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This paper deals with the planar transfer problems (orbit raising and de-orbiting) for co-planar satellites 
with low-thrust propulsion, taking the self-induced collision avoidance into consideration at the mission 
design stage. A Blended Error-Correction steering law, with which the thrust direction changes in a self-
adaptive way, is developed by blending two types of efficient steering laws and offsetting the errors 
of the instantaneous orbit with respect to the target orbit. The semi-analytical solutions for orbital 
elements, which reduce the computational load of propagating long-duration trajectories, are derived by 
computing the analytical incremental changes in orbital elements after every revolution with an orbital 
averaging technique. Based on the analytical Blended Error-Correction steering law and semi-analytical 
solutions, transfers can be computed quickly for any starting times. Finally, the self-induced collision, 
which is modeled by miss distance, is avoided by scheduling properly the timing to start transfer for 
every satellite.

© 2020 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the recent past, several companies, such as OneWeb [1] and SpaceX [2], have disclosed their plan to build up large constellations 
consisting of hundreds to thousands of satellites in Low Earth Orbit (LEO). The purpose is to provide high-speed telecommunications 
services to the global Earth, even the most rural areas. With the sheer-sized constellations injected to the already congested LEO regime, 
collision is one of the most challenging problems for the designers and operators given the catastrophic damage it may result in. Therefore, 
the consideration for collision avoidance must cover the entire mission including the transfer phases of orbit raising and de-orbiting [3,4].

Low-thrust propulsion, which can provide high exhaust velocity and hence reduce the fuel costs, have been considered for various 
space missions, such as orbit transfers, station keeping, rendezvous, and also proximate pursuit-evasion [5]. Two types of methods have 
been widely used for low-thrust trajectory design – indirect methods and direct methods. Indirect methods address a two-point boundary 
value problem with the shooting method. However, the optimal solutions are difficult to obtain due to the small convergence radius 
and sensitivity to the initial guess. Direct methods transform the optimal control problem into a nonlinear programming problem and 
have a relatively larger convergence radius. Betts [6] proposed a sequential quadratic programming method to cope with a 578-revolution 
Earth-orbit transfer containing 416123 variables. Kluever and Oleson [7] blended the three extremal control laws and then used the 
direct method to optimize the weight of each control law. Gao [8] employed three steering laws over different orbital arcs in every 
revolution and then employed the direct method to optimize the length of orbital arcs. However, in the direct method, the number of 
optimization variables is usually large and thus not computationally efficient. To reduce the computational load, Fan et al. [9] conducted 
a fast design of low-thrust trajectory by using finite Fourier series which could provide suitable approximations and lead to accurate 
trajectory optimizations for multi-asteroid exploration. Considering that orbit transfers of multiple satellites in large constellations require 
a trajectory to be designed rapidly for every satellite, it would be preferable to develop an analytical control law that can be applied 
directly to every satellite. Ruggiero et al. [10] proposed closed-loop guidance laws by simultaneously offsetting the instantaneous errors in 
orbital elements. Zhang et al. [11] developed two analytical control laws for solving minimum-time and minimum-fuel low-thrust transfers 
to geosynchronous orbits by optimizing the objective functions based on the strategies they proposed.
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Nomenclature

g0 Earth’s gravitational acceleration at the sea-level, 
km/s2

μ Earth’s gravitational constant, km3/s2

R E Earth’s radius, km
a semi-major axis, km
e eccentricity
ω argument of perigee, rad
f true anomaly, rad
E eccentric anomaly, rad
φ true latitude, rad
γ flight path angle, rad
n mean motion, rad/s
r orbital radius, km
u magnitude of the low-thrust acceleration, km/s2

ur radial component of the low-thrust acceleration, 
km/s2

uθ transversal component of the low-thrust acceleration, 
km/s2

α pitch angle, rad
m spacecraft mass, kg
P thrust engine power, W

η thrust engine efficiency, %
Isp thrust engine specific impulse, s
ct weight for the tangential thrust
ci weight for the inertial thrust
ka instantaneous error in semi-major axis
ke instantaneous error in eccentricity
dmiss satellite-pair miss distance, km
Dmiss constellation miss distance, km
ttotal total transfer time, s
�tsafe

0 critical transfer starting time difference ensuring the 
safe transfer, s

�tsafest
0 critical transfer starting time difference ensuring the 

safest transfer, s
N number of satellites

Subscripts

0 initial orbital element
f final orbital element
d desired target orbital element
t tangential thrust
i inertial thrust

For satellite constellations, the low-thrust transfer is usually a coupled problem of trajectory design and constellation performance 
optimization. For example, Di Carlo et al. [12] used low-thrust combined with J2 secular effects to deploy a constellation of 27 satellites 
in Medium Earth Orbit; then the problem was formulated as a multi-objective optimization problem to find the optimal deployment 
strategy by taking into account the change in velocity, launch sequence, and monetary pay-off. In our case, the constellation performance 
to be considered is the self-induced collision. For large constellations, due to the fact that multiple satellites will maneuver at the same 
time, the problem of self-induced collision – the collision caused only by the satellites from the constellation – will arise. Some studies 
have been conducted, in which the collision risk is modeled and computed to analyze the impacts of large constellations on the space 
debris environment [13–15]. Lee et al. [16] addressed the collision problem by conducting sub-optimal control for cooperative collision-
free transfers of multiple satellites using continuous thrust, and the results can be used in real-time by large constellations.

Aiming at avoiding the self-induced collision for large constellations at the mission design stage, this work deals with the orbital 
transfer problems (orbit raising and de-orbiting) by combining the low-thrust trajectory design with the consideration for self-induced 
collision avoidance. As a preliminary study, this paper focuses on planar transfer for one orbital plane of the constellation, i.e. coplanar 
satellites. Inspired by the works in Refs. [7,8,10], this paper develops a Blended Error-Correction (BEC) steering law by blending two types 
of steering laws – tangential thrust and inertial thrust – and offsetting the errors of the instantaneous orbit with respect to the target orbit. 
With the BEC steering law, the thrust direction can change efficiently in a self-adaptive way. Besides, since the control law is analytical, 
it can be applied directly to every satellite without need for offline design. To further reduce the computational load of propagating 
long-duration trajectories, an orbital averaging technique is used by computing the analytical incremental changes in orbital elements 
after every revolution, through which two sets of semi-analytical solutions can be derived for orbit raising and de-orbiting missions. 
Based on the analytical BEC steering law and semi-analytical solutions, transfers from any starting times can be computed quickly for any 
satellites, making it possible to evaluate the miss distance, which is the minimum relative distance among satellites, for a transfer mission. 
This paper adopts the miss distance as the criterion to assess the self-induced collision risk; the larger the miss distance, the lower the 
collision risk. By scheduling properly the timing to start transfer for every satellites, the self-induced collision can be avoided.

Note that the scope of this study is only the propulsive phase. For orbit raising, it is the phase from the parking orbit to the final 
orbit at the nominal altitude, while excluding the final phasing angle adjustment. For de-orbiting, it is the active disposal phase, from the 
initial orbit to the re-entry perigee under which the atmospheric drag will lead the spacecraft to natural re-entry. Within this scope, the 
atmospheric drag can be neglected compared with the effects of low-thrust and Earth’s gravity, and the self-induced collision is discussed 
between the active satellites composing the constellation.

The remaining of this paper is organized as follows. Sec. 2 introduces the dynamical model. Sec. 3 and 4 obtain the BEC steering 
law and semi-analytical solutions for orbital elements, respectively. Sec. 5 addresses the problem of self-induced collision, in which the 
transfer starting times are scheduled for orbit raising and de-orbiting missions, respectively.

2. Dynamical model

This paper addresses the problem of planar transfer, so the thrust acceleration vector lies within the orbital plane and the orbital 
elements to be studied are semi-major axis, eccentricity, argument of perigee, and true/eccentric anomaly. The rates of change of the 
orbital elements due to low-thrust are given by Gauss’ equations [17]:

da

dt
= 2a2

h

(
e sin f ur + p

r
uθ

)
(1)

de = 1
(p sin f ur + ((p + r) cos f + re) uθ ) (2)
dt h
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Fig. 1. Definition of the pitch angle.

dω

dt
= 1

he
(−p cos f ur + (p + r) sin f uθ ) (3)

dE

dt
= na

r
+ 1

nae

(
(cos f − e) ur −

(
1 + r

a

)
sin f uθ

)
(4)

where, ur and uθ are the radial and transversal component of the thrust acceleration vector, respectively, a is the semi-major axis, e is the 
eccentricity, ω is the argument of perigee, E is the eccentric anomaly, f is the true anomaly, r = a (1 − e cos E) is the orbit radius, p = a
(1 − e2) is the semi-latus rectum, h = (μp)1/2 is the angular momentum with μ being the Earth’s gravitational constant, n = (μ/a3)1/2

is the mean motion. Because the thrust acceleration is much smaller (usually ≤10−6 km/s2) than the Earth’s gravitational acceleration 
(>10−4 km/s2), the rate of change of the eccentric anomaly can be approximated as

dE

dt
≈ na

r
(5)

The relation between the true and eccentric anomaly is given by [17]

cos f = cos E − e

1 − e cos E
, sin f = sin E

√
1 − e2

1 − e cos E
(6)

Then dividing Eqs. (1)–(3) by Eq. (5) and substituting Eq. (6), after some manipulations, the rate of change of the orbital elements with 
respect to the eccentric anomaly due to low-thrust can be obtained [18]

da

dE
= 2a3

μ

(
e sin Eur +

√
1 − e2uθ

)
(7)

de

dE
= a2

μ

((
1 − e2

)
sin Eur +

√
1 − e2

(
2 cos E − e − e cos2 E

)
uθ

)
(8)

dω

dE
= a2

μe

(√
1 − e2 (e − cos E) ur +

(
2 − e2 − e cos E

)
sin Euθ

)
(9)

The averaged rates of change of the orbital elements due to J2 perturbations are given by [17]

dā

dt
= dē

dt
= 0 (10)

dω̄

dt
= 3

4
J2

(
R E

p

)2

n
(

5 cos2 i − 1
)

(11)

where the overbar represents the average orbital elements due to J2 perturbations, R E is the Earth’s radius, and i is the inclination, 
which is different than zero and constant in this study. It has to be noticed that, due to the Earth’s oblateness, the right ascension of 
the ascending node (RAAN) will change. During the transfer, different satellites are at the same inclination but at different altitude with 
different eccentricity, and they will be affected by a different RAAN shift rate. However, as this paper are focusing on the analysis of the 
planar behavior, in Sec. 5, the RAAN drifting will not be taken into account in the calculation of miss distance but will be verified and 
analyzed a posteriori.

3. Steering law design

Eqs. (7)–(9) will be integrated to evaluate the variations of the orbital elements over one revolution by using an orbital averaging 
technique in the next section; prior to this, the steering law should firstly be defined. Steering law is the time history of thrust direction 
which is described by the pitch angle α for planar transfer. In this work, the pitch angle is defined as the angle between the thrust 
direction and the radial direction, as shown in Fig. 1.

The radial and transversal component of the thrust acceleration vector are given by

ur = u cosα, uθ = u sinα (12)

where u is the magnitude of the thrust acceleration vector, given by
3
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u = 2ηP

mg0 Isp
(13)

with m being the spacecraft mass, P being the power, η being the efficiency, Isp being the specific impulse, and g0 being the Earth’s 
gravitational acceleration at the sea-level. The rate of change of the spacecraft mass is governed by

dm

dt
= −m

u

g0 Isp
(14)

Two steering laws – tangential thrust and inertial thrust – are used in this paper, for the following reasons: (1) tangential and inertial 
thrust are the local optimal and near optimal steering law to change the semi-major axis and eccentricity, respectively [8]; (2) the 
dynamical model by using these two steering laws is in simple form and hence it will allow to obtain the semi-analytical solutions. By 
blending these two steering laws and assigning a weight, which is given based on the error of the instantaneous orbit with respect to the 
target orbit, to each of them, an analytical Blended Error-Correction control law can be obtained.

3.1. Tangential thrust

Tangential thrust is the local optimal steering law to change the semi-major axis. The thrust direction aligns with the velocity direction. 
If the pitch angle is set to α = γ , where γ is the flight path angle between the thrust and radial direction, then the thrust direction is 
along the velocity direction and the semi-major axis will be increased in the most efficient way. If the pitch angle is set to α = γ + π , 
then the thrust direction is opposite to the velocity direction and the semi-major axis will be decreased in the most efficient way.

According to the relation between the flight path angle and the eccentric anomaly [17], the steering laws to increase and decrease the 
semi-major axis are respectively given by

cosα = cosγ = e sin E√
1 − e2 cos2 E

, sinα = sinγ =
√

1 − e2
√

1 − e2 cos2 E
(15)

cosα = cos (γ + π) = − e sin E√
1 − e2 cos2 E

, sinα = sin (γ + π) = −
√

1 − e2
√

1 − e2 cos2 E
(16)

Substituting Eqs. (12), (15) and (16) into Eqs. (7)–(9), the rates of change of the orbital elements with respect to the eccentric anomaly 
due to tangential thrust can be obtained:

da

dE
= ±u

2a3

μ

√
1 − e2 cos2 E (17)

de

dE
= ±u

2a2
(
1 − e2

)
μ

√
1 − e cos E

1 + e cos E
cos E (18)

dω

dE
= ±u

2a2
√

1 − e2

μe

√
1 − e cos E

1 + e cos E
sin E (19)

where the sign + and – represents the cases of semi-major axis increase and decrease, respectively.

3.2. Inertial thrust

Inertial thrust is a near optimal steering law to change the eccentricity [8] [19]. The thrust direction is perpendicular to the periapsis 
radius. If the pitch angle is set to α = π /2 − f , then the eccentricity will be increased. If the pitch angle is set to α = 3π /2 − f , then the 
eccentricity will be decreased.

According to the relation between the true and eccentric anomaly [17], the steering laws to increase and decrease the eccentricity are 
respectively given by

cosα = cos
(π

2
− f

)
= sin E

√
1 − e2

1 − e cos E
, sinα = sin

(π

2
− f

)
= cos E − e

1 − e cos E
(20)

cosα = cos

(
3π

2
− f

)
= − sin E

√
1 − e2

1 − e cos E
, sinα = sin

(
3π

2
− f

)
= − cos E − e

1 − e cos E
(21)

Substituting Eqs. (12), (20) and (21) into Eqs. (7)–(9), the rates of change of the orbital elements with respect to the eccentric anomaly 
due to inertial thrust can be obtained:

da

dE
= ±u

2a3
√

1 − e2

μ
cos E (22)

de

dE
= ±u

a2
√

1 − e2

μ

(
cos2 E − 2e cos E + 1

)
(23)

dω

dE
= ±u

a2

μe
(cos E − e) sin E (24)

where the sign + and – represents the cases of eccentricity increase and decrease, respectively.
4
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3.3. Blended error-correction (BEC) steering law

To simultaneously change the orbital elements (i.e. semi-major axis and eccentricity), the thrust acceleration vector is given in the form 
of

u = ctut + ci ui = u
(
ct ût + ci ûi

)
(25)

where, ut and ui are the tangential and inertial thrust acceleration vector with the magnitude equal to u, respectively, ct and ci are the 
weights for tangential and inertial thrust, respectively, and the hat symbol •̂ represents the unit vector of the generic variable •.

As mentioned above, the tangential and inertial thrust are the local and near optimal way to change the semi-major axis and eccentric-
ity, respectively. Therefore, ct and ci in this work are set to be proportional to the instantaneous errors in semi-major axis and eccentricity, 
respectively, so that the orbital elements can change in a self-adaptively efficient way. The instantaneous errors in semi-major axis and 
eccentricity, denoted by ka and ke , respectively, are defined by the means of [10]

ka = (ad − a) / |ad − a0| , ke = (ed − e) / |ed − e0| (26)

where, ad and ed are the desired target semi-major axis and eccentricity, a0 and e0 are the initial semi-major axis and eccentricity, and the 
symbol | • | represents the absolute value of the generic variable •. Note that Eq. (26) can eliminate the dimensional difference between 
the semi-major axis and the eccentricity, as the semi-major axis is on the order of 103–105, whereas the eccentricity is less than 1.

For the orbit raising mission, ad and ed are the orbital elements of the final orbit, while for the de-orbiting mission, ad and ed are set 
to satisfy

hpf = ad (1 − ed) − R E (27)

where hpf is the final perigee altitude below which the atmospheric drag will lead the spacecraft to natural re-entry. To lower the perigee 
as fast as possible, ad and ed in the de-orbiting mission are chosen as

ad = hpf + R E , ed = 1 (28)

Because ût and ûi are in different directions, a normalization procedure is needed to ensure that the magnitude of (ct ût + ci ûi ) in 
Eq. (25) is one. By using the cosine law, the weights ct and ci can be obtained:

ct = ka√
k2

a + k2
e + 2 |ka| |ke| cos (αt − αi)

, ci = ke√
k2

a + k2
e + 2 |ka| |ke| cos (αt − αi)

(29)

where αt and αi are the pitch angle of the tangential and inertial thrust, respectively, given by

αt =
{

γ , if ka ≥ 0
γ + π, if ka < 0

(30)

αi =
{ 1

2π − f , if ke ≥ 0
3
2π − f , if ke < 0

(31)

According to the definitions of tangential and inertial thrust, the term cos(αt − αi) equals to

cos (αt − αi) = sign (ka) sign (ke) sin (γ + f )

= sign (ka) sign (ke)

√
1 − e2 cos E√
1 − e2 cos2 E

(32)

where the symbol sign(•) is the sign of the generic variable •.
Substituting Eq. (32) into Eq. (29), ct and ci are finally given as a function of the instantaneous errors ka and ke and the eccentric 

anomaly E:

ct = ka√
k2

a + k2
e + 2kake

√
1−e2 cos E√

1−e2 cos2 E

ci = ke√
k2

a + k2
e + 2kake

√
1−e2 cos E√

1−e2 cos2 E

(33)

The proposed steering law is referred to as the Blended Error-Correction (BEC) steering law, the blend of tangential thrust and inertial 
thrust, based on the offsets in the instantaneous errors in semi-major axis and eccentricity, and hence enabling the thrust direction to 
self-adaptively adjust according to the deviation of the instantaneous orbit towards the desired target orbit. It should be noticed that 
the idea of correcting the orbital elements was proposed by Ruggiero [10]. The difference between the previous work and this paper is 
the strategy to change the eccentricity. In the previous work, the steering law to change the eccentricity is local optimal, which is more 
efficient than the inertial thrust but in such case it would be impossible to obtain the semi-analytical solutions for the orbital elements, 
unless more approximations are introduced to simplify the dynamical model.

By using the BEC steering law, the rates of change of the orbital elements with respect to the eccentric anomaly due to low-thrust are 
given by
5
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dx

dE
= ct

(
+ dx

dE

)
t
+ ci

(
+ dx

dE

)
i

(34)

where, x = [a, e, ω]T , (+dx/dE)t and (+dx/dE)i are given by Eqs. (17)–(19) and Eqs. (22)–(24), respectively, with the sign + representing 
that the signs of the equations are positive.

4. Semi-analytical solutions

It is of high importance in the present work to further speed up the computation process of low-thrust trajectories because we are 
dealing with multiple satellites with different initial conditions. To reduce the computational load, in this section, an orbital averaging 
technique will be used to derive two sets of semi-analytical solutions for orbit raising and de-orbiting missions, and the numerical 
validations will be conducted to prove the accuracy of the semi-analytical solutions.

Due to the fact that the magnitude of the low-thrust acceleration is very small, typically on the order of 10−4 g0 or less [20], all 
orbital elements except the eccentric anomaly can be assumed constant in one revolution. Under such assumption, the variations in the 
orbital elements (semi-major axis, eccentricity, and argument of perigee) over one revolution can be evaluated by integrating Eq. (34) in 
the eccentric anomaly from 0 to 2π :

2π∫
0

dx

dE
dE =

2π∫
0

(
ct

(
+ dx

dE

)
t
+ ci

(
+ dx

dE

)
i

)
dE + 2π

n

dx̄

dt
(35)

where the second term on the right side is the averaged variations due to J2 perturbations over one revolution. Being this a preliminary 
study, the Earth’s shadow effect is not considered in this paper.

No analytical solutions exist for Eq. (35). Noticing that the eccentricity of LEO orbits is comparatively small (≤0.1), in this paper we 
compute a Taylor expansion in power of the eccentricity for the inverse of the denominator of ct and ci up to O (e2).

4.1. Orbit raising

The orbit raising mission in this work is assumed to raise the satellites from the parking orbits to the final circular orbits at the 
nominal altitude, i.e., e f = 0; the final phasing angle adjustment is excluded from this preliminary study. According to Eq. (26), the errors 
in semi-major axis and eccentricity are given by

ka = �a

a f − a0
, ke = − e

e0
(36)

where �a = a f − a.
Then substituting Eq. (36) into Eq. (33) and carrying out the expansion, ct and ci can be approximated as

ct ≈ R, ci ≈ −a f − a0

�ae0
eR (37)

where R is a binomial in the eccentricity, given by

R = 1 + a f − a0

�ae0
cos Ee +

(
a f − a0

�ae0

)2 3 cos2 E − 1

2
e2 (38)

Substituting Eq. (37) into Eq. (34), and then carrying out the integration in E from 0 to 2π , after some manipulations, the variations 
in the orbital elements over one revolution can be derived:

�arev = 4πa3

μ

(
1 −

(
a f − a0

)2 + �a2e2
0

4�a2e2
0

e2

)
u (39)

�erev = −πa2

μ

a f − a0 + 2�ae0

�ae0
eu (40)

�ωrev = −πa2

μ

a f − a0

�ae0
eu + 3π R2

E J2

2a2
(
1 − e2

)2

(
5 cos2 i − 1

)
(41)

4.2. De-orbiting

According to Eqs. (26)–(28), the errors in semi-major axis and eccentricity are given by

ka = �a

a0 − apf
, ke = �e (42)

where, apf = hpf + R E , �a = apf − a, and �e = 1 − e.
Similar to orbit raising, substituting Eq. (42) into Eq. (33) and carrying out the expansion, ct and ci can be approximated as

ct = �aD, ci = (
a0 − apf

)
�eD (43)
6



S. Huang, C. Colombo and F. Bernelli-Zazzera Aerospace Science and Technology 106 (2020) 106198
where D is a binomial in the eccentricity, given by

D = D0((
a0 − apf

)2 + �a2 + 2
(
a0 − apf

)
�a cos E

)1/2

+ D1((
a0 − apf

)2 + �a2 + 2
(
a0 − apf

)
�a cos E

)3/2
e

+ D2((
a0 − apf

)2 + �a2 + 2
(
a0 − apf

)
�a cos E

)5/2
e2 (44)

with D0, D1 and D2 being

D0 = 1

D1 = (
a0 − apf

) ((
a0 − apf

) + �a cos E
)

D2 = a0 − apf

4

⎛
⎝ (

a0 − apf
)(

4
(
a0 − apf

)2 + 3�a2
)

+ 2
(

5
(
a0 − apf

)2 + �a2
)

�a cos E

+3
(
a0 − apf

)
�a2 cos 2E − 2

((
a0 − apf

)2 + �a2
)

�a cos 3E − 2
(
a0 − apf

)
�a2 cos 4E

⎞
⎠ (45)

Substituting Eq. (43) into Eq. (34), and then carrying out the integration in E from 0 to 2π , after some manipulations, the variations 
in the orbital elements over one revolution can be derived:

�arev = 2a3

μ

(
1

a0 − a

(
aelli F

t �a + aelli F
i

√
1 − e2�e

)
elli F + (a0 − a)

(
aelliE

t �a + aelli F
t

√
1 − e2�e

)
elliE

)
u (46)

�erev = a2
√

1 − e2

μ

⎛
⎝ 1

a0−a

(
eelli F

t

√
1 − e2�a + eelli F

i

(
a0 − apf

)
�e

)
elli F

+ (a0 − a)
(

eelliE
t

√
1 − e2�a + eelliE

i

(
a0 − apf

)
�e

)
elliE

⎞
⎠ u (47)

�ωrev = 3π R2
E J2

2a2
(
1 − e2

)2

(
5 cos2 i − 1

)
(48)

where aelliF
t , aelliF

i , aelliE
t , aelliF

t , eelliF
t , eelliF

i , eelliE
t and eelliE

i are the binomials in the eccentricity, reported in Appendix A.
Eqs. (46) and (47) contain some elliptic integrals to be evaluated once per revolution:

elli F = EllipticF

(
π,

4
(
a0 − apf

)
�a((

a0 − apf
) + �a

)2

)
(49)

where

EllipticF (φ,λ) =
φ∫

0

1√
1 − λ sin2 ϕ

dϕ (50)

is the first kind of incomplete elliptic integral [17], and

elliE = EllipticE

(
π,

4
(
a0 − apf

)
�a((

a0 − apf
) + �a

)2

)
(51)

where

EllipticE (φ,λ) =
φ∫

0

√
1 − λ sin2 ϕdϕ (52)

is the second kind of incomplete elliptic integral [17].

4.3. Numerical validations

To verify the accuracy of the semi-analytical solutions, a comparison is conducted between the full dynamics integration and the semi-
analytical solutions. Table 1 gives the characteristics of a stationary plasma thruster (SPT) [21]. The mission conditions are presented in 
Table 2. Note that, for the full dynamics integration, the lower boundary for the eccentricity is set to 10−4 in order to avoid the singularity 
during the integration of the argument of perigee.

Fig. 2 to Fig. 4 present the time histories of the orbital elements obtained by the full dynamics integration and the semi-analytical 
solutions for both missions.

It can be seen from the figures that the semi-analytical solutions can eliminate the short period effects and give the averaged orbital 
elements. Fig. 2–Fig. 4 show good agreement between the full dynamics integration and semi-analytical solutions. Although there exists 
7
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Table 1
Thruster characteristics.

P , W η, % Isp , s

150 39.23 1500

Table 2
Mission conditions.

Mission Initial conditions Final conditions

e

m0, kg a0, km Full Semi i0, deg ω0, deg f0, deg

Orbit raising 120 500 + R E 10−2 10−2 87.9 0 30 a f = (1200 + R E ) km, e f < 10−4

De-orbiting 120 1200 + R E 10−4 0 87.9 0 30 hpf = 300 km

Fig. 2. Time history of the semi-major axis.

Fig. 3. Time history of the eccentricity.

a maximum error of less than 10−3 for the eccentricity in the orbit raising mission, which is introduced by the Taylor expansion, the 
semi-analytical results gradually convergence to the numerical integration and the final travel time is the same.

The results at the final time are presented in Table 3, again, showing good agreement.
The computation time of the full dynamics integration and the semi-analytical solutions are compared in Table 4, in which the relative 

and absolute tolerance for the full dynamics integration are 10−6 and 10−9, respectively. It can be seen that the computation load can be 
drastically reduced by using the semi-analytical solutions.

5. Self-induced collision avoidance

With the analytical BEC steering law and semi-analytical solutions, the orbital transfers from any starting times can be computed in 
short time. The next step is to deal with the transfer problem for multiple satellites, in which the problem of self-induced collision arises. 
In this section, the self-induced collision risk is quantitatively evaluated by miss distance, and then the problem of self-induced collision 
is solved by scheduling properly the timing to start transfer for every satellite for orbit raising and de-orbiting missions.
8
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Fig. 4. Time history of the argument of perigee.

Table 3
Results at the final time.

Mission Full dynamics integration Semi-analytical solutions

a f , km e f t f , days �m f , kg a f , km e f t f , days �m f , kg

Orbit raising 7578.16 1.00 × 10−8 65.20 3.06 7578.12 3.95 × 10−10 65.55 3.08
De-orbiting 7187.32 7.08 × 10−2 76.01 3.57 7186.82 7.10 × 10−2 76.12 3.58

Table 4
Computation time.

Mission Full dynamics integration Semi-analytical solutions

Orbit raising 2.9739 s 0.0072 s
De-orbiting 3.1563 s 0.1706 s

5.1. Miss distance

The notion of miss distance in this paper is redefined in two levels.
The first level is the miss distance between two satellites, the minimum relative distance between two satellites over the entire transfer, 

referred to as the satellite-pair miss distance, and denoted by dmiss . The satellite-pair miss distance between satellites Ath and Bth is given 
by

dAB
miss = min�rAB (t) , t ∈

[
t AB

0 , t AB
f

]
(53)

where, [t AB
0 , t AB

f ] is the time interval within which both the Ath and Bth satellite are in the propulsive transfer phase, t AB
0 and t AB

f are 
given by 

t AB
0 = max

{
t A

0 , t B
0

}
, t AB

f = min
{

t A
f , t B

f

}
(54)

with t A
0 and t A

f being the transfer starting and ending time of the Ath satellite, respectively, t B
0 and t B

f being the transfer starting and 
ending time of the Bth satellite, respectively.

The second level is the miss distance of the constellation, the minimum satellite-pair miss distance of all satellite pairs from the con-
stellation, referred to as the constellation miss distance, and denoted by Dmiss . Supposing a constellation of N satellites, the constellation 
miss distance is given by

Dmiss = min
1≤A<B≤N

dAB
miss (55)

Through this assessment approach, the problem of avoiding the self-induced collision can be quantitatively transformed into increasing 
the constellation miss distance, which is equivalent to increasing the satellite-pair miss distance, whereas the satellite-pair miss distance 
is dependent on the relative motions of the satellites. Reminding that we are discussing planar transfer for coplanar satellites, the relative 
distance can be written as

�rAB =
√

r2
A + r2

B − 2rArB cos (φA − φB) (56)

where φ = ω + f , referred to in this paper as the true latitude.
Observing from Eq. (56), for given rA and rB , �rAB will reach its minimum, i.e., �rAB = |rA − rB |, when φA − φB = 2kπ , where k is 

an integer. This implies that the satellite-pair miss distance is associated to the orbit radius difference when the latitude difference is a 
multiple integer of 2π . In this paper, such an event is referred to as latitude resonance.
9
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Fig. 5. Satellite-pair miss distance versus transfer starting time difference (� f0 = 2π /20 rad). (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

Fig. 6. Critical transfer starting time differences.

Since the transfer trajectories have been predefined for every satellite, the possible way to increase the miss distance is by properly 
scheduling the timing to start transfer for every satellite in the constellation. For no doubts the optimal solution for timing scheduling is 
to let all satellites start to transfer at the same timing, such that all satellites follow the same orbital path, and hence no collision will 
happen. However, in practical applications, the satellites usually cannot start to transfer at the same time. So, in this study, the transfer 
starting time is scheduled within the scope that the satellites do not start to transfer at the same time.

5.2. Transfer starting time scheduling for orbit raising mission

Fig. 5 shows the satellite-pair miss distance as a function of the transfer starting time difference for two satellites with the initial 
true anomaly difference of 2π /20 rad. The mission conditions are given by Table 1 and Table 2. The red crosses indicate that the latitude 
resonance does not happen, i.e., the latitude difference never reaches 2π . The blue points and black circles indicate that the latitude 
resonance happens for one or multiple times. The difference is that, for the blue points, the miss distance equals to the relative distance 
at one of the latitude resonances, while for the black circles, the miss distance equals to the relative distance at the first latitude resonance. 
The detailed interpretation on these three cases is reported in Appendix B. Note that for the case that the latitude resonance does not 
happen, a small increase in the transfer starting time difference will lead to a sharp decline in the miss distance.

Fig. 6 shows in detail for the blue points and black circles of Fig. 5. In Fig. 6, all blue points and black circles from Fig. 5 are replaced 
with black points, and the x coordinates for the blue cross and red asterisk are equal to the critical transfer starting time differences 
�tsafe

0 and �tsafest
0 . �tsafe

0 denotes the safe time interval between two successive transfers. If the transfer starting time difference between 
two satellites is equal to or larger than �tsafe

0 , then the satellite-pair miss distance of these two satellites can be ensured higher than a 
given threshold (10 km for the present problem), and thus the transfers can be ensured safely enough. �tsafest

0 stands for the safest time 
interval between two successive transfers. If the transfer starting time difference between two satellites is equal to or larger than �tsafest

0 , 
then the satellite-pair miss distance of these two satellites will increase to a constant number (70.5 km for the present problem), in which 
case the transfers can be ensured safest.

By checking the satellite-pair miss distance for the satellite pairs with different initial relative phases and identifying the critical transfer 
starting time difference, the mission designers can preliminarily estimate the self-induced collision risk and can have an idea about the 
safe time interval to do the next transfer.

Take as an example of 20 evenly spaced coplanar satellites. The mission conditions are given in Table 1 and Table 2. The critical transfer 
starting time difference is identified for the satellite pairs with different initial relative phases, presented in Table 5. The figures of the 
satellite-pair miss distance versus the transfer starting time difference are presented in Appendix C.
10
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Table 5
Critical transfer starting time difference for different satel-
lite pairs (dmiss ≥ 10 km).

� f0, rad Critical transfer starting time

�tsafe
0 , days �tsafest

0 , days

2π /20 0.92 10.13
4π /20 0.92 12.42
6π /20 1.13 9.71
8π /20 1.04 11.58
10π /20 0.96 7.58
12π /20 0.96 10.13
14π /20 1.13 10.46
16π /20 1.25 7.58
18π /20 1.17 6.71
20π /20 1.21 9.42
22π /20 1.08 8.96
24π /20 1.25 8.54
26π /20 1.25 6.13
28π /20 1.29 7.38
30π /20 1.33 5.50
32π /20 1.54 5.46
34π /20 1.75 4.08
36π /20 1.83 3.83
38π /20 1.62 2.38

Fig. 7. Satellite-pair miss distance versus transfer starting time difference (� f0 = 2π /8 rad).

5.3. Transfer starting time scheduling for de-orbiting mission

Fig. 7 a) shows the satellite-pair miss distance as a function of the transfer starting time difference for two satellites with the initial 
true anomaly difference of 2π /8 rad; the red crosses and black points indicate the cases that the latitude resonance does not happen and 
does happen, respectively. Fig. 7 b) is the zoom-in for Fig. 7 a) in terms of the cases that the latitude resonance happens. The mission 
conditions are given in Table 1 and Table 2. Same as Fig. 5, for the case that the latitude resonance does not happen, a small increase in 
the transfer starting time difference will lead to a sharp decline in the miss distance.

As shown in Fig. 7, for de-orbiting missions, the influence of the transfer starting time difference on the satellite-pair miss distance is 
not as clear as orbit raising missions (shown in Fig. 5 and Fig. 6). This is due to the fact that the de-orbiting trajectories are elliptical and 
hence the relative geometry of two de-orbiting trajectories are more complicated than the near-circular orbit raising trajectories. Therefore, 
we are not able to identify the critical transfer starting time difference for the de-orbiting missions in this preliminary study. Instead, the 
timing scheduling is done with the aid of multi-objective optimization.

The first objective is maximizing the constellation miss distance, i.e. minimizing the self-induced collision risk. The second objective is 
minimizing the total transfer time, from the first satellite starting the transfer to the last satellite finishing the transfer. This multi-objective 
optimization problem is modeled as

F1 = −min Dmiss (57)

F2 = min ttotal (58)

where, ttotal is the total transfer time, given by

ttotal = max
{

t B
f

}
− min

{
t A

0

}
(59)
1≤B≤N 1≤A≤N

11
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Fig. 8. De-orbiting strategy.

Table 6
Lower and upper bounds for the transfer starting time.

Lower bounds Upper bounds

t00, days t01, days t02, days t03, days t01, days t02, days t03, days

0 15 30 45 60 60 60

Fig. 9. Optimization results (Dmiss ≥ 5 km).

with N being the number of satellites in the constellation, t A
0 and t B

f being the transfer starting and ending time of the Ath and Bth 
satellite, respectively.

Take as an example of 8 evenly spaced coplanar satellites. The mission conditions are given in Table 1 and Table 2. A de-orbiting 
strategy is also considered to remove the satellites in four groups, two satellites in each group, as shown in Fig. 8. In this figure, the 
satellites from different groups are represented by different colors; t00–t03 indicate the transfer starting time of each group, and the 
satellites from the same group start to de-orbit at the same timing. The reason why to propose such a strategy is because the satellite-pair 
miss distance of the satellites in opposite positions is the maximum if they start to de-orbit at the same time.

A multi-objective global optimizer is used to search for the Pareto front solutions through a multi-agent-based search approach hy-
bridized with a domain decomposition technique developed by Vasile [22]. The lower and upper bounds for the design variables, i.e. 
transfer starting time, are given in Table 6. Here, t00 is set to 0 and the minimum acceptable constellation miss distance is set to 5 km.

The optimization results are presented in Fig. 9 and Table 7, implying that a trade-off consideration for the constellation miss distance 
and the total transfer time is needed. Note that the constellation miss distance considering the RAAN shift due to J2 perturbation is also 
verified a posteriori and presented in Table 7. In general, the constellation miss distance considering the RAAN shift satisfies the lower 
bound for Dmiss (≥5 km) and it is larger than the constellation miss distance that does not consider the RAAN shift, except for few cases. 
In further research, the RAAN shift should be included.

6. Conclusion

This paper dealt with the planar low-thrust orbit raising and de-orbiting problems for coplanar satellites and took the self-induced 
collision avoidance into consideration. A blended error-correction steering law, which could offset the instantaneous errors in orbital 
12
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Table 7
Optimization results (Dmiss ≥ 5 km).

t01, days t02, days t03, days ttotal, days Dmiss, km A posteriori Dmiss, km

36.46 42.30 45 121.12 5.11 9.65
38.92 33.28 45.90 122.01 5.41 5.51
25.34 43.00 46.10 122.22 5.96 9.65
48.57 33.50 46.47 124.69 6.14 3.16
34.19 44.99 50.90 127.02 7.04 9.65

elements and adjust the thrust direction self-adaptively, was developed. Although not optimal, such steering law was analytical and thus 
could be applied directly to any satellites without need for offline design. Two sets of semi-analytical solutions are derived for the orbit 
raising and de-orbiting missions by using the orbital averaging technique, with which the computational time could be shortened a lot. 
The problem of reducing the self-induced collision risk was converted to increasing the miss distance, and it was solved by scheduling 
the transfer starting times for the satellites. For the orbit raising mission, the critical transfer starting time differences were identified, 
ensuring a large enough satellite-pair miss distance. For the de-orbiting mission, the optimal transfer starting times that could maximize 
the constellation miss distance and minimize the total transfer time were obtained by using the multi-objective optimization technique. 
Although the test transfers were solved for 20 satellites for orbit raising and 8 satellites for de-orbiting, the same approach could be 
followed to address a similar problem.

Two open points remain for the future research. The first one is the RAAN drifting due to J2. This paper did not consider the RAAN 
drifting to focus on analyzing only the planar behavior. However, by checking a posteriori, in some cases the RAAN drifting did have 
negative influence on self-induced collision. The second problem to address is the transfer of non-planar satellites, i.e. multi-satellite and 
multi-plane. The two-layer-study methodology proposed in this paper, i.e. first designing trajectory and then solving collision avoidance, 
can be used to address a more general problem.
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Appendix A

The expressions of the coefficients that appear in Eqs. (46) and (47) are as follows.

aelli F
t = 2 + e − 3

(
a0 − apf

)4 + 3
(
a0 − apf

)2
�a2 + 3�a4

2
(
a0 − apf

)2
�a2

e2 (60)
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(
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Fig. 10. Time histories of the latitude difference and relative distance for the transfer starting time difference of 2 h (dmiss = 2096.9 km).
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Appendix B

This Appendix provides the interpretation on the three cases shown in Fig. 5 (latitude resonance does not happen; latitude resonance 
happens; satellite-pair miss distance is always given by the relative distance at the first latitude resonance).

If the transfer starting time difference is small, then the latitude difference will be accordingly small over the entire transfer, as the 
satellites follow an orbital path with the same geometry, such that the latitude resonance won’t happen. Fig. 10 presents the time histories 
of the latitude difference and relative distance for the transfer starting time difference of 2 h. It can be seen that the latitude resonance 
does not happen.

Once the transfer starting time difference increases to a minimum threshold, the latitude difference will accumulate to be larger 
than 2π—the latitude resonance happens. Fig. 11 presents the time histories of the latitude difference and relative distance for the 
transfer starting time difference of 12 h. It can be seen that the satellite-pair miss distance equals to the relative distance at the latitude 
resonance.

As the transfer starting time difference increases, the latitude difference accumulates faster and faster and the frequency of the latitude 
difference accordingly increases. Fig. 12 a) and b) present the time histories of the latitude difference and relative distance for the transfer 
starting time difference of 3 days and 6 days, respectively. The satellite-pair miss distance equals to the relative distance at the first and 
the second latitude resonance, respectively.
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Fig. 11. Time histories of the latitude difference and relative distance for the transfer starting time difference of 12 h (dmiss = 5.2 km).

Fig. 12. Time histories of the relative distance and latitude difference.

Fig. 13. Time histories of the latitude difference and relative distance for the transfer starting time difference of 20 days (dmiss = 70.5 km).

Once the transfer starting time difference increases to the value at which one of the satellites does not start to transfer yet while 
the other flies by, the satellite-pair miss distance will always be the orbital radius difference at the first fly-by, or the first latitude 
resonance. Fig. 13 presents the time histories of the latitude difference and relative distance for the transfer starting time difference of 20 
days.

Appendix C

Fig. 14 shows the satellite-pair miss distance versus the transfer starting time difference for the satellite pairs with different initial 
relative phases. The critical transfer starting time difference �tsafe

0 and �tsafest
0 are highlighted by the blue cross and red asterisk, respec-

tively.
15



S. Huang, C. Colombo and F. Bernelli-Zazzera Aerospace Science and Technology 106 (2020) 106198
Fig. 14. Satellite-pair miss distance versus transfer starting time difference for different satellite pairs.
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Fig. 14. (continued)
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Fig. 14. (continued)
18



S. Huang, C. Colombo and F. Bernelli-Zazzera Aerospace Science and Technology 106 (2020) 106198
References

[1] http://www.oneweb .world/ (Accessed 29 November 2019).
[2] https://www.starlink.com/ (Accessed 29 November 2019).
[3] European Space Agency, End of Life Operations for Disposal of Mega-Constellations, 2016.
[4] European Space Research and Technology Centre, Test Bed for Demonstration of the Safety of Future Telecommunication Constellations, n.d.
[5] D. Ye, M. Shi, Z. Sun, Satellite proximate pursuit-evasion game with different thrust, Aerosp. Sci. Technol. 99 (2020) 105715, https://doi .org /10 .1016 /j .ast .2020 .105715.
[6] J.T. Betts, Very low-thrust trajectory optimization using a direct SQP method, J. Comput. Appl. Math. 120 (2000) 27–40, https://doi .org /10 .1016 /S0377 -0427(00 )00301 -0.
[7] C.A. Kluever, S.R. Oleson, Direct approach for computing near-optimal low-thrust Earth-orbit transfers, J. Spacecr. Rockets 35 (1998) 509–515, https://doi .org /10 .2514 /2 .

3360.
[8] Y. Gao, Near-optimal very low-thrust Earth-orbit transfers and guidance schemes, J. Guid. Control Dyn. 30 (2007) 529–539, https://doi .org /10 .2514 /1.24836.
[9] Z. Fan, M. Huo, N. Qi, Y. Xu, Z. Song, Fast preliminary design of low-thrust trajectories for multi-asteroid exploration, Aerosp. Sci. Technol. 93 (2019), https://doi .org /10 .

1016 /j .ast .2019 .07.028.
[10] A. Ruggiero, P. Pergola, S. Marcuccio, M. Andrenucci, Low-thrust maneuvers for the efficient correction of orbital elements, in: 32nd Int. Electr. Propuls. Conf., Wiesbaden, 

Germany, 2011.
[11] L. Zhang, B. Xu, M. Li, F. Zhang, Semi-analytical approach for computing near-optimal low-thrust transfers to geosynchronous orbit, Aerosp. Sci. Technol. 55 (2016) 

482–493, https://doi .org /10 .1016 /j .ast .2016 .06 .022.
[12] M. Di Carlo, L. Ricciardi, M. Vasile, Multi-objective optimisation of constellation deployment using low-thrust propulsion, in: AIAA/AAS Astrodyn. Spec. Conf., Long Beach, 

California, 2016.
[13] J. Radtke, C. Kebschull, E. Kebschull, Interactions of the space debris environment with mega constellations-using the example of the OneWeb constellation, Acta 

Astronaut. 131 (2017) 55–68, https://doi .org /10 .1016 /j .actaastro .2016 .11.021.
[14] H.G. Lewis, J. Radtke, J. Beck, B. Bastida Virgili, H. Krag, Self-induced collision risk analysis for large constellations, in: 7th Eur. Conf. Sp. Debris, 2017, https://eprints .

soton .ac .uk /id /eprint /414287.
[15] G.L. Somma, H.G. Lewis, C. Colombo, Space debris: analysis of a large constellation at 1200 km altitude, in: 69th Int. Astronaut. Congr., Bremen, Germany, 2018.
[16] K. Lee, H. Park, C. Park, S.Y. Park, Sub-optimal cooperative collision avoidance maneuvers of multiple active spacecraft via discrete-time generating functions, Aerosp. Sci. 

Technol. 93 (2019) 105298, https://doi .org /10 .1016 /j .ast .2019 .07.031.
[17] R.H. Battin, An Introduction to the Mathematics and Methods of Astrodynamics, American Institute of Aeronautics and Astronautics, Inc., 1999.
[18] J.E. Pollard, Simplified approach for assessment of low-thrust elliptical orbit transfers, in: 25th Int. Electr. Propuls. Conf., Cleveland, Ohio, 1997, pp. 979–986.
[19] A. Spitzer, Near optimal transfer orbit trajectory using electric propulsion, in: Spacefl. Mech., 1995, pp. 1031–1044.
[20] J.A. Kechichian, Orbit raising with low-thrust tangential acceleration in presence of Earth shadow, J. Spacecr. Rockets 35 (1998) 516–525, https://doi .org /10 .2514 /2 .3361.
[21] A. Gaudel, C. Hourtolle, J.F. Goester, M. Ottaviani, De-orbit strategies with low-thrust propulsion, in: Sp. Saf. Is No Accid., Springer, Cham, 2015, pp. 59–68.
[22] M. Vasile, Robust mission design through evidence theory and multiagent collaborative search, Ann. N.Y. Acad. Sci. 1065 (2005) 152–173, https://doi .org /10 .1196 /annals .

1370 .024.
19

http://www.oneweb.world/
https://www.starlink.com/
http://refhub.elsevier.com/S1270-9638(20)30880-4/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
https://doi.org/10.1016/j.ast.2020.105715
https://doi.org/10.1016/S0377-0427(00)00301-0
https://doi.org/10.2514/2.3360
https://doi.org/10.2514/2.3360
https://doi.org/10.2514/1.24836
https://doi.org/10.1016/j.ast.2019.07.028
https://doi.org/10.1016/j.ast.2019.07.028
http://refhub.elsevier.com/S1270-9638(20)30880-4/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S1270-9638(20)30880-4/bibD3D9446802A44259755D38E6D163E820s1
https://doi.org/10.1016/j.ast.2016.06.022
http://refhub.elsevier.com/S1270-9638(20)30880-4/bibC20AD4D76FE97759AA27A0C99BFF6710s1
http://refhub.elsevier.com/S1270-9638(20)30880-4/bibC20AD4D76FE97759AA27A0C99BFF6710s1
https://doi.org/10.1016/j.actaastro.2016.11.021
https://eprints.soton.ac.uk/id/eprint/414287
https://eprints.soton.ac.uk/id/eprint/414287
http://refhub.elsevier.com/S1270-9638(20)30880-4/bib9BF31C7FF062936A96D3C8BD1F8F2FF3s1
https://doi.org/10.1016/j.ast.2019.07.031
http://refhub.elsevier.com/S1270-9638(20)30880-4/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S1270-9638(20)30880-4/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S1270-9638(20)30880-4/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
https://doi.org/10.2514/2.3361
http://refhub.elsevier.com/S1270-9638(20)30880-4/bib3C59DC048E8850243BE8079A5C74D079s1
https://doi.org/10.1196/annals.1370.024
https://doi.org/10.1196/annals.1370.024

	Low-thrust planar transfer for co-planar low Earth orbit satellites considering self-induced collision avoidance
	1 Introduction
	2 Dynamical model
	3 Steering law design
	3.1 Tangential thrust
	3.2 Inertial thrust
	3.3 Blended error-correction (BEC) steering law

	4 Semi-analytical solutions
	4.1 Orbit raising
	4.2 De-orbiting
	4.3 Numerical validations

	5 Self-induced collision avoidance
	5.1 Miss distance
	5.2 Transfer starting time scheduling for orbit raising mission
	5.3 Transfer starting time scheduling for de-orbiting mission

	6 Conclusion
	Declaration of competing interest
	Acknowledgements
	References


