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Abstract—Neuronal activity of recurrent neural networks
(RNNs) experimentally observed in the hippocampus is widely
believed to play a key role for mammalian ability to associate
concepts and make decisions. For this reason, RNNs have rapidly
gained strong interest as computational enabler of brain-inspired
cognitive functions in hardware. From the technology viewpoint,
nonvolatile memory devices such as phase change memory (PCM)
and resistive switching memory (RRAM) have become a key
asset to allow for high synaptic density and biorealistic cognitive
functionality. In this work, we demonstrate for the first time
associative learning and decision making in a hardware Hopfield
RNN with 6 spiking neurons and PCM synapses via storage,
recall and competition of attractor states. We also experimentally
demonstrate the solution of a constraint satisfaction problem
(CSP) namely a Sudoku with size 2x2 in hardware and 9x9
in simulation. These results support spiking RNNs with PCM
devices for the implementation of decision making capabilities in
hardware neuromorphic systems.

Keywords—phase change memory (PCM); Hebbian learning;
spiking recurrent neural network (RNN); associative memory;
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I. INTRODUCTION

Over millions of years, mammalian brain evolution has been
driven by the exponential progress of the computing capabili-
ties resulting in fundamental human cognitive primitives such
as reasoning, learning, classification, adaptation and decision
making. To achieve such a deep, multifaceted computing
performance, the human brain processes sensory information
via dense neural networks of spiking neurons and adaptable
synapses which change their weights according to biological
plasticity rules. Many neurophysiological studies suggest that
neuronal activity in recurrent neural networks (RNNs) within
the hippocampus may play a crucial role for developing key
human abilities such as associative memory and context-
dependent decision making [1], [2]. These experiments have
spurred the intense investigation of the computational power
of RNNSs via accurate mathematical models [3], [4] supporting
the development of spiking RNN prototypes in complementary
metal-oxide semiconductor (CMOS) technology [5]. Since
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Fig. 1. Sketch of a Hopfield recurrent neural network (RNN). Each neuron
(blue) is connected to other neurons via all-to-all bidirectional synaptic
connections (red). Neuron self-connection is not allowed in Hopfield RNNs.

then, CMOS-based spiking RNNs have been shown to enable
neuromorphic tasks such as associative memory [6], [7],
pattern completion [7] and decision making [8], [9], also
exhibiting a great potential as solver of constraint satisfaction
problems (CSPs) [10] including Sudoku [11].

Although the adoption of CMOS technology has allowed
to achieve significant milestones in this field, novel material-
based memory devices such as the resistive switching memory
(RRAM) and phase change memory (PCM) have gained in-
creasing interest to bridge the gap in terms of energy efficiency
and synaptic density with biological neural system thanks to
their non-volatile storage, scalability, and low power consump-
tion [12], [13]. Based on these memory technologies, hardware
demonstrations [14], [15] and simulation studies [16]-[19] of
spiking RNNs have been recently reported.

In this paper, we present a hardware Hopfield RNN with
6 spiking neurons and 30 PCM synapses capable of learning
and recalling attractor memory states using a Hebbian-type
weight update rule. The competition between attractor states
is investigated in experiments and simulations to demonstrate
RNN ability to implement decision making. Finally, a 2x2
Sudoku is solved in hardware and a 9x9 Sudoku is simulated
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Fig. 2. Circuit schematic of the implemented Hopfield RNN. Synapses consist
of 1TIR PCM devices arranged in a parallel configuration with excitatory
(blue) and inhibitory (red) paths. The gates and top electrodes are connected
to the neuron rows and columns, respectively. External stimulation causes
neuron fires, which in turn lead to spiking currents flowing back to neuron
for competition/cooperation dynamics within the attractors.
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Fig. 3. Hebbian learning. Fire of neurons N1 and N4 results in high-voltage
overlapping spikes at G4, O1 and O7’, thus leading to the potentiation of
excitatory synapses and the depression of inhibitory synapses. As a result,
neurons that fire together wire together according to the Hebb’s postulate.

via our Monte Carlo (MC) model of spiking RNN.

II. HOPFIELD RNN WITH PCM SYNAPSES

Hopfield RNN is a type of RNN providing a fundamental
computational substrate to implement key human primitives
such as associative memory [3]. Fig. 1 shows the schematic
illustration of a Hopfield RNN consisting of N neurons
where each neuron receives an external stimulation input X;
(z = 1: N) and is connected to all the other N-1 neurons
via synaptic connections. To implement the Hopfield RNN in
hardware, we developed a circuit like the one illustrated in
Fig. 2, which contains only N = 4 neurons for the sake of
simplicity [17]. In this RNN architecture, each synapse con-
sists of 2 PCM cells with one-transistor/one-resistor (1T1R)
structure to implement the excitatory and inhibitory weights,
respectively, while each neuron has 3 output terminals, namely
(i) the transistor gates along the row, (ii) the top electrodes
of excitatory PCM devices along the column and (iii) the
top electrodes of inhibitory PCM devices along the column,
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Fig. 4. Hardware demonstration of learning of two attractors. (a) First,
N1, N2, N3 are stimulated for 500 cycles, followed by stimulation of Ny,
N5, Ng for the following 500 cycles. Simultaneous stimulation of neurons
causes synaptic potentiation, thus the formation of attractors. (b) Measured
evolution of synaptic conductances during the stimulation of (a), evidencing
the potentiation of synapses within the first and second attractor, which is
responsible for cooperation and associative learning. Non-stimulated synapses
remain with low weight, which is responsible for attractor competition. (c)
Hardware demonstration of the attractor recall. Stimulation of N1 alone causes
the recall of Attractor #1. Stimulation of Ng leads to the recall of Attractor #2,
while the Attractor #1 is switched off by inhibitory synapses.

which are respectively controlled by signals G, O, and O’, as
shown in Fig. 3. Note that O and O’ are biased by positive and
negative read voltages, respectively, to enable positive/negative
currents across excitatory/inhibitory synapses. Considering the
interacting neurons N; and Ny, Fig. 3 shows that the Hopfield
RNN can implement Hebbian learning according to the rule
“neurons that fire together, wire together”. In fact, as the
neurons fire at the same time, then a high signal is delivered at
both G4 and top electrode O; causing the potentiation of the
excitatory synapse by the application of a voltage Vg.; to the
corresponding PCM which results in a material crystallization
and a consequent transition to the low resistance state (LRS).
At the same time, the spike to the top electrode O;’ causes
the depression of the inhibitory synapse by the application of
a voltage V geser to the corresponding PCM which results in a
material amorphization and a consequent transition to the high
resistance state (HRS). Also, at the same time, the spiking of
terminals G, O4 and O,  causes the learning (potentiation of
excitatory synapse and depression of inhibitory synapse) at the
symmetric position (4,1). As a result, this scheme allows for
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Fig. 5. Number of cycles to recall a stored attractor as a function of the
stimulating current I+ and frequency fe,+ for (a) one stimulated neuron and
(b) two stimulated neurons. The recall time decreases for increasing lez+ and
increasing fez¢. The abrupt steps at Ieg: = 20 pA are due to the decrease of
the number of spikes needed to reach the threshold from two to one.

a symmetric adaptation of the synaptic weights where W;; =
W;;, with ¢ # j, to achieve the storage of stable attractor
states [3].

ITII. ASSOCIATIVE MEMORY IN HOPFIELD RNN

Based on Hebbian learning scheme, we demonstrated the
learning of two attractor states in a hardware Hopfield RNN
with 6 spiking neurons. This experiment was carried out
by applying an external stimulation to neurons (N, No,
N3) for 500 cycles via high-frequency Poisson spike trains
followed by external stimulation to neurons (N4, Nj, Ng)
for the subsequent 500 cycles (Fig. 4a). As a result, the
stochastic coactivation of neurons within each pool caused the
potentiation of the respective excitatory synapses, thus leading
to the formation of the corresponding attractor states, namely
Attractor #1 of neurons Ny, No, and N3, and Attractor #2 of
neurons Ny, N5, and Ng as shown in Fig. 4b.

After the learning phase, we experimentally demonstrated
the recall process of the 2 attractors, where a whole attractor is
activated by the stimulation of just one or few of its neurons.
Fig. 4c shows that the external stimulation of a single neuron
(N;) within Attractor #1 enables the recall of the whole

0.2

B Data
— MC Model

03 0507 1
M,/M,

152 3

Fig. 6. Probability to recall Attractor #1 as a function of the ratio between
the number of stimulated neurons within Attractor #1 (M) and the number
of stimulated neurons within Attractor #2 (Mg) for increasing ratio of
corresponding stimulation frequencies f1 and fa. Py increases with M1/Ma
and with f1/f2, due to the stronger stimulation of Attractor #1.

Attractor #1 resulting in the firing activity of all neurons within
the first attractor, which remain active even after the external
stimulation has been discontinued. The external stimulation of
a single neuron (Ng) within Attractor #2 leads to the activation
of Attractor #2 and the deactivation of Attractor #1 thanks
to the inhibitory synapses that connect neurons in the first
attractor to those in the second attractor. Note that the attractor
recall forms the basis for the associative memory, where the
activation of a sensory input (e.g., the bell ringing in the case
of Pavlov’s dog) results in the activation of a linked memory
(e.g., food).

Hopfield RNN operation to achieve memory retrieval was
extensively investigated performing both experiments and sim-
ulations via a MC model. Fig. 5a shows the number of cycles
to recall an attractor state as a function of the amplitude of
the external spikes I.;; and their frequency f.,; of stimulating
one neuron in the attractor. The results show that the time
to recall an attractor state decreases for increasing f.,; and
for increasing I.,;. The occurrence of abrupt steps is due to
I+ becoming equal to submultiples of the threshold current
I;» = 40 pA and marks the transition to a lower number of
external spikes needed to hit the threshold. Fig. 5b shows
similar results for the simultaneous stimulation of two neurons
in the same attractor, indicating that the stimulation of two
neurons accelerates the recall process and allows for a lower
number of cycles for the same f.,; with respect to single-
neuron stimulation. This is the result of doubling the input
excitation current to reactivate a certain attractor, which thus
requires less time to hit the threshold.

IV. DECISION MAKING IN HOPFIELD RNN

Besides associative memory, extensive studies have shown
that RNNs can also reproduce another fundamental biological
primitive namely decision making [20]. The ability to make
decisions was validated in our RNN by stochastic stimulation
of two competitive attractors as evidenced in Fig. 6. Here, the
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Fig. 7. Hardware solution of a 2x2 Sudoku puzzle. (a) Stimulation and internal
neuron spikes during the solution of the Sudoku. (b) Stimulation of clue ’2’
in position (1,2) combined with random noise stimulation of other neurons
results in the activation of the solution 1 2; 2 1 after about 50 spikes (c).

probability P; to recall Attractor #1 is reported as a function
of the ratio M;/Ms, where M; and My indicate the number
of stimulated neurons within Attractor #1 and Attractor #2,
respectively, for variable ratio f;/f> of stimulating frequencies
of two attractor states, namely f1/fy = 1, 2 or 5. Experimental
results show that P; increases with increasing M;/Msy and
f,/f2, which is supported by the good agreement between the
simulations of our MC model and the experimental data. These
results indicate that context-dependent probabilistic decision
making enriches the portfolio of biological behaviors achiev-
able in hardware using PCM-based Hopfield RNN circuits.

V. SOLUTION OF A SUDOKU PUZZLE IN HOPFIELD RNN

Sudoku is a typical CSP where the use of Hopfield RNNs
can provide a fast and efficient tool for the solution. In fact, a
Hopfield RNN allows to iteratively achieve the CSP solution
by minimizing the cost function £ = —1/2%, W;;ViV;
where V; is the voltage applied to the external stimulation of
neuron N;, and W;; is the net conductance of the synapses
connecting neuron ¢ and neuron j, obtained as the excita-
tory conductance minus the inhibitory conductance. The cost
function is minimized by simulated annealing [21], which is
based on the use of random noise to escape from local minima
to the global minimum representing the right solution of the
CSP problem [22]-[24]. Specifically, a Sudoku consists of a
NxN puzzle where each of the N digits (1,2,3,4,5,6,7,8,9) must
appear only once in the same column, row, or sub-square.
Sudoku can be implemented in a Hopfield RNN with N3
neurons mapping constraints/initial conditions via excitatory
synapses (e.g., a 1’ in a certain position excites the other
digits on the same row/column) and inhibitory synapses (e.g.,
a’1’ in a certain position inhibits "1’ on the same row/column
and the other digits in the same position).

To support the ability of Hopfield RNNs to solve Sudoku,
we demonstrated the solution of a 2x2 Sudoku in a hardware
Hopfield RNN with 8 software stochastic neurons and an 8x8
array of 1TIR PCM synapses. As evidenced by the raster
plot in Fig. 7a, the RNN initially receives low frequency
random noise spikes along with high frequency spikes to
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Fig. 8. Monte Carlo (MC) simulations of a 9x9 Sudoku. (a) Clues of the
Escargot puzzle, intermediate solution after 1000 cycles, and final solution of
9x9 Sudoku. (b) Number of violated constraints as a function of cycles for
10 trials of the MC simulations.

implement the 2x2 Sudoku initial condition shown in Fig. 7b.
After about 50 cycles, the external stimulation combined with
random noise causes the neurons of RNN to emit output
spikes corresponding to the Sudoku solution shown in Fig. 7c.
Finally, we scaled up the problem complexity by solving a hard
9x9 Sudoku, called Escargot puzzle, by a calculated Hopfield
RNN with 729 neurons and 729x729 synapses. Fig. 8a shows
(left) the initial hints, (center) the intermediate state calculated
after 1000 cycles, and (right) the final state reached after
2000 cycles corresponding to Sudoku solution. To support the
computational power of our RNN, Fig. 8b shows the number
of violated constraints as a function of cycles for 10 trials
of the MC simulations evidencing that computational error
rapidly decreases reaching zero within 2000 cycles. These
results support our PCM-based Hopfield RNN as a fast and
computationally efficient solver of hard CSPs.

VI. CONCLUSIONS

We present a novel hardware Hopfield RNN with spiking
neurons and excitatory/inhibitory synapses based on PCM de-
vices capable of implementing biologically inspired functions
as associative memory and decision making. Furthermore, we
used our spiking RNN as solver of CSPs demonstrating a 2x2
Sudoku in hardware and a very hard 9x9 Sudoku in simulation.
The experimental/simulation results support our PCM-based
Hopfield RNN as a significant tool for efficiently solving a
wide range of computationally expensive tasks.
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