
 

1. INTRODUCTION 
Transportation systems are nowadays one of the main pillars on which our society is 
built. From time to time, a disruption affects performances of the various 
transportation systems. A disruption is usually classified as random failure, 
intentional attack, or natural disaster, in dependence of its origin. According to the 
considered transportation mode, the resulting capacity reduction can be addressed 
by more or less efficient alternatives. E.g., when one or two lanes on highways are 
closed, the remaining ones can still maintain a certain level of service; in an aviation 
network, a disruptive event in an airport or air route may lead to great perturbations 
or indeed to a complete interruption of service. 
 
Generally, to describe the capability of a transportation network to face a disruptive 
event, researchers consider three features, namely resiliency, reliability and 
robustness. Resiliency is defined as the ability of a transportation network to absorb 
disruptive events easily and to return back to the prior level of service, or to a higher 
one, within an acceptable time frame; higher resiliency of a system means less 
economical, social and operational costs in case of any disruptive event. Reliability 
means that the expected additional trip cost due to a disruption are acceptable even 
if users are extremely pessimistic about the state of the network (Bell, 2000). 
Robustness is the property of a transportation network to maintain its functionality 
unchanged or nearly unchanged, when exposed to disturbances in various accident 
scenarios (Scott, 2006). 
 
The paper focuses on underground networks, an infrastructural backbone for urban 
transportation, and proposes some ways to evaluate their performances, from 
topological, accessibility and economical point of view. The main purpose is to 
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provide a methodology to locate the most important stations, whose removal is 
expected to cause the highest reduction in the performance of the underground 
network.  
 
Firstly, we examine the main causes of disruptive events occurred in underground 
networks all over the world and how they modified the level of service of the 
infrastructure. Then, we construct graphs of 34 underground networks, amongst 
those of most known cities in the world. Graphs are commonly used to represent and 
analyse networks. They easily capture the topological structure of a network and 
some features of it, like distance or number of stations between nodes. We study 
them through calculating the values of four well-known centrality indices, namely 
betweenness, closeness, degree and eigenvector centrality, and through the values 
of Ishortest, a new index we have designed. The above mentioned indices enable us 
to rank nodes of a graph, by identifying those stations for which  exposure to a 
disruptive event may lead to the most harmful consequences for the network. The 
new index Ishortest measures the impact of a complete closure of a station. In this 
respect, it is a relatively novel index in the study of transportation networks.  
 
To represent the results, we plot them on the graph and pinpoint each node by a 
circle whose radius is proportional to node‟s index value.  
 
The paper is organized as follows. In section 2, we describe the main disruptive, 
potential and occurred, events in underground networks. Section 3 explains how we 
build a graph from an underground network. In section 4, we discuss four centrality 
indices and present the novel index Ishortest. Section 5 reports a detailed case 
study. We use Washington D.C. underground network as a case study. Furthermore, 
we report the  most critical stations of all 34 networks, and we infer some features on 
them. Section 6 concludes the paper resuming principal achieved outcomes and 
outlines future developments. 
 

2. MAIN DISRUPTIVE EVENTS IN UNDERGROUND NETWORKS  
Underground networks in metropolitan cities are the busiest modes of transport. 
Disruption in any components of these networks can be highly expensive from a 
financial or a temporal point of view, for both passengers and operating companies. 
Due to significant number of passengers who travel through underground on a daily 
basis and the forecasted increase, boosting the resiliency and reliability of these 
networks is very crucial. A disruption in an underground system can be classified as: 
 

 “Natural Disaster”, 
 “Intentional or Terrorist Attack”, or 
 “Random Failure or Incident”. 

 
2.1 Disruption due to “Natural Disasters” 
Since underground networks are usually underground structures, limited kinds of 
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natural disasters have impact on these types of systems. The most concerns 
regarding the natural hazards which threat underground networks are related to flood 
and earthquake.  
 
Flood impact on underground network 
In case of heavy rain fall, increasing the sea level, or by tsunamis the water can flow 
into the stations and tunnels throughout the station accesses and tunnels. Among 
the many direct consequences of a flooded underground, we highlight: 

1. Cancellation of some trips because either the origin station or the destination 
station is flooded.  

2. Cancellation of some trips because flooding makes links impassable. 
3. Significant delay in several trips. This may happen either because travelers 

are forced to take indirect routes from origin to destination to avoid flooded 
links, or as a result of increased strain on passable links. 

 
In addition to direct losses, there are indirect socio-economic losses including: 

1. Economic loss due to damaged ventilation systems, cleaning up the debris 
after flood also suspension of the service during the recovery time. 

2.  
3. Increasing in road traffic and, as a consequence, increase of emissions into 

the environment. 
 
Earthquake impact on underground network 
Earthquakes with different magnitude influence the underground systems in different 
ways. Usually a smaller earthquake may only force the underground train slow down 
or stop and then rail operations center put on restricted speed to allow the train 
operator to inspect the tunnels and the signaling and electronic systems for any 
signs of trouble or damage. But a larger earthquake can cause structural damage to 
underground stations, tunnel collapse and failure of traffic signals and as a result, 
temporary suspension of underground services, lasting from hours to weeks 
considering the resiliency of the system. 
 
Disruption due to “Intentional and Terrorist Attacks” 
Intentional attacks are defined as targeted destructions caused by outside artificial 
forces. Reports on known cases show that underground systems are one of the 
preferred targets of terrorists. It is primarily due to the potential for disruption, 
destruction, openness, accessibility, lack of passenger identification, and weakness 
of security caused by the significant number of passengers using the network on a 
daily basis (Jenkins and Gersten, 2001). According to the statistics of the attack 
cases, placing explosives, suicide bombings and release poisonous gases are the 
three main types of underground attack tactics used by terrorist (Yu et al., 2019). 
The result of such attacks on a hub station would be devastating since they can 
become very crowded especially during peak hours. Costs which are associated to 
an intentional attack in a underground network include those borne by the victims, 
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psychological trauma to the victims, their families and friends and infrastructure and 
property destruction. 
 
Disruption due to “Random Failure” 
It is almost impossible to specify the corresponding destructive power for a random 
failure, and therefore, we describe a random failure as dysfunction of a network due 
to failure on one or several nodes or edges with random probability of occurrence. 
Due to linkages between the components of a underground network, the failure of a 
component may affect the normal functionality of other components or even the 
whole system. 
 
Technical malfunctions such as power failure, gear failure, brake failure, operational 
mistakes by staff or drivers, temporary suspension of service for special activity or 
maintenance or safety inspection, are examples of random failure. 
 
Fire due to intentional attack or random failure in the underground network 
In comparison with other means of transportation, underground systems usually 
have good safety records. However, because of the large number of persons 
potentially involved in the case of a fire incident, the possibility of damage is high. 
Kings Cross (London, 1987, 31 fatalities), Baku metro (Azerbaijan, 1995, 286 
fatalities), Kaprun funicular tunnel (Austria, 1996, 155 fatalities), and Daegu metro 
(South Korea, 2003, 192 fatalities) are examples which demonstrate the high 
damage possibility in case of severe metro accidents, particularly for large fires 
involving several trains (Bettelini, 2019). 
 
Power line failure, mechanical equipment failure and arson are among the top three 
causes of fire in the underground system (Yu et al., 2019). 
 
The required recovery time in case of any of the above-mentioned incidents depends 
on the resiliency of the underground network as well as the extent of incident 
diffusion, of exposed population and infrastructures and their vulnerability. 
 
3. REPRESENTATION OF UNDERGROUND NETWORKS AS GRAPHS 
An underground system is a physical network, which consists of stations (nodes or 
vertices) and rail tracks (links). Stations and rail tracks provide measurable network 
properties. In this study, we analyzed thirty-four underground networks of most 
known cities in the world. For each network, we construct its correspondent 
undirected graph G (V, E). For our aims, it has to represent the topological structure 
of the network. In order to represent an underground network as a graph, we apply 
the following principle: a node of G is either a transfer station or a terminal. So, 
passing stations (which have degree two) do not appear in the graph. There are 
exceptions to the previous rule: if two different links connect the same couple of 
nodes, we add an additional node (which has degree two) in order to distinguish the 
different links. Furthermore, if the node is the terminus of two lines, we insert a 
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fictitious node so to avoid the node to have degree two. When considering weights, 
we assign the length of fictitious links equal to 1 kilometer (Figure 1). 
 
Afterwards, for each graph, we prepare three matrices: the adjacency matrix and two 
other matrices weighting the edges of the graph. In the first weighted matrix, we 
measure distances between each couple of vertices; in the second one, we count 
the number of stations between each couple of vertices, endpoints of the edge 
included. Hence, the weight of an edge is at least  .  
 

 
 

Figure 1. Building the graph. (A) Vieux-Port station, Paris (marked in black) is 
considered to distinguish the blue from the red path. (B) The fictitious vertex 14 is 
added to represent the terminus role of New Carrolton station, Washington D.C. 

 
Since weights can be considered as an attribute with both a positive or negative 
interpretation, we use the inverse of the distance or the inverse of the number of 
stations when we want to give a negative (in the sense of costs) meaning to weights. 
In fact, in general, both travelling time and cost increase almost proportionally to 
distance. For example, by increasing the length of an edge, it becomes more costly 
and then less attractive to use it. Then, if we interpret distance in this way, it is more 
appropriate to weight edges by the inverse of distance. On the contrary, just for the 
sake of example, if we consider the value of an infrastructure, it is again directly 
related to distance, but distance now assumes a positive interpretation.  
 
4. CENTRALITY MEASURES AND ISHORTEST  
It is a standard practice in analyzing graphs to evaluate indices and to infer 
conclusions on graphs from their values. In the present paper, at first, we focus 
ourselves on centrality measures, that is to say, on indices designed to locate the 
most central nodes in the graph. Here, central means most important with respect to 
the topology of the graph itself if we perform the analysis on a non-weighted graph. 
When we consider weighted graphs, the importance of a node is a byproduct of the 
interplay between topology and weights. Later, we introduce a newly designed index, 
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Ishortest, and we compare its values with the centrality measures. Ishortest is 
designed to look for nodes whose removal from the graph has the largest outcome in 
terms of lengths of shortest paths.  
 
We assume the readers to be familiar with the basic definitions and results on 
graphs. In the present paper, by graph, we mean a connected, undirected, simple 
graph. Hence, edges work in both directions to connect their endpoints, there is no 
edge from a node to itself, that is to say, no loop, and there is at most one edge 
between two vertices, if any. Finally, we assume that there is a path between every 
couple of nodes. 
 
4.1 Degree 
The degree of a node is the number of its neighbors, or equivalently, the number of 
edges that contain the node. We denote the degree of   as       . The degree of a 
node depends on the topology of the graph only, and in literature, weights do not 
affect its definition. However, since we assign weights to the edges, we compute 
weights for nodes from the ones of the edges, as follows: given a node, its weight is 
the sum of the weights of the edges that contain the considered node. Going back to 
the topology of graphs we construct from underground networks, because of the 
methodology we use, we have very few degree 2 nodes.  
 
The degree of a node allows an observer to draw immediately a picture of a graph in 
a neighbor of a node. From this respect, this index belongs to the set of indices 
suitable to describe visually a graph. 
 
According to the degree, there are two different kinds of graphs. The first kind of 
graph consists of the ones in which a few nodes have very large degree. They 
present a hub structure, where a hub is a node with large degree. When a new node 
is inserted in such a graph, one usually connects the new node to an existing hub, so 
that the degree of the hub increases. The second kind of graph consists of the ones 
in which almost all nodes have the same degree. This is the most common structure 
of graphs associated to metro networks of large cities. 
 
In both cases, central nodes with respect to the degree are the ones that have 

largest degree. For example, if   is the maximum degree of a node in a graph, we 

say that the central nodes are the ones whose degree is at least    , where   
depends on the graph. For example, if the graph has not a hub structure,       or 
  is a good choice. On the contrary, if the graph has a hub structure, all hubs must 

be central nodes, and so the value of   has to be chosen accordingly.    
 
Since the values of the degree are only a few integers for a given graph, in general, 
it is not so useful to normalize this index. For example, in the graphs we construct 

from underground networks, it is quite rare to have a node of degree   . However, 
we propose two possible normalizations for degree, according to different scenarios 
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in which we will use them. 
 
The first normalization is  

            
          

      
  (1) 

where       are the minimum and the maximum degree of a node in the given 
graph.  
 
The second normalization is  

            
       

  
   (2) 

where    is the maximum degree of a node in a graph which belongs to a given 
reference set. For example, if we consider the set of graphs with   nodes, then    is 

equal to    , and is the degree of a node that is connected by an edge to every 
other node in the graph. 
 
The first normalization has to be preferred when comparing different indices 
evaluated on the nodes of the same graph, whereas the second one has to be 
chosen when comparing the same index evaluated at different graphs sharing a 
common feature. 
 
4.2 Betweenness 
A different centrality measure is betweenness, proposed by L. Freemann  
(Freemann, 1977). The basic idea of betweenness is that a node is central if it is on 
many shortest paths, where shortest means a path with least weight. We remark 

that, in an unweighted graph, we can say that every edge has weight  . Hence, when 
moving on a graph, it is very likely that one has to go through some nodes that are 

central with this respect. The definition of betweenness      of a node   is  

         
      

   
        (3) 

where     are different nodes,     is the number of shortest paths between     and 

       is the number of shortest paths between     containing the node  .  

 

To illustrate the differences between degree and betweenness, we can consider the 
graph representation of a single metro line, where each station is a node. Hence, the 

associated graph is a path. Apart the terminal nodes that have degree  , all the other 
nodes have degree  . On the contrary, the betweenness of a node is the product of 
the distances from the terminals, and so the betweenness of two nodes is different, 
except if they are symmetric with respect to the terminals, and increases together 

with the distance from the terminals. E.g., in the case we have   nodes, the 

betweenness of the terminals is  , then it becomes   and then  . In conclusion, the 
central nodes with respect to degree are all but the terminals, with respect to 
betweenness are the most inner ones (one or two according to the parity of the 
nodes).  
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To compare different graphs with respect to betweenness, it can be useful to have a 
normalized index. There are some different ways to normalize an index, each one 
having pros and cons.  
 

A first normalization is  

          
       

      
   (4) 

where       are the maximum and the minimum value of the betweenness for a 
given graph. In this way, for whatever graph, one gets values in the range      . On 
the other hand, it is not possible to compare easily the betweenness values for 
nodes in graphs sharing some common feature, as the same number of nodes. 

Another criticality for unweighted graphs is the following. If a node has degree  , its 
betweenness is equal to  . After normalizing the betweenness as in (4), some nodes 
will have normalized betweenness equal to   in each graph, and so it is not possible 

to detect the existence of degree   nodes from the normalized betweenness. 
 
A second normalization is  

          
    

  
   (5) 

where    is the maximum of the betweenness for a given graph. As before, one gets 
values in the range       but now we can detect the existence of degree   nodes 
from       . It is not easy, however, to compare graphs from        when the 
graphs share some common feature, as the same number of nodes, for example. 
 
A third normalization, the one we adopt, is  

          
    

  
   (6) 

where    is the maximum of the betweenness for all graphs sharing the same 
feature. For example, when we consider all graphs with the same number of 

nodes         
 

              . The number    above is the betweenness of 

the central node of a star-shaped graph with   nodes. 
 
4.3 Closeness 
Another centrality measure is closeness. Closeness was first introduced by A. 
Bavelas (Bavelas, 1950), and later reintroduced as it is or slightly modified by 
various authors. The basic idea of closeness is that a node is central if it is not too 
far from every other node in the graph. The distance between two nodes is the 
length of the shortest path joining the two nodes, where the length of a path is the 
sum of the weights of the edges in the path. For unweighted graphs, as previously 

explained, we assume that every edge has weight  . 
 
The definition of closeness      of a node   is  

                         (7) 
where        is the distance between the nodes    . 
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Of course, since we are interested in nodes for which the sum of distances is small, 
central nodes with respect to closeness are the ones for which      is large. In a 
modified closeness index, the authors propose to use the average distance instead 
of the sum of distances. 
 
We normalize closeness by computing the following 

         
    

  
    (8) 

where    is the maximum of closeness for graphs sharing a common feature. For 
example, if we consider unweighted graphs with the same number   of nodes, 
then           . In fact, in a star-shaped graph with   nodes, a node is a 

neighbor of all the others, and so its closeness is actually   . Of course, since the 

sum of distances is never smaller than    , then        , for every node   in 
every graph with   nodes. We remark that the normalized closeness       is exactly 
the same index we get by taking the average distance. 
 
Closeness on paths provides results that are similar to betweenness (and then it is 
different from degree). In order to understand their difference, consider a path (a 
chain graph), and add a new terminal at one of the two far ends, so it becomes a fork 
with two teeth, obtaining still a tree. Whereas betweenness is zero at all three degree 
1 nodes, closeness is the same at the terminals on the fork, but different at the last 
terminal. 
 
4.4 Eigenvector centrality 
The fourth and last centrality measure we consider is eigenvector centrality. The 
basic idea of eigenvector centrality is that a node is central if its neighbors are 

central, too. In more details, assume that      is the value of eigenvector centrality at 
the node  . Then, if         are the neighbors of  , we have  
                        (9) 

for a suitable constant   not depending on  , and for every node  . We can rewrite 
the above equation by using the adjacency matrix   of the graph, and we have  
           (10) 
where   is a     matrix whose elements are the eigenvector centrality values of 

the   nodes of the graph. Of course, we require that        for every node. The 
Peron-Frobenius theorem guarantees that the adjacency matrix, no matter whether 
weighted, has a maximum eigenvalue of multiplicity one, and whose eigenvectors 
have positive elements, up to the multiplication by a scalar. Hence, the choice for the 
eigenvector centrality falls on the unique eigenvector with positive elements and 

norm equal to  . It is evident that the values of the eigenvector centrality are 
normalized. 
 
This fourth centrality measure is independent from the previous three ones, and it is 
easy to construct graphs whose nodes are differently ordered with respect to the four 
measures.  
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We will discuss application of these four measures on metro graphs. 
 
4.5 Ishortest 
The above centrality measures aim at finding the most important nodes in a graph, 
where „important‟ depends on the index one considers. Such nodes are the ones 
whose cancellation is expected to largely modify the performances of the graph, 
even if no one can guarantee that. In fact, there is no way to compare easily the 
values of a centrality measure on a graph before and after removing a node and all 
edges containing it.  
 
To overcome this difficulty, we propose a novel designed index, Ishortest. Its values 
depend on both a graph and all graphs obtained by cancelling a node at a time. In 
fact, to compute the values of Ishortest, we compare the lengths of the shortest 
paths before and after removing a node. Since the length of a path is well defined in 
graphs, no matter whether weighted or unweighted, we can compute Ishortest for 
nodes in every graph.  
 

Let         be a graph, where   is the set of nodes, and   is the set of edges. We 

assume that there are at least three nodes in  . Given two nodes    , we 
denote        the length of the shortest path from   to  . Of course,               
and          for every      . The total length of shortest paths in   is then equal 
to 
                    (11) 

where we suppose to order the nodes, so that        contributes only once to the 
sum above. 
 

Now, we select a node  , and we compute the total length of shortest paths from  , 
that is to say, 

                     (12) 

Moreover, we construct the new graph           , where          and    is the 

subset of edges in   that do not contain  . According to   and  , the subgraph    may 

happen to be connected or not. The computation of the value of Ishortest at   varies 
according to the connectedness properties of   .  
 
If we assume that    is connected, we compute      , that is to say, the total length 

of shortest paths in   , and we define (in next sections, we use IS1, for brief) 

                
     

           
   (13)   

Of course, since there are at least three nodes in  , the denominator is strictly 
positive. Furthermore, when we take two nodes in   , then                
where         is the length of the shortest path in    from   to  , because some 
edges in   are no more edges in   . More precisely, if all shortest paths between     

in   pass through  , then the two lengths are different, otherwise the two lengths are 
equal. Hence,                   , that is to say,               . For example, 
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if   is a terminal, then    is connected and                because no shortest 
path passes through a terminal, unless it starts from there. Then, it follows 
that                   that is to say,                for every terminal  . To 

distinguish between non-terminal nodes with                and terminals, we set 
               for every terminal  . 
 
On the other hand, we now assume that    has two or more connected components, 

and so   is a cut-vertex, as those nodes are referred to in literature. Of course, there 
is no path at all from   to   when the two nodes belong to different connected 
components, and so there is a loss of connections when the cut-vertex is removed. 

Moreover, when     belong to the same connected component, the length of the 
shortest path in    is not less than the length of the shortest path in  . Both the loss 
of connections and the increase in distance deserve to be considered. For this 

reason,           evaluated at a cut-vertex is a couple. From the definition of 
betweenness, we recall that        is the number of shortest paths from   to   in a 
graph. Hence, we define         the number of shortest paths between     in   : 

if           then the two nodes are in the same connected component,           
otherwise. A good measure of the loss of connections is 

                 
                

           
  (14) 

because the numerator is exactly the total length of paths that do not exist in   . In 
next sections, we use IS21 for brief. 
 
To evaluate the increase of total length, instead, we take into account the sizes of 

the connected components that arise when   is removed. So, we assume that    is 
the disjoint union of        , and that    has    nodes. Of course,            
  is the number of nodes in  . Let  
                    

      

 (15a) 

                   
      

  (15b) 

 

be the total length of shortest paths between nodes in    evaluated in    (15a) and 
in   (15b). An estimate of the increase of lengths of shortest paths is given by (in 
next sections, we use IS22, for brief) 

                   
         

       

 
   
    

   (16) 

The above equation is the average increase of lengths of shortest paths, weighted 
on the size of each connected components with at least two nodes. Finally, we set 

                                               (17) 

The first component is always smaller than 1, because the numerator is a summand 
of the denominator. Of course, the larger the first component, the bigger the loss in 
connections due to the cancellation of the node.  
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We expect the second component to be close to 1 when there is one very large 
connected component and a few small ones. On the contrary, when there are at 
least two connected components of comparable sizes, we expect that component to 
decrease. In the case of weighted graphs, its value may increase much more than 1, 
depending on weights of edges on the new shortest paths. It is worth noting that this 

component is always equal to 1 if   (the cut-vertex) has degree two.  
 
As an example, we consider a graph whose layout is a path (that is a chain) on 5 

nodes. The values of           at the two terminals is 0. The cancellation of every 
other node produces a non-connected graph. When we remove the central node, we 

get                           
  

  
 
 

 
 , while, if we remove one of the two remaining 

nodes, we get               
 

  
 
 

 
 . This example shows that when we remove the 

central node, the loss in connection is larger than when removing another non-
terminal node. The analysis of the second component, in this case, is not particularly 
interesting because shortest paths do not change their lengths when removing a 
node. 
 

5. WORKING EXAMPLE: WASHINGTON DC UNDERGROUND NETWORK 
In this section, we consider the underground network of Washington DC, we 
construct the associated graph, and we compute the values of the centrality 
measures and Ishortest for each node of that graph. 
 

 
Figure 2. Washington DC underground network map with numbered 

stations/vertices. 
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Washington DC metro network (Figure 2) is a six-line system and its total length is 
over 188 km. The routes include trips from Washington to Maryland (Montgomery 
and Prince George's counties) and Virginia (Arlington, Fairfax, and Loudoun 
counties, and the towns of Alexandria, Fairfax and Falls Church).  
 
The topological structure of the Washington DC metro is represented through an 
undirected graph G with 26 vertices and 32 links (Figure 3). Vertex 26 is a fictitious 
node added to represent the fact that node 14 is the terminus of both Orange and 
Purple lines. The length of this fictitious link is settled equal to 1 kilometer. 
Furthermore, nodes 20 and 25 are inserted because there are two different routes 
between nodes 17 and 19 and between nodes 12 and 16. 
 

 
Figure 3. Graph of Washington DC underground network. 

 

5.1 Centrality Indices 

We first analyze the degree index. As it follows from Fig. 3, nodes from   to   and 

node    have degree  , that is to say, each of them has only one neighbor. In this 
respect, they are terminal nodes. As previously explained, nodes   to   exist, while 
node    is fictitious. Nodes    and    are the only two ones whose degree is  . All 
the other nodes have degree larger than two. The top degree node is node    that 
has   neighbors, the nodes              . In the graph, there are   

nodes,                     , with degree larger than  , and they represent about 
the     of the total number of nodes. Since the top degree is  , relatively small with 
respect to the total number of nodes, and other   nodes have degree  , we can say 
that Washington underground network does not have a hub structure. The 

normalized degree       is equal to                    according to the degree in 
the set   1, 2, 3, 4, 5}. The second normalized degree       is equal 

to                          according to the degree as above. Since the top degree 
is small if compared to       , normalizing factor in the second 
normalization,       gets values in a small range.  
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Now, we consider the weighted graphs, and we analyze first the graph according to 
the number of stations. Given a node, we want to compute the number of stations 
contained in the edges that start from the considered node. Of course, we do not 
consider the given node in the computation. To achieve this goal, because of the 
way we weight edges by stations, we have to sum the weights of the edges 
containing the given node, and we have to subtract the degree of the node itself. The 
values are contained in the range       . There are   nodes in the first quartile,   in 

the second one,   in the third, and   in the last one. The nodes in the last quartile 
are               , nodes       with the largest number of stations      on edges 

containing them. By comparing the lists of nodes with degree at least   and weight at 

least   , we find the three nodes         . If we divide the weight of a node by its 
degree, we get an average number of stations on the edges that contain the node, 
and this further value can be of some interest to evaluate the accessibility to the 
underground network in a neighbor of the node. 
 
Lastly, we consider the graph weighted according to the lengths of edges. As 
previously explained, we consider length as a negative attribute, and so we use the 
inverse of the length. As for the number of stations, to get the weight of a given 
node, we sum the weights of the edges containing the nodes. The values we get are 
in the range            . There are    nodes in the first quartile,   in the second,   in 

the third, and   in the fourth and last one. The nodes in the last quartile are      . If 
we compare them with the largest degree nodes, we see that they both have 

degree  , while they do not belong to the fourth quartile by stations. This proves that, 
in this case, the weights by stations and by distance are independent. Once more, if 
we divide the weight by distance by the degree of a node, we get an average length 
of edges containing the given node, and this number can be of some interest when 
evaluating the performances of the network.  
 
Now, we consider betweenness, and repeat our analysis as for degree. As 

previously stressed, the betweenness of terminals is  , since a terminal is an inner 
node on no shortest path. However, when we consider node 20, it is clear from the 

topology that its betweenness is   as well. In fact, given two different nodes    , and 
a path joining them through node   , we can shorten it by substituting          
with      , because there is an edge linking node    to node   . Of course, a 
computation by hand of betweenness is far from our ability, even in the case of a 
relatively small graph as the one associated to Washington DC underground 
network. There are 12 nodes in the first quartile, and their betweenness is 0; there 
are 9 and 2 nodes in the second and third quartile, respectively, and lastly, nodes 18, 
21, 22 are in the fourth quartile. When we consider stations as weights, the only 
nodes in the fourth quartile are 18, 22. We remark that in the first quartile, we have 
the same 12 nodes as in the unweighted case. On the contrary, when we weight the 
graph according to the number of stations, we have 5 nodes in the third quartile. 
Lastly, when we weight the graph according to the inverse of the distance, there are 
14 nodes in the first quartile, and 8 in the fourth one (nodes 10, 11, 13, 14, 15, 18, 
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21, 22). It follows that nodes 18, 22 have the highest betweenness whatever weight 
function we use. On the contrary, for degree, no node is in the fourth quartile for 
whatever weight function.  
 
We repeat now the previous analysis for closeness. The values of this index, both in 
the unweighted case, and in the two weighted cases, are in a quite small range. For 
example, in the weighted-by-station case, the range is              . Hence, when 
clustering the nodes by quartiles, it is more convenient to normalize the values by 
using equation 

          
       

     
  (18) 

where       are the minimum and the maximum value of closeness. When we 
consider the unweighted graph, there are three nodes in the fourth quartile, and they 

are nodes         . When we weight by station, there are two nodes in the fourth 
quartile, and they are nodes      . When we weight by inverse of the distance, the 

situation is quite different. In fact, there are    nodes in the fourth quartile, that is to 
say, half of the total number. This shows that the values for this index are very 
concentrated, clustered around the maximum. The only node in the fourth quartile 

with respect to whatever weight we use is node   . 
 
The last centrality measure to consider is eigenvector centrality. There are 4 nodes 

in the fourth quartile in the unweighted case, and they are nodes            . The 
weighted cases share the same behavior: the most of the nodes are in first quartile, 
17 in the weight-by-station case, and 20 in the weight-by-distance one. In both 
cases, there are two nodes in the fourth quartile, nodes 10, 13 when we weight by 
the number of stations, and nodes 16, 17 when we use the inverse of distance as 
weight. It is evident that no node sits in the fourth quartile in all three cases. 
Moreover, nodes 10, 13 have the largest value in the case of weight by stations.  
 
To summarize the above discussion, we consider all four centrality measures at the 
same time. In the unweighted case, node 18 is the only that sits in the fourth quartile 
with respect to all above indices, while node 17 appears in three fourth quartiles, and 
so they show themselves as the most central ones. In the opposite direction, all 
terminals are located in the first quartile for every centrality measures. Hence, as 
expected, terminals are the less central nodes in a graph. When we weight the graph 
by number of stations, no node sits in all fourth quartiles, while node 18 is the only 
that belongs to three fourth quartiles over four. Once again, node 18 shows itself as 
the most central in the graph, also with respect to the number of stations per edge. 
Lastly, when we weight the graph by the inverse of the distance, the situation is 
different, again. In fact, no node sits in more than two fourth quartiles, in spite of the 
fact that the fourth quartile of betweenness contains 8 nodes, and the one of 
closeness contains 13 nodes. So, when we weight the graph with respect to the 
inverse of the distance, we can say that no node is actually central. In conclusion, 
the overall of weight and topology produces effects that are not predictable on the 
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centrality measures. 
 

Table 2: List of four centrality indices for Washington D.C. underground graph. 

 
 
 

 
Figure 4: Degree Indices for adjacency graph, and weighted by station and 
1/distance graphs. 
 

Vertex Adjacency Station Distance Adjacency Station Distance Adjacency Station DistanceAdjacency Station Distance

1 1             7             0.06        0 0 0 0.0101 0.0018 0.0553 0.013 0.032 0.000

2 1             4             0.13        0 0 0 0.0099 0.0021 0.0509 0.019 0.037 0.000

3 1             2             0.26        0 0 0 0.0095 0.0023 0.0448 0.018 0.019 0.000

4 1             6             0.08        0 0 0 0.0102 0.0020 0.0532 0.013 0.016 0.000

5 1             9             0.07        0 0 0 0.0116 0.0020 0.0541 0.028 0.023 0.002

6 1             3             0.50        0 0 0 0.0088 0.0020 0.0303 0.005 0.001 0.000

7 1             3             0.09        0 0 0 0.0088 0.0020 0.0432 0.005 0.001 0.000

8 1             4             0.09        0 0 0 0.0086 0.0019 0.0428 0.004 0.002 0.000

9 1             12           0.03        0 0 0 0.0086 0.0014 0.0459 0.004 0.006 0.000

10 4             24           0.59        52.83 36 85 0.0130 0.0026 0.0602 0.061 0.159 0.005

11 3             20           0.33        54.83 34 83 0.0133 0.0026 0.0601 0.043 0.078 0.005

12 4             18           1.52        32.00 74 32 0.0132 0.0029 0.0543 0.082 0.096 0.066

13 4             24           0.65        45.00 39 88 0.0123 0.0025 0.0618 0.059 0.160 0.003

14 3             14           1.25        41.00 31 82 0.0123 0.0024 0.0602 0.034 0.073 0.000

15 3             18           0.44        56.00 52 80 0.0135 0.0027 0.0597 0.042 0.046 0.007

16 4             16           3.91        45.17 73 0 0.0145 0.0036 0.0357 0.097 0.058 0.190

17 4             10           4.15        31.83 56 11 0.0149 0.0035 0.0399 0.092 0.023 0.238

18 5             24           1.78        110.33 115 102 0.0161 0.0037 0.0597 0.091 0.044 0.082

19 4             15           2.82        67.67 68 70 0.0147 0.0034 0.0588 0.067 0.042 0.162

20 2             4             2.71        0 0 0 0.0122 0.0031 0.0204 0.048 0.007 0.177

21 3             12           0.76        84.00 80 86 0.0139 0.0033 0.0534 0.038 0.012 0.019

22 3             12           0.72        95.33 90 90 0.0145 0.0035 0.0542 0.044 0.009 0.010

23 3             13           0.72        47.00 47 47 0.0112 0.0023 0.0477 0.016 0.004 0.000

24 3             22           0.24        47.00 47 47 0.0109 0.0024 0.0472 0.014 0.009 0.001

25 2             8             0.60        0 0 10 0.0119 0.0031 0.0441 0.054 0.036 0.030

26 1             2             1.00        0 0 0 0.0095 0.0022 0.0246 0.010 0.008 0.000

Eigenvector Betweenness Closeness Degree 
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Figure 5: Betweenness, Closeness and Eigenvector Indices for weighted by 

1/distance graphs. 
 

5.2 Ishortest 
When analyzing Ishortest values we must evaluate separately nodes that do or do 
not disconnect the graph. Table 3 reports results for adjacency and weighted graphs 
(note that in this application we use just Distance as weight) and figures 6 shows 
them graphically (IS1 is drawn in blue, IS21 in red, and IS22 in yellow). 
 
For what concerns non cut-vertices, node 16 is the top value node for Washington 
graph when we consider weights, while node 19 is the top value node and the only in 
the fourth quartile when we consider topology only. When we remove node 16, and 
we weight the graph by distance, the increase of total shortest path length is up to 
21%, which is a relevant value, taking into account the global size of the network. 
Node 12 determines an increase up to 12%, too. Node 17 is generally not significant 
contrary what occurring for centrality indices. 
 
Now, we consider cut-vertices. They represent most of the nodes (10 out of 16, 
excluding termini). Looking at them on Fig. 3, one sees that such nodes represent a 
border of the central part. This is expected, since the graph looks like a central body 
with arms. These nodes are at the junction of the arms, or on the arms. Node 21 is in 
the first position for IS21 for all graphs with values 0.29, 0.31, and 0.38 for 
adjacency, stations, and distance, respectively. From the last value, it follows a loss 
of total shortest path length up to 37% w.r.t. original total value before removal, that 
is to say, the 37% of the shortest paths in the original graph do not exist anymore 
after removing node 21. For IS22 (measuring the increase of sub-graph total shortest 
path length due to removal) we see that they are rather close to 1. This can be 
explained as follows. When a cut-vertex is removed, we have a very large connected 
component and a few very small ones. The increase in length of the shortest paths in 
the large component is not so relevant, and so the IS22 value is close to 1. Node 18 
is the exception with values 1.16, 1.18, 1.15 for adjacency, stations and distance 
matrices. Since the removal of node 18 produces two connected components, one 
with 24 nodes (the big one) and the other one with only a node, the actual increases 
in the big component are 26%, 29%, and 25%, respectively. 
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Table 1. Ishortest values of Washington DC‟s graphs (considering distance as 
weight), terminals excluded. 

 
 

The reported results for Ishortest index show that Washington DC underground 
network has higher vulnerability according to the proposed measure, at either Fort 
Totten, Gallery Plaza, L‟enfant Plaza and Rosslyn stations (nodes 12, 16,  18 and 21 
respectively). It is worth noting that L‟enfant Plaza and Rosslyn stations (nodes 18 
and 21) are cut-vertices and therefore the loss due to their closure could be more 
crucial. 
 

 
 a) b)  c)  
Figure 6: Ishortest indices for adjacency graph (a), and weighted by station (b) and 
distance graphs (c) (IS1 in blue, IS21 in red, IS22 in yellow). 
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10 2 0.0945 1.0376 0.0968 1.0237 0.0898 1.0103

11 2 0.0925 1.0333 0.1110 1.0023 0.1394 1.0000

12 1 1.0283 1.0839 1.1269

13 2 0.0987 1.0316 0.0891 1.0253 0.0814 1.0172

14 2 0.0987 1.0126 0.0937 1.0072 0.0907 1.0000

15 2 0.0914 1.0373 0.1010 1.0389 0.1015 1.0013

16 1 1.0478 1.1005 1.2182

17 1 1.0253 1.0293 1.0534

18 2 0.0792 1.1599 0.0946 1.1790 0.0977 1.1542

19 1 1.0937 1.0575 1.0331

20 1 1.0000 1.0000 1.0000

21 2 0.2926 1.0141 0.3091 1.0061 0.3771 1.0002

22 2 0.2833 1.0278 0.2716 1.0230 0.2703 1.0000

23 3 0.2122 1.0000 0.2005 1.0000 0.2063 1.0000

24 3 0.2186 1.0000 0.2439 1.0000 0.3322 1.0000

25 1 1.0000 1.0000 1.0000

Adjacency Station Distance
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Table 4. Synthesis of all indices for the 34 underground networks. 
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v v v v v IS1 v NS IS21 IS22 v v v v v IS1 v NS IS21 IS22 v v v v v IS1 v NS IS21 IS22

Athens 12 14 85.8 6,8,9,10 8 8 8 7 1.000 8 2 0.640 1.000 9 9 8 10 7 1.000 8 2 0.581 1.000 8 8 8 8 7 1.000 9 3 0.600 1.000

Barcelona 36 53 131.2 18,20,30 30 20 30 20 1.139 18 2 0.266 1.002 17,24,33 33 20 27 13 1.100 18 2 0.241 1.000 30 30 20 29 13 1.085 18 2 0.219 1.001

Beijing 78 121 632.6 69 69 51 68,72 47 1.046 50 2 0.096 1.018 29 29 69 61 51 1.043 50 2 0.104 1.008 67 67 51 51 47 1.031 29 3 0.111 1.000

Berlin 34 45 141.9 30 34 28 31 25 1.113 30 4 0.202 1.013 30 30 18 33 18 1.093 30 4 0.265 1.007 23 23 31 31 18 1.066 30 4 0.293 1.004

Boston 29 34 114.7 18,26,17 26 26,29 26 26 1.107 29 2 0.447 1.012 20 20 26,29 26 26 1.051 29 2 0.485 1.006 26 26 26 26 26 1.027 27 3 0.500 1.000

Brussels 9 10 35.9 8 8 8 8 3 1.000 8 2 0.657 1.000 8 8 8 4 3 1.103 8 2 0.705 1.000 3 3 8 8 3 1.096 8 2 0.703 1.000

Bucharest 13 14 66.2 10,13 13 12,13 13 9 1.022 12 2 0.556 1.000 13 13 10,12 13 9 1.051 12 2 0.522 1.000 9 9 13 12 9 1.102 12 2 0.522 1.000

Buenos Aires 18 24 54.4 17 17 17 9,17,18 17 1.156 13 3 0.295 1.000 13 15 17 15 17 1.103 13 3 0.312 1.003 9 9 17 9 17 1.057 13 3 0.330 1.000

Cairo 12 14 88.8 7,8,9,11 11 7,9,11 11 11 1.111 7 3 0.443 1.000 9 9 9 11 11 1.117 7 3 0.451 1.000 11 11 7 11 11 1.054 7 3 0.430 1.000

Chicago 19 19 161.7 8,9,19 8 8 8 - - 8 3 0.652 1.000 6 6 8 8,19 - - 8 3 0.592 1.000 8 8 7 7 - - 8 3 0.605 1.000

Delhi 45 59 365.4 25 28 39 30 25 1.081 39 2 0.411 1.016 38 40 39 27 25 1.067 39 2 0.407 1.003 27 27 39 17 30 1.094 39 2 0.432 1.001

Hongkong 35 39 205.7 16,18,19,22,30,33 18 33 33 32 1.064 19 3 0.406 1.000 24 24 30 30 18 1.099 19 3 0.359 1.000 16 16 33 33 30 1.040 19 3 0.408 1.000

Lisbon 13 15 40.6 8,9,10,11,13 10 9 8,10 10 1.130 13 3 0.395 1.000 8 8 10,11 10 10 1.257 13 3 0.408 1.000 11 11 9 9 10 1.192 13 3 0.415 1.000

London 75 112 405.5 43,57 57 55 55 55 1.232 30 2 0.182 1.000 53 53 55 60 55 1.114 40 2 0.203 1.019 65 65 55 55 55 1.099 40 2 0.280 1.012

Lyon 10 10 27.7 9,10 9 9,10 9,10 - - 9 3 0.477 1.000 9 9 10 9 - - 9 3 0.531 1.000 10 10 9 9 - - 9 3 0.597 1.000

Madrid 56 90 296.2 30 30 37 50 30 1.081 37 2 0.387 1.000 25 25 50 50 46 1.131 37 2 0.409 1.000 51 52 30 38 46 1.072 37 2 0.468 1.000

Marseilles 7 7 21.1 5,6 5 5,6 5,6 7 1.000  5,6 3 0.710 1.000 6 6 5,6 5,6 7 1 6 3 0.752 1.000 5 7 5,6 5 7 1.000 6 3 0.761 1.000

MexicoCity 42 62 195.8 25 25 25 25 17 1.066 36 3 0.131 1.000 22,36 22 23 25 25 1.046 36 3 0.161 1.000 16 27 38 38 15 1.050 36 3 0.185 1.000

Milan 21 24 91.3 12,13,14,16,17,20,21 13 20 14,20 14 1.103 16 3 0.447 1.000 16 16 20 14 13 1.078 16 3 0.489 1.000 13 13 17 14 13 1.054 16 3 0.534 1.000

Montreal 11 12 61.6 8 8 8 8 9 1.000 7 3 0.449 1.000 8 8 8 8 9 1 8 3 0.450 1.044 8 9 7 8 9 1.003 7 3 0.471 1.000

Moscow 65 106 393.1 44,56,60,62 56 56 59 56 1.046 3 2 0.043 1.000 23,25 23 56 58 56 1.041 6 2 0.060 1.002 60 63 4 59 28 1.034 12 2 0.071 1.000

New York 85 124 418.6 27 64 72 72 72 1.053 70 3 0.167 1.032 70 17 27 56 36 1.081 70 3 0.197 1.009 53 53 70 70 36 1.116 70 3 0.210 1.037

Osaka 39 51 215.7 16 33 28 35 35 1.182 28 2 0.322 1.047 17 17 35 38 35 1.202 28 2 0.422 1.023 31 31 28 21 35 1.217 28 2 0.514 1.030

Paris 86 136 312.5 28,38,53,68,75,79 79 53 75 59 1.052 32 2 0.084 1.008 28 30 78 78 59 1.067 32 2 0.090 1.004 79 79 59 60 59 1.052 32 2 0.098 1.001

Prague 9 9 64.0 7,8,9 9 7,8,9 7,8,9 - - 7 3 0.540 1.000 9 9 7,8,9 8,9 - - 9 3 0.549 1.000 8 8 7 7 - - 7 3 0.546 1.000

Rome 10 10 62.7 8,10 8 8 8 - - 8 3 0.761 1.000 10 10 8 8 - - 8 3 0.690 1.000 8 8 8 8 - - 8 3 0.660 1.000

Saint Petersburg 17 20 117.9 16 16 16 16 13 1.102 12 3 0.310 1.000 15 15 16 16 13 1.032 15 3 0.327 1.000 16 16 16 16 13 1.017 12 3 0.321 1.000

Seoul 119 194 1089.6 72,96 96 78 78 17 1.057 29 3 0.114 1.000 43 43 72 103 66 1.073 29 3 0.124 1.000 99 88 17 17 45 1.037 16 2 0.125 1.001

Shanghai 88 142 683.5 30 65 30 70 30 1.058 38 2 0.167 1.000 30 28 30 72 30 1.053 38 2 0.173 1.000 61 61 37 31 51 1.034 38 2 0.173 1.000

Singapore 34 57 237.1 20,29 29 29 29 9 1.067 2 2 0.084 1.009 4,20 4 25 25 22 1.075 2 2 0.118 1.002 20 20 4 4 22 1.158 2 2 0.152 1.000

Stockholm 20 20 105.7 14 14 14 14 20 1.000 14 4 0.796 1.000 17 13 14 14 20 1 14 4 0.736 1.000 14 14 14 14 20 1.000 14 4 0.721 1.000

Tokyo 65 110 279.0 49 49 49 49 26 1.036 37 2 0.197 1.003 21 21 49 49 49 1.03 37 2 0.203 1.002 54 54 30 49 45 1.024 37 2 0.203 1.001

Toronto 12 12 75.9 7 7 7 7 8 1.000 7 3 0.843 1.000 7 10 7 7 8 1 7 3 0.840 1.000 9 9 7 7 8 1.000 7 3 0.848 1.000

Washington DC 26 32 218.2 18 16 18 18 19 1.094 21 2 0.293 1.014 10,13,18 13 18 18 16 1.101 21 2 0.309 1.006 17 17 18 13 16 1.218 21 2 0.377 1.000

Legend : v=vertex, NS=number of connected subgraphs , Isx=index va lue
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5.3 Analysis of the data set 
The results for all networks are synthesized in Table 4. Like in every synthesis, many 
details are lost and, above all, by reporting only the first node or tied ones (v) in the rank 
for each index, the distribution of their values cannot be disclosed. This could be a 
significant issue especially in large networks. 
 
When studying a single graph, the interested researcher can repeat an analysis similar to 
the one we performed in last section. In this section, then, we try to infer some common 
feature for networks in the dataset we constructed following the rules explained in section 
3. 
 
Since we report the nodes with the largest values for the centrality measures, but not the 
values of the measures, it is not possible to compare graphs by values. Of course, when a 
comparison is mandatory, the values to be considered are the normalized ones, possibly, 
with a normalization factor common to all graphs in the set. 
 
From the list of the nodes, it is evident that in all graphs with at most 20 nodes (Lisbon is 
the only exception), the same node attains the top value for all centrality measures, from a 
topological perspective, and the same happens for graphs up to 30 nodes (Lisbon, Milan 
and Washington are the exceptions). When one considers weights, the description is not 
so evident, as explained in the case of Washington. In conclusion, it is very likely that a 
graph associated to an underground network with at most 30 nodes has a node that 
attains the top values for all centrality measures, from a topological perspective. This does 
not happen when considering weighted graphs. 
 
Now, we analyze the values of Ishortest reported in Table 4. Once more, the analysis is 
limited from the fact that we report only the top values and the nodes where Ishortest 
attains it, in a sense that we explain in the following.  
 
In more details, the table reports the index values for Ishortest, distinguished in IS1, for 
non cut-vertices, IS21 and IS22 for cut-vertices. For IS2x also the number of sub-graphs is 
reported (NS). If IS1 is missing, then every node in the graph is either a cut-vertex or a 
terminal. As a general feature, this happens only on small underground networks (like 
Chicago, Lyon, Prague, Rome). For IS21 and IS22, instead, the top value is the one on 
IS21, and the node on the left is associated to that larger value. In the IS22 column, we 
report the value of IS22 for the node written on the left. That value is no more the largest 
value of IS22. In conclusion, we put first IS21 more than IS22. 
 
Analyzing the IS1 values, we can observe that outcomes are significantly different when 
we consider the adjacency, station and distance matrices for the same graph. However, a 
node attains the largest value for adjacency, stations and distance for all graphs with at 
most 20 nodes. If we consider graphs with at most 30 nodes, then the same happens with 
Milan as only exception. We remark that the top node for centrality measures is not the 
same top node for IS1, in most graphs. This is an indirect proof of the fact that Ishortest 
and the centrality measures give different information on graphs. 
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If one forgets the nodes that attain the largest values, and considers the IS1 values only, it 
is standard practice to compute mean value and standard deviation. The three mean 
values are 1.0726, 1.0736, 1.0676 for adjacency, stations and distances, respectively, with 
a standard deviation of about 0.06 for all of them. This means that the largest increase in 
length of the shortest paths is equal to about 7.4%, and so it is not very much affected by 
the removal of whatever node, among the ones that do not disconnect the graph. Another 
standard practice is to evaluate the linear correlation between these values. The linear 
correlation of IS1 of the three couples is in the range (0.50, 0.77). So, even if we are not 
considering the nodes where IS1 attains its largest value, the largest values themselves do 
not change in an unpredictable way when moving from a topological point of view, to one 
of the two weighted perspectives.  
 
When we consider the IS21 column, it is evident that the node that reports the largest 
value is almost always the same for both adjacency, stations and distance. For example, 
in the columns for adjacency and stations, the node that attains the largest value is the 
same with the exceptions of London, Montreal, Moscow, Prague, Saint Petersburg. For 
stations and distance, the only exceptions are Athens, Beijing, Boston, Montreal, Moscow, 
Prague, Saint Petersburg, Seoul. 
 
Now, we forget the nodes where IS21 attains its maximum, and we focus ourselves on 
some standard statistical procedures. The mean values of IS21 for adjacency is equal to 
0.381, for stations is equal to 0.372, and for distance is equal to 0.408. The standard 
deviation is about 0.213 for all three columns. This means that the lost in connections is 
less than 0.381, in general, for an underground network, when one removes a node, from 
a topological perspective, and analogously for weighted graphs. For IS21, the linear 
correlation between its values in the three columns is in the range (0.79, 0.99), and so the 
values are strongly correlated. This means that weights do not affect very much the 
analysis made on the topology of graphs in the dataset.  
 
Since the reported values of IS22 are a consequence of the ones for IS21, we do not 
perform any analysis on them. We only remark that, with very few exceptions, the values 
of IS22 decrease when moving from adjacency to stations and to distances. 
 
Finally, even if they are not reported in Table 4, IS21 has the highest mean w.r.t. their 
minimum possible value (0) and with the highest standard deviation. Since IS21 measures 
the loss in total shortest path length, it means that cut-vertices can be considered the most 
crucial nodes to preserve service performance. 
 
It must be stressed that these comments are mainly drawn only on values of top rank 
nodes and do not take into account the whole index distribution of all nodes. This lack is 
likely to be more relevant for medium/large size graphs than for small ones.  
 
6. CONCLUSIONS AND FURTHER RESEARCH 
In the present paper, we have addressed the ambitious aim of designing standard 
strategies to find the most important stations in terms of functionality of whole underground 
networks, as well as vulnerability regarding disruption of each station. 
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After listing the possible disruptive events that may affect an underground network, we 
have described a methodology to represent such networks as undirected graphs, 
enlightening their functional properties. We have applied that methodology to thirty-four 
underground networks of cities all around the world, so to construct a representative 
dataset. We remark that, for every underground network, we have constructed both the 
unweighted graph that captures the topology of the network, and two different weighted 
graphs: as weights, we have used the number of stations on each edge, so to highlight 
accessibility features to the network, and the distance between two nodes. Since distance 
can be considered either a positive attribute (e.g. territorial penetration) or a negative one 
(e.g. travelling time), according to the analysis, we have used 1/distance when we 
consider it negative, and we have used distance when we consider it positive.  
 
The strategy we have designed consists in evaluating suitable indices on the nodes of 
graphs of the dataset. Hence, we have recalled definition and properties of four classic 
centrality measures, namely: degree, betweenness, closeness, and eigenvector centrality. 
In comparing different graphs or different indices on the same graph, normalization is a 
very powerful tool, and so we have illustrated pros and cons of some different 
normalizations of indices above. Finally, we have introduced a new index, Ishortest, 
designed to evaluate performances of underground networks when a node, and all edges 
containing it, is removed from a graph. To evaluate Ishortest at a node, we first check 
whether the node is a cut-vertex. If it is not the case, we compare the total shortest path 
length of the graph without the node with the total shortest path length between couples of 
nodes different from the removed one. If the node is actually a cut-vertex, we compute the 
number of connected components, the weighted average of the total amount of path 
lengths between nodes in different connected component (in the original graph, of course), 
and the total path length in the graph without the node. So, from the values Ishortest takes, 
it is easy to evaluate the importance of a node from a transportation point of view.  
 
To illustrate the four centrality measures and Ishortest, we have performed a detailed 
analysis of Washington D.C. underground network. That section can be considered a 
template of possible uses of the centrality measures and Ishortest in finding the most 
important nodes in an underground network. Even if our main concerns are underground 
networks, our approach can be easily modified to study networks of different transport 
modes.  
 
To summarize our analysis on Washington D.C. underground network, we report that 
L‟Enfant Plaza station is the most central station in the network from a functional point of 
view when using centrality measures only. With functional point of view, we mean that we 
consider the topology of the graph but not the weights on its edges. When we consider the 
accessibility to the network, and so we weight edges by number of stations on them, 
L‟Enfant Plaza station is the only that belongs to three fourth quartiles over the four 
centrality measures, and so L‟Enfant Plaza station is the most central one also from that 
point of view. Instead, when we consider distance as a negative attribute, no station is in 
more than two fourth quartiles over four and so no station can really be considered central 
from that point of view. When considering Ishortest, the first remark is that 10 nodes over 
26 are terminals, 10 of the remaining 16 are cut-vertices, and only 6 are not. Washington 
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D.C. network has the shape of a central body with arms. The cut-vertices are on the arms 
and at the junction of the arms with the body. So, the body is relatively small if compared 
to the arms. Among the nodes that do not disconnect the graph, Ferragut North is the most 
important node from the topological point of view, while Gallery Place station is the most 
important from the accessibility and economical points of view, because their removal 
causes the largest increase of the total shortest path length. When considering cut-
vertices, there are two different data to consider: the loss of total shortest path length, due 
to the loss of connectivity; the possible increase of the total shortest path length inside 
each connected component. When we consider the loss in connectivity, Rosslyn station is 
the most important from all three points of view. Its removal is responsible of a loss of 
about 37% of the original total shortest path length. When we consider the increase of total 
shortest path length, L‟Enfant Plaza is the most important station . 
 
Finally, we report some data for all networks in the data set, and we infer some common 
features. 
 
Small networks, such as Marseilles, Prague, Rome and Stockholm, are driven by 
topological characteristics. In those networks, the ranking of stations depends mainly on 
the underlying topology more than on weights. Therefore, indices yield rather similar 
results between both adjacency and weighted graphs and between networks.  
 
In large networks, such as Seoul and Shanghai, each index enlightens different properties 
of the network and gives us a different station in the top rank position, though analyzing 
ranking distributions there is a crowded set of stations present in the fourth quartile for all 
centrality measures. In these networks, the most important stations are located in the 
central part of the networks (those networks have a circular, rectangular, or polygonal grid 
in the middle). Besides, the stations that impose the highest cost and are not cut-vertices, 
are precisely those located in the central part of networks. On the other hand, costly 
stations that their removal split the network into two or more connected sub-graphs, are 
the ones connecting the suburban areas to the central part of the network, as in the case 
of Washington D.C. Some networks amongst the largest ones, e.g. Beijing, Mexico City, 
Moscow, Seoul, Shanghai and Tokyo, show the least percentage cost in case of disruption 
in any of their stations. In all these networks, more than half of the stations have degree 
larger than three. On the contrary, smaller networks, e.g. Chicago, Prague and Rome, 
show the highest percentage cost in case of any disruption. In those networks, the majority 
of stations have degree one (they are termini) or three. 
 
The effect of inserting new stations or links between existing stations can be examined 
through the study of the proposed indices by evaluating how station ranking changes. 
Then, indices will provide us with information about how the cost due to removal of a 
station will be reduced by inserting a new station or link in another part of the network. 
With this approach in mind (a mixed between the “what if” and the “what to” approach), we 
will be able to decide whether it is worthwhile to invest on a new station or new links or 
their combination.    
We are also planning future studies on Ishortest to analyze the impact of disruption in 
more than one station or in one or more links at the same time. The selection of stations or 
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links to be removed at the same time can be done either randomly or by a defined strategy 
involving different criteria of measuring the effects of removal.  
 
As a final remark, it is worth noting that the above definition of Ishortest deserves more 
insight. In fact, the present design of Ishortest does not take into account the real use of 
network (that is demand) but only its potential use (and without any congestion 
phenomena). An attempt of including demand in it requires a further investigation. A 
promising direction is the use of weighted graphs to model the problem, where weights are 
the number of passengers observed or predicted for each origin-destination couple. 
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