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ABSTRACT

Performing private and efficient searches over encrypted outsourced

data enables a flourishing growth of cloud based services managing

sensitive data as the genomic, medical and financial ones. We tackle

the problem of building an efficient indexing data structure, en-

abling the secure and private execution of substring search queries

over an outsourced document collection. Our solution combines

the efficiency of an index-based substring search algorithm with

the secure-execution features provided by the SGX technology

and the access pattern indistinguishability guarantees provided

by an Oblivious RAM. To prevent the information leakage from

the access pattern side-channel vulnerabilities affecting SGX based

applications, we redesign three ORAM algorithms, and perform a

comparative evaluation to find the best engineering trade-offs for

a privacy-preserving index-based substring search protocol. The

practicality of our solution is supported by a response time of about

1 second to retrieve all the positions of a protein in the 3 GB string

of the human genome.

CCS CONCEPTS

• Security and privacy→ Privacy-preserving protocols;Man-

agement and querying of encrypted data; Security protocols.
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1 INTRODUCTION

The advent of cloud computing has pushed many players in the

information technology area to offload both data and computation

onto remote servers hosted by a cloud service provider. Indeed,

outsourcing data storage and computation to the cloud enables

significant cost savings and allows remote access to data and ap-

plications with high availability. The main challenge to be faced

to enable cloud based solutions without concerns is the loss of pri-

vacy of outsourced data. Indeed, in case these data are sensitive or

valuable, e.g., biomedical or financial ones, the risk of privacy loss

will likely prevent a tenant from offloading the computation onto

the service provider, with financial drawbacks for both parties.

Encrypting outsourced data is sufficient to qualify a computa-

tion offloaded onto an untrusted party as privacy-preserving only if

the selected cryptographic strategy (such as Fully Homomorphic

Encryption (FHE) [16]) allows computation over encrypted data;

nonetheless, such solutions generally incur in prohibitive perfor-

mance penalties. Therefore, technical alternatives, relying on secu-

rity guarantees provided by the computing hardware, have been

developed. In particular, the Software Guard Extensions (SGX) [13]

technology, introduced by Intel in CPUs since the Skylake microar-

chitecture, provides trusted execution environments, known as se-

cure enclaves, that guarantee confidentiality and integrity for both

the code and the data of an application running within them, even

against the OS or the hypervisor of the machine hosting the en-

clave. SGX relies on performing whole-memory encryption for all

the data of the program residing within the enclave, and perform-

ing on-the-fly decryption/encryption whenever data are moved

to/from the CPU. Access control on enclave memory is enforced at

hardware level. The entire process is transparent to the program

being run and has minimal performance overheads [13]. Whilst

SGX is solid from a cryptographic standpoint, it has been shown

that microarchitectural side channel attacks [5, 6, 34] are able to

retrieve the per-CPU cryptographic keys employed to secure the

computations inside the enclaves. While Intel is committed to miti-

gate microarchitectural side channel attacks in general, and indeed

has provided mitigations for the aforementioned attacks [19–21],

it has also stated that the SGX threat model [12] does not provide

protection against adversaries reconstructing the memory access

patterns of applications running inside an enclave. This informa-

tion is inferred by the adversary either from the sequence of page

faults [51] experienced by the application running within the en-

clave or by measuring the latency experienced by an application

https://doi.org/10.1145/3427228.3427296
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controlled by the attacker which shares cache lines with the victim

application running within the enclave [4, 7]. Although several

countermeasures have been proposed to prevent or detect these

attacks against SGX technology [18, 33, 41, 43], none of them is

currently effective against all mentioned attacks.

An approach to make the information leaked to the adversary

in all such attacks useless is to ensure that the memory access

patterns of an application running within an enclave are indepen-

dent from the data being processed, a property of the application

referred to as obliviousness. This property has been achieved in

existing works [1, 29, 40] by employing a building block known as

Oblivious RAM (ORAM) [44], which allows a client with limited

storage capabilities to outsource data onto an untrusted server, guar-

anteeing that the server, which observes only physical accesses to

the ORAM data structure, cannot infer which elements are accessed

by the client. The ORAM client and server reside in two distinct

machines and communicate via a network channel. Nonetheless,

if SGX is available on the untrusted server, the ORAM client can

be moved inside an enclave to significantly reduce the communica-

tion latency between the ORAM client and the ORAM server. Since

leaking the access patterns of the ORAM client through SGX side

channels is sufficient to invalidate the privacy guarantees of ORAM,

it is necessary to make the ORAM client oblivious too. Coherently

with the terminology introduced in [29], we refer to an ORAMwith

an oblivious client as a Doubly Oblivious RAM (DORAM).

In this work, we design a privacy-preserving computation based

on SGX for substring search based on an inverted index (referred

to as full-text index from now on). Given a document collection

D={D1, . . . ,Dz } with z≥1 documents over an alphabet Σ, the data
owner builds a full-text index enabling the look-up of the repetitions

(or occurrences) of a substring q over Σ inD. In a Privacy-Preserving

Substring Search (PPSS) protocol, the data owner outsources both

the full-text index and the collection D to an untrusted server;

then, given a query for a substring q, chosen by the data owner,

the remote server computes, for each document Di , i∈{1, . . . , z},
in D, the set Si of positions of the occurrences of q in Di . Our

design of a PPSS protocol provides efficient queries while leaking

to the untrusted server no more information than the number z of
documents in D, the size n of the full-text index, the lengthm of

the substring q, and the overall number oq of occurrences of q in D.
Our solution, called Oblivious Substring Queries on Remote

Enclave (ObSQRE), runs a substring search algorithm within an

SGX enclave hosted on an untrusted server. The main challenges

tackled in our work reside in designing a substring search algorithm

with a data-independent control flow, which allows to hide memory

access patterns to its code pages, and efficiently combining such

algorithm with a DORAM to obliviously retrieve entries from the

full-text index. ObSQRE is composed of three procedures: Setup,

Load andQuery. The first one, executed by the data owner once

as a pre-processing stage, computes the full-text index from D. The
index is encrypted with a semantically secure symmetric cipher

and outsourced with the encrypted documents to the untrusted

server. The integrity of the index is guaranteed by encrypting it

with an Authenticated Encryption with Authenticated Data (AEAD)

scheme, such as AES-Galois Counter Mode (AES-GCM), whose

encryption procedure computes also a keyed digest that is verified

upon decryption. Whenever the data owner is willing to perform

queries, it asks the untrusted server to instantiate the ObSQRE

SGX enclave, which contains the code of both the DORAM client

and the oblivious substring search algorithm; the remote attestation

procedure, provided by SGX technology, allows the data owner

both to verify that the enclave has been correctly instantiated by

the remote server and to establish a secure communication channel

with the enclave. When enclave is running, the Load procedure

instantiates the DORAM data structures (both inside and outside

the enclave). Then, the enclave receives via secure channel the

decryption key and the digest for the full-text index from the data

owner, decrypts the index and stores it in the DORAM. Once Load

is over, the data owner can submit queries to the enclave. In the

Query procedure, the data owner sends through the secure channel

the substring q to be searched. Then, the oblivious substring search

algorithm runs inside the enclave, employing the full-text index to

compute the positions of the occurrences of q over documents of

D, which are sent back to the data owner.

Contributions. We propose ObSQRE, the first PPSS protocol

employing SGX enclaves, designing two oblivious substring search

algorithms based on the backward search method [14]. Our pro-

posal closes the information leakage gap in Intel’s attacker model,

making the leakage coming from the memory access patterns of the

substring search algorithm running inside an enclave useless for

the adversary. Our protocol is secure against malicious adversaries

(i.e., they may induce arbitrary misbehaviors in the protocol), and

achieves optimal bandwidth O(m+oq ), as the data owner sends the
substring q and receives the results in one communication round,

requiring at server side a polylogarithmic computational cost of

O((m+oq ) log
3(n)).

We also proposed our own doubly oblivious version of Path [44]

ORAM,which improves over state-of-the-art designs, andwe present

the first doubly oblivious versions of Circuit [49]
1
and Ring [36]

ORAMs.

We perform an exhaustive experimental campaign showing how

ObSQRE is an effective PPSS solution for practically relevant use-

cases employing genomic and financial datasets.

Related Work. The adoption of a DORAM to hide the access pat-

tern to data structures employed by a generic application running

inside an enclave was first proposed in ZeroTrace [40]. Nonetheless,

differently from ObSQRE, ZeroTrace does not protect the memory

access pattern to the code segment of the application. Obfuscuro [1]

extended the approach in [40] to hide the access pattern also to the

code pages of a generic application running within an enclave em-

ploying a DORAM. This approach, although applicable to a generic

application, introduces an higher overhead than ObSQRE. Indeed,

Obfuscuro [1] must perform two DORAM accesses every 3 to 5

executed assembly instructions, while ObSQRE performs 2m+oq
DORAM accesses in total for a single query.

The relevance of substring search queries for a variety of real-

world applications fostered several research efforts to privately

compute such queries. Some of these solutions [10, 26, 46] achieve

bandwidth and computational costs depending only onm and oq ,
and require only a few communication rounds between the data

owner and the untrusted server. Nonetheless, these solutions leak

1
A Circuit DORAM was employed in the experimental results of ZeroTrace [40], but

its design was not reported in the paper
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Figure 1: BWT L and SA Suf of the string alfalfa

the access patterns of the queries on the outsourced full-text index.

When this information is combined with the background knowl-

edge coming from the application domain, the confidentiality of the

document collection is compromised [9, 38]. These attacks pushed

for the availability of efficient PPSS protocols avoiding this infor-

mation leakage. In many of the existing solutions [22, 27, 42, 48]

the low leakage comes at the cost of making the computation cost

on server side linear in the document collection size. The PPSS

protocol described in [30] allows to reduce such cost to polyloga-

rithmic; however, it requires O(𝑚+𝑜𝑞) communication rounds and

a polylogarithmic bandwidth cost.

Regarding SGX based solutions, privacy-preserving search in-

dexes, such as Oblix [29], Bunker [2] or HardIDX [15], do not allow

to search arbitrary substrings but only a given set of keywords.

2 PRELIMINARIES

In this section, we describe the building blocks of ObSQRE: back-

ward search algorithm [14] and ORAM protocols.

2.1 Backward Search Algorithm

Given a text, or string, 𝑠 with 𝑛 characters over an alphabet Σ
and a substring 𝑞 ∈ Σ∗ with 𝑚 characters, the backward search

algorithm employs a full-text index built from the Burrows-Wheeler

Transform (BWT) [8] and the Suffix Array (SA) [28] of 𝑠 to retrieve

the positions of all the 𝑜𝑞 repetitions of 𝑞 in 𝑠 . To construct the full-

text index, a symbol $, preceding any character of Σ in any ordering

relation (e.g., alphabetical) over Σ∪{$}, is used to mark the end of

the string 𝑠 . For the string 𝑠 , the 𝑖-th, 𝑖=0, . . . , 𝑛, suffix of 𝑠 is the

substring 𝑠 [𝑖, . . . , 𝑛]; the integer 𝑖 is referred to as the index of the

suffix. The SA stores the indexes of all suffixes of the string sorted in

lexicographical order and can be built in𝑂 (𝑛) time complexity [31].

The BWT 𝐿 of 𝑠 is a permutation of the original string that yields

better compression ratio with run-length encoding techniques; it

can be built in O(𝑛) time from the SA Suf as 𝐿[𝑖]=𝑠 [Suf [𝑖]−1 mod

𝑛+1], 𝑖 = 0, . . . , 𝑛. Figure 1 shows the computation of the SA and

the BWT for the string alfalfa. The backward search algorithm

employs three data structures: the SA of the string 𝑠 , the dictionary

C that binds a character 𝑐∈Σ to the number of characters smaller

than 𝑐 in the string 𝑠 (according to the order relation employed

to sort suffixes in the SA), and the full-text index 𝐿̃ constructed

from the BWT 𝐿 of the string 𝑠 . A fundamental building block in

this algorithm is the computation of the function Rank, which,

given a character 𝑐∈Σ and an integer 𝑖∈{0, . . . , 𝑛}, employs the full-

text index 𝐿̃ to compute the number of occurrences of 𝑐 in the

prefix 𝐿[0, . . . , 𝑖] of 𝐿, i.e., Rank(𝑐, 𝑖) = |{ 𝑗∈{0, . . . , 𝑖} s.t.𝐿[ 𝑗]=𝑐}|.
We will show different methods to implement this procedure, each

Algorithm 1: Backward search for a string 𝑠 of length 𝑛

Input: 𝑞: a substring with length 1 ≤𝑚 ≤ 𝑛

Output: Rq : set of positions in 𝑠 with leading character of occurrences of 𝑞

Data: 𝐿̃: full-text index constructed from the BWT of 𝑠 required by Rank

C: dictionary storing ∀𝑐∈Σ the number of chars in 𝑠 smaller than 𝑐

Suf : the SA with length 𝑛+1 of the string 𝑠
1 𝛼 ← C(𝑞 [𝑚−1]), 𝛽 ← 𝛼 + Rank(𝑞 [𝑚−1], 𝑛) , Rq ← ∅
2 for 𝑖 ←𝑚 − 2 downto 0 do

3 c← 𝑞 [𝑖 ], r← C(c)
4 𝛼 ← r + Rank(c, 𝛼 − 1)
5 𝛽 ← r + Rank(c, 𝛽 − 1)
6 for 𝑖 ← 𝛼 to 𝛽 − 1 do

7 Rq ← Rq ∪ {Suf [𝑖 ] }
8 return Rq

employing its own full-text index 𝐿̃, in our oblivious substring

search algorithms.

We provide an operative description of the backward search

algorithm in Alg. 1, pointing the reader interested in the detailed

correctness analysis to [14, 27]. Given a string 𝑞 with𝑚 characters,

Alg. 1 first computes the number 𝑜𝑞 of occurrences of 𝑞 in the string

𝑠 (lines 2-5) processing the characters of the substring backwards;

at the end of this loop, the number of occurrences 𝑜𝑞=𝛽−𝛼 . Then,
it retrieves the positions of all these occurrences as the 𝑜𝑞 con-

secutive entries {Suf [𝛼], . . . , Suf [𝛽−1]} of the SA (lines 6-7). The

two loops in Alg. 1 perform𝑚−1 and 𝑜𝑞 iterations, respectively; as

each iteration costs O(𝑇𝑟𝑎𝑛𝑘 ), where 𝑇𝑟𝑎𝑛𝑘 denotes the computa-

tional cost of the Rank procedure, and O(1), respectively, Alg. 1
has O(𝑚·𝑇𝑟𝑎𝑛𝑘+𝑜𝑞) cost.
Backward Search in aDocumentCollection. Given a document

collection D with 𝑧≥1 documents 𝐷1, . . . , 𝐷𝑧 , we bind to the 𝑖-th

character of the 𝑗-th document the pair (𝑑𝑜𝑐, 𝑜 𝑓 𝑓 ), with 𝑑𝑜𝑐= 𝑗

and 𝑜 𝑓 𝑓 =𝑖−1; then, we build a single string 𝑠 by appending the

delimiter $ to each document and concatenating all the documents,

i.e. 𝑠=𝐷1$𝐷2$ . . . 𝐷𝑧$. We replace the index of each suffix of 𝑠 with

the pair (𝑑𝑜𝑐, 𝑜 𝑓 𝑓 ) bound to the first character of the suffix at hand.

Given a substring 𝑞 with𝑚 characters, Alg. 1 employs the full-text

index 𝐿̃, the dictionary C and the SA for the string 𝑠 to compute the

set Rq with 𝑜𝑞 pairs (𝑑𝑜𝑐, 𝑜 𝑓 𝑓 ); by grouping all the pairs with the

same document id𝑑𝑜𝑐 , we obtain, for each document inD, the set of
positions of all the occurrences of 𝑞 in the document at hand. This

algorithm finds all and only the occurrences of 𝑞 over D: indeed,
any occurrence of 𝑞 in a document ofD is found in 𝑠 too; conversely,

each occurrence of 𝑞 in 𝑠 identifies𝑚 characters with no delimiter

$, which correspond to an occurrence of 𝑞 in a document of D.

2.2 ORAM Protocols

We now describe in detail Path ORAM [44] and then we sketch the

differences introduced in Ring [36] and Circuit [49] ORAMs.

Path ORAM. Path ORAM splits a dataset of 𝐿 bits in blocks of 𝐵

bits and assigns to each one of them a unique identifier, referred

to as block id (bid). Although 𝑙=⌈ 𝐿
𝐵
⌉ blocks are sufficient to store

the dataset, Path ORAM increases the number of blocks to 𝑁 ·𝑍 ,
where 𝑁=2 ⌊log2 (𝑙) ⌋+1−1 and 𝑍≥1; these additional blocks, called
dummy, allow to hide how the 𝑙 real blocks are scrambled inside

the ORAM. The id of dummy blocks is set to a special value ⊥ to

distinguish them from real ones. All the 𝑁 ·𝑍 blocks are partitioned

Figure 1: BWT L and SA Suf of the string alfalfa

the access patterns of the queries on the outsourced full-text index.

When this information is combined with the background knowl-

edge coming from the application domain, the confidentiality of the

document collection is compromised [9, 38]. These attacks pushed

for the availability of efficient PPSS protocols avoiding this infor-

mation leakage. In many of the existing solutions [22, 27, 42, 48]

the low leakage comes at the cost of making the computation cost

on server side linear in the document collection size. The PPSS

protocol described in [30] allows to reduce such cost to polyloga-

rithmic; however, it requires O(m+oq ) communication rounds and

a polylogarithmic bandwidth cost.

Regarding SGX based solutions, privacy-preserving search in-

dexes, such as Oblix [29], Bunker [2] or HardIDX [15], do not allow

to search arbitrary substrings but only a given set of keywords.

2 PRELIMINARIES

In this section, we describe the building blocks of ObSQRE: back-

ward search algorithm [14] and ORAM protocols.

2.1 Backward Search Algorithm

Given a text, or string, s with n characters over an alphabet Σ
and a substring q ∈ Σ∗ with m characters, the backward search

algorithm employs a full-text index built from the Burrows-Wheeler

Transform (BWT) [8] and the Suffix Array (SA) [28] of s to retrieve
the positions of all the oq repetitions of q in s . To construct the full-
text index, a symbol $, preceding any character of Σ in any ordering

relation (e.g., alphabetical) over Σ∪{$}, is used to mark the end of

the string s . For the string s , the i-th, i=0, . . . ,n, suffix of s is the
substring s[i, . . . ,n]; the integer i is referred to as the index of the

suffix. The SA stores the indexes of all suffixes of the string sorted in

lexicographical order and can be built inO(n) time complexity [31].

The BWT L of s is a permutation of the original string that yields

better compression ratio with run-length encoding techniques; it

can be built in O(n) time from the SA Suf as L[i]=s[Suf [i]−1 mod

n+1], i = 0, . . . ,n. Figure 1 shows the computation of the SA and

the BWT for the string alfalfa.

The backward search algorithm employs three data structures:

the SA of the string s , the dictionary C that binds a character

c∈Σ to the number of characters smaller than c in the string s
(according to the order relation employed to sort suffixes in the

SA), and the full-text index L̃ constructed from the BWT L of the

string s . A fundamental building block in this algorithm is the

computation of the function Rank, which, given a character c∈Σ
and an integer i∈{0, . . . ,n}, employs the full-text index L̃ to com-

pute the number of occurrences of c in the prefix L[0, . . . , i] of L,
i.e., Rank(c, i) = |{j∈{0, . . . , i} s.t.L[j]=c}|. We will show different

Algorithm 1: Backward search for a string s of length n

Input: q: a substring with length 1 ≤ m ≤ n
Output: Rq : set of positions in s with leading character of occurrences of q
Data: L̃: full-text index constructed from the BWT of s required by Rank

C: dictionary storing ∀c ∈Σ the number of chars in s smaller than c
Suf : the SA with length n+1 of the string s

1 α ← C(q[m−1]), β ← α + Rank(q[m−1], n), Rq ← ∅
2 for i ←m − 2 downto 0 do

3 c← q[i], r← C(c)
4 α ← r + Rank(c, α − 1)
5 β ← r + Rank(c, β − 1)
6 for i ← α to β − 1 do

7 Rq ← Rq ∪ {Suf [i]}

8 return Rq

methods to implement this procedure, each employing its own

full-text index L̃, in our oblivious substring search algorithms.

We provide an operative description of the backward search

algorithm in Alg. 1, pointing the reader interested in the detailed

correctness analysis to [14, 27]. Given a string q withm characters,

Alg. 1 first computes the number oq of occurrences of q in the string
s (lines 2-5) processing the characters of the substring backwards;
at the end of this loop, the number of occurrences oq=β−α . Then,
it retrieves the positions of all these occurrences as the oq con-

secutive entries {Suf [α], . . . , Suf [β−1]} of the SA (lines 6-7). The

two loops in Alg. 1 performm−1 and oq iterations, respectively; as

each iteration costs O(Trank ), where Trank denotes the computa-

tional cost of the Rank procedure, and O(1), respectively, Alg. 1

has O(m·Trank+oq ) cost.

Backward Search in aDocumentCollection. Given a document

collection D with z≥1 documents D1, . . . ,Dz , we bind to the i-
th character of the j-th document the pair (doc,o f f ), with doc=j
and o f f =i−1; then, we build a single string s by appending the

delimiter $ to each document and concatenating all the documents,

i.e. s=D1$D2$ . . .Dz$. We replace the index of each suffix of s with
the pair (doc,o f f ) bound to the first character of the suffix at hand.

Given a substring q withm characters, Alg. 1 employs the full-text

index L̃, the dictionary C and the SA for the string s to compute the

set Rq with oq pairs (doc,o f f ); by grouping all the pairs with the

same document id doc , we obtain, for each document inD, the set of
positions of all the occurrences of q in the document at hand. This

algorithm finds all and only the occurrences of q over D: indeed,
any occurrence of q in a document ofD is found in s too; conversely,
each occurrence of q in s identifiesm characters with no delimiter

$, which correspond to an occurrence of q in a document of D.

2.2 ORAM Protocols

We now describe in detail Path ORAM [44] and then we sketch the

differences introduced in Ring [36] and Circuit [49] ORAMs.

Path ORAM. Path ORAM splits a dataset of L bits in blocks of B
bits and assigns to each one of them a unique identifier, referred

to as block id (bid). Although l=⌈ LB ⌉ blocks are sufficient to store

the dataset, Path ORAM increases the number of blocks to N ·Z ,
where N=2 ⌊log2(l )⌋+1−1 and Z≥1; these additional blocks, called
dummy, allow to hide how the l real blocks are scrambled inside

the ORAM. The id of dummy blocks is set to a special value ⊥ to

distinguish them from real ones. All the N ·Z blocks are partitioned
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in N buckets, each one containing Z blocks; then, the buckets are

arranged as a balanced complete binary tree with N nodes, each

storing one bucket. Each bucket is encrypted with a semantically

secure scheme; a bucket is full if it contains Z real blocks. The

N+1
2

leaves of the tree are labeled with a leaf id lid, a log
2
(N+1)−1

bits-wide integer that identifies the path of the tree to reach the leaf

at hand; specifically, the i-th bit of lid (i=0 is the least significant
bit) is 0 (resp. 1) if the leaf belongs to the left (resp. right) subtree

of the i-th node in the path from the root to the leaf at hand.

To retrieve real blocks from the ORAM, each of them is mapped

to a lid, which identifies the path of the tree where the block must

reside; this mapping is stored in a data structure called position map.

Any modification of the tree must preserve this mapping, otherwise

blocks cannot be retrieved any longer. All real blocks store their

corresponding lid in order to be placed in the proper path. Another

data structure, called stash, stores the accessed real blocks that have

not been pushed back to the ORAM tree yet. The stash analysis of

Path ORAM [44] proves that for Z≥4 the number of blocks in the

stash, denoted with S , is O(1) with overwhelming probability; thus,

the stash can be stored at client side to conceal it from the server.

The Access procedure retrieves the content of a specific block

from the ORAM. Given a block id bid, the procedure obtains the

leaf id lid corresponding to block bid from the position map, and up-

dates the corresponding entry with a randomly sampled leaf id lid
′
.

Then, it invokes two other procedures: FindBlock(bid, lid, lid ′)

and Eviction(lid). The former starts by retrieving from the server

the whole path containing the leaf with id lid. The client decrypts

the fetched path, appends all the real blocks to the stash and looks

for the bid block in it. If the block is found, its leaf id is replaced with

lid
′
. FindBlock returns the content of the block, if found, ⊥ other-

wise. The Eviction procedure writes back the fetched path, with

id lid, to the ORAM tree, filling the buckets with as many blocks

as possible from the stash. The client computes, for each block in

the stash, the deepest bucket of the evicted path that can store the

block at hand and, if found, it moves the block from the stash to

this bucket. A bucket can store a block with leaf id lid
′
if it is not

full and it belongs to both the evicted path, with id lid, and the path

with id lid
′
(to preserve the property that a block is found on the

path corresponding to its leaf id). The eviction stops when no more

blocks in the stash can be moved to the evicted path; thus, the client

re-encrypts the path and writes it back to the ORAM. Both proce-

dures cost O(log(N )·Z ·B) on server side and O(B(S + log(N )·Z ))
on client side, while their bandwidth is O(log(N )·Z ·B), as the client
and the server exchange a whole path.

Path ORAM allows to hide the accessed block only if the secret

mapping between block ids and leaf ids, stored in the position map,

is concealed from the server; nonetheless, as the position map has

l entries, each of log(N ) bits, it cannot be stored by a client with

limited storage capabilities. To overcome this issue, another ORAM,

denoted as ORAM1, is employed to store the position map: indeed,

if each block of ORAM1 contains up toC entries of the position map,

the position map of ORAM1 has ⌈
l
C ⌉ entries, thus reducing the size

of the position map by a factor of C . By recursively applying this

strategy to store the position maps of smaller ORAMs, eventually

the positionmap becomes compact enough to be stored at client side.

Indeed, by employing Θ(logC (l)) recursive ORAMs, the size of the

position map of the smallest ORAM becomes O(1). This recursive

strategy introduces a logarithmic factor in both the bandwidth and

the computational cost, which become O(C ·B·log2(N )·Z ).

Ring ORAM. Ring ORAM improves over Path ORAM in two ways:

the FindBlock procedure achieves a bandwidth of O(B·log(N )) by
fetching from the server a single block per bucket instead of the

entire bucket; the Eviction procedure is performed once every

A≥1 accesses to the ORAM instead of being performed for each

access. To reduce the bandwidth of FindBlock procedure, each

bucket is enriched with some metadata; instead of fetching entire

buckets along the path lid, the FindBlock procedure retrieves

only their metadata. Then, for each bucket, FindBlock invokes the

SelectOffset procedure which selects the offset of the block bid,

if found in the bucket, or the offset of a dummy block otherwise. To

ensure that there are enough dummy blocks in each bucket to be

chosen by the SelectOffset procedure, buckets in the Ring ORAM

haveZ+D blocks, where the additionalD slots always store dummy

blocks. To prevent the adversary from learning if SelectOffset

chooses a real or dummy block, all of them are randomly shuffled.

The offsets computed by SelectOffset are sent to the server, which

retrieves the corresponding blocks from the ORAM tree.

The only real block fetched from the ORAM in the FindBlock

procedure is appended to the stash, thus making an Eviction after

each FindBlock unnecessary. Indeed, an eviction happens every

A≥1 accesses, a parameter of Ring ORAM that depends on Z . In
order to maximize the average number of blocks evicted from the

stash, the paths to be evicted are chosen according to a deterministic

schedule, following the ids of the paths in increasing order. This

guarantees that the overlap between two consecutive evicted paths

is limited to the bucket stored in the root node of the ORAM tree,

as a bucket at level i of the tree belongs to the evicted path every

2
i
consecutive evictions.

Circuit ORAM. Circuit ORAM is a refinement of Path ORAM tai-

lored for hardware implemented clients, where the server is a large

memory on the same machine (or even on the same die). There-

fore, this ORAM trades off a low bandwidth for the compactness of

the circuit implementing the ORAM client. This is achieved with a

simplified Eviction procedure that evicts at most one block from

the stash. The stash growth is limited as FindBlock appends at

most the block with id bid to the stash, if found in the fetched

path. This path, with the block bid replaced by a dummy one, is

re-encrypted and written back to the ORAM tree. The path to be

evicted is chosen with the same deterministic schedule of Ring

ORAM to minimize the probability that no block can be evicted

from the stash. To avoid a monotonic growth of the stash in case no

blocks from the stash can be evicted, 2 evictions are performed for

each access. The additional eviction, although forcing the ORAM

to fetch and write back 3 paths per access, allows to keep the stash

about 1 order of magnitude smaller than Path and Ring ORAMs.

3 DOUBLY OBLIVIOUS RAMS

In this section, we describe the design of oblivious clients for the

three ORAMs described in Section 2.2, obtaining three correspond-

ing DORAMs. In doing this, we employ two operations: oblivious

write OblWrite and oblivious swap OblSwap. The former (resp.

the latter), given three input parameters cond, a and b, writes the
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Algorithm 2: FindBlock in Path/Circuit DORAMs

Input: bid: id of the block to be retrieved from the DORAM

lid: id of the path where block bid may be located

lid
′
: id of the path where block bid will be evicted

Output: The block with id bid

Data: Stash: S blocks not evicted to the DORAM yet

1 Blks← ReadPath(lid) , dest.bid← ⊥
2 foreach blk ∈ Blks do

3 OblSwap(blk.bid = bid, dest, blk)
4 write← dest.bid = bid

5 foreach blk ∈ Stash do

6 OblWrite(bid = blk.bid, dest, blk)
7 OblWrite(blk.bid = ⊥ ∧ write, blk, dest)
8 OblWrite(bid = blk.bid, blk.lid, lid′)
9 write← write ∧ blk.bid , bid

10 WritePath(Blks, lid)

11 return dest

content of b to a (resp. swaps the content of b and a) if and only

the boolean expression cond is true. To implement OblWrite, we

employ the x86_64 assembly instruction CMOVNZ, which moves the

content of the source operand to the destination one if the zero flag

is not set. CMOVNZ is oblivious as its operands are always loaded

in the CPU and written back regardless of the status of the flag.

The OblSwap operation, given the input parameters cond,a,b, first
computes OblWrite(cond, tmp,a ⊕b), where tmp is initially set to

0; then, it updates a and b with a ⊕ tmp and b ⊕ tmp, respectively.

In all our DORAMs, the stash cannot have a dynamic size, lest

the number of blocks moved between the DORAM and the stash is

leaked. Thus, in all our DORAMs the stash has a fixed size S , and an
overflow error occurs if the number of blocks in the stash is higher

than S . Empty entries in the stash are filled with dummy blocks.

The stash analysis of Path, Ring and Circuit ORAMs provides upper

bounds for S making the probability of overflows negligible.

If a recursive position map is employed, the ORAMs that store

the position map must be doubly oblivious too. Once a block from

each of these DORAMs is fetched, the client obliviously swaps

each one of the C entries in the block with a memory location

dest, initialized with the new leaf id lid
′
, actually performing the

swap only for the entry corresponding to the block to be retrieved

from the next DORAM in the recursion. Eventually, dest stores

the id of the path to be fetched from the next DORAM, while the

corresponding entry in the block stores the updated id lid
′
.

3.1 Path DORAM

We start with a description of the oblivious Eviction procedure

proposed in ZeroTrace [40] and employed with minor modifica-

tions in all existing works. This procedure, for each block of the

stash (even dummy ones), sweeps over the evicted path, which is

initialized with dummy blocks, from the leaf to the root bucket,

obliviously swapping each block with the entry of the stash at

hand; the block of the stash is actually swapped with a dummy

block found in the deepest non-full bucket that can store the block

at hand. The computational cost of ZeroTrace Eviction is thus

O((S+log(N )·Z ) log(N )·Z ·B), since both the blocks of the stash and
the blocks of the path fetched by the FindBlock procedure must

be evicted.

Table 1: Format of the bucket metadata in Ring ORAM.

Field Bit width Size Description

Bids log(N+1) Z+D Block ids of all blocks

Lids log(N+1) Z Leaf ids of real blocks

IV λ 1 IV for bucket decryption

Invalid 1 Z+D Flags keeping track of invalid blocks

Cnt logD 1 Count accesses to bucket

In our Path DORAM, we modify this Eviction procedure by

introducing an optimization, called in-place eviction, that allows

to approximately halve its cost. Indeed, instead of appending all

the blocks of the evicted path to the stash and then evict them as

all other blocks in the stash, the client tries to push these blocks

as down as possible in the path before performing stash eviction.

This optimization allows to swap a block in the path only with

deeper buckets instead of swapping it with all the buckets in the

path. Even with this optimization, our oblivious Eviction still

exhibits an O(log(N )·Z )) computational overhead with respect to

the non oblivious Eviction of Path ORAM. To reduce this overhead,

which severely affects the performance of DORAM accesses, in our

Path DORAM we aim at making evictions less frequent. To make

evictions unnecessary after each FindBlock, as in Ring ORAM, we

need to ensure that only one block is appended to the stash for

each access. We achieve this employing the FindBlock procedure

of Circuit ORAM, which actually moves to the stash only the block

bid, if found in the fetched path, and writes back the fetched path

to the tree, replacing the block bid with a dummy one. We note

that, although we add a write back operation for each access, this

strategy allows our Path DORAM to perform evictions every A≥1
accesses; since awrite back costsO(log(N )·Z ·B), it is asymptotically

faster than an eviction, thus improving the performance of our Path

DORAM. To choose which path to evict, Path DORAM employs the

same deterministic schedule of Ring ORAM; thus the same values

of Z , S and A suggested by authors of Ring ORAM [36] can be

employed in our Path DORAM.

Our oblivious FindBlock procedure (see Alg. 2) starts by fetching

the path with id lid from the DORAM tree (line 1) and it obliviously

looks for the blockwith id bid over the fetched path (lines 2- 3). If the

block is found, it is moved to dest and replaced by a dummy block

in the fetched path (line 3), otherwise neither dest nor the fetched

path are modified. Then, the FindBlock procedure obliviously

sweeps (lines 4-9) over the stash to either write to the stash the

block bid, if found in the fetched path, or to search the block in the

stash. In the former case, the proper update of write flag (line 9)
ensures that the block bid is written to the first empty entry in the

stash (line 7); in the latter case, the block bid found in the stash

is written to dest (line 6). In both cases, the leaf id of the block

bid in the stash is updated to lid
′
(line 8). Finally, the FindBlock

procedure writes back the fetched path to the DORAM tree (line 10).

3.2 Ring DORAM

We recall that Ring ORAM enriches each bucket with metadata

that are employed by the SelectOffset procedure to choose, for

each bucket, one block to be retrieved from the ORAM tree. The

structure of the bucket metadata employed in our Ring DORAM is

outlined in Tab. 1. The first field of the metadata stores the ids of the
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Algorithm 3: SelectOffset in Ring DORAM

Input: bid: id of the block to be fetched from the ORAM

Meta: metadata of a bucket of the path where block bid may reside

Output: off: position in the bucket of the block with id bid, if found,

otherwise the position of a randomly chosen valid dummy

1 found← false, max← −1
2 for i ∈ {0, . . . , Z + D − 1} do
3 if ¬Meta.invalid[i] then

4 rnd
R
← {0, . . . , 255}

5 max_dummy← Meta.bids[i]=⊥ ∧ rnd > max
6 sel← Meta.bids[i]=bid ∨ (max_dummy ∧ ¬found)
7 OblWrite(sel, off, i), OblWrite(max_dummy, max, rnd)
8 found← found ∨ Meta.bids[i] = bid

9 return off

blocks found in the Z+D slots of the bucket. We store also the ids of

dummy blocks to allow the proper computation of the offset of the

block chosen in the SelectOffset procedure. The last two fields

of the metadata are needed to ensure two fundamental properties

about Ring DORAM: i) each block is fetched from its bucket at most

once since the last time the bucket was written back to the DORAM

tree; ii) each bucket must be accessed at most D times since the

last time it was written to the DORAM tree. The first property is

needed to prevent the adversary from distinguishing dummy blocks

from real ones from their access frequencies. Indeed, a real block

is chosen by SelectOffset procedure, and fetched from a bucket,

only when it corresponds to the block bid that must be retrieved

by FindBlock, while a dummy block may be chosen in all other

cases. To ensure this property, the SelectOffset procedure must

always choose a valid block, with a block being marked as invalid

in the bucket metadata as soon as it is chosen by SelectOffset.

The second property ensures that there are always enough dummy

blocks to be chosen in a bucket by SelectOffset: indeed, after

D accesses to the bucket, no valid dummy blocks may have left

in the bucket. To this extent, the bucket metadata keeps track of

the number of accesses to the bucket with a counter cnt; when D
accesses are reached, a maintenance task called EarlyReshuffle

must be invoked. This procedure, upon receiving the Z valid blocks

of the bucket, randomly shuffles them with D dummy blocks; then,

the bucket is encrypted and written back to the DORAM tree. As

the blocks are re-shuffled, they can all be marked as valid, and cnt
is reset as the bucket has at least D valid dummy blocks available.

We now describe the oblivious procedures of our Ring DORAM.

The SelectOffset procedure (Alg. 3) iterates over all the blocks in

the bucket, skipping invalid ones (line 3) as they cannot be chosen.

Note that there is no need to hide which blocks are skipped, as

the adversary can easily know which blocks are invalid by logging

blocks chosen in previous accesses to the bucket at hand. For each

valid block, a number rnd is uniformly sampled from a fixed do-

main (e.g., {0, . . . , 255} in line 4) and the offset of the valid block

is obliviously written to the variable off (line 7). The update of

max_dummy (line 5), sel (line 6) and found (line 8) flags ensures

that eventually the variable off stores the position in the bucket of

the block with id bid, if found in the bucket; otherwise, off stores

the position of the valid dummy block with the highest random

number among the ones sampled for all the dummy valid blocks.

As all these numbers are sampled from the same distribution, each

one of them has the same probability of being the highest, thus this

Algorithm 4: FindBlock in Ring DORAM

Input: bid: id of the block to be retrieved from the DORAM

lid: id of the path where block bid may be located

lid
′
: id of the path where block bid will be evicted

Output: the block with id bid

Data: Stash: S real/dummy blocks not evicted to the DORAM yet

1 Metadata← FetchBucketsMetadata(lid), Offsets← ∅
2 foreach Meta ∈ Metadata do

3 off← SelectOffset(bid, Meta)
4 Offsets← Offsets ∪ {off}
5 Meta.invalid[off] ← true, Meta.cnt + +
6 Blks← FetchBlocks(lid, Offsets), dest.bid← ⊥
7 foreach blk ∈ Blks do

8 OblSwap(blk.bid = bid, dest, blk)
9 write← dest.bid = bid

10 foreach blk ∈ Stash do

11 OblWrite(bid = blk.bid, dest, blk)
12 OblWrite(blk.bid = ⊥ ∧ write, blk, dest)
13 OblWrite(bid = blk.bid, blk.lid, lid′)
14 write← write ∧ blk.bid , bid

15 foreach i← 0 to log( N+1
2
)−1 do

16 if Metadata[i].cnt ≥ D then

17 Blks← FetchValidBlocksInBucket(lid, i)
18 Bucket← EarlyReshuffle(Blks, Metadata[i])
19 WriteBucket(lid, i, bucket)
20 WriteMetadata(lid, Metadata)
21 return dest

method chooses uniformly at random a block among the dummy

valid ones without revealing which blocks are dummies.

In the oblivious EarlyReshuffle procedure, Z blocks have to

be randomly placed over Z+D slots of the bucket. To this ex-

tent, the i-th block, i=1, . . . ,Z , is obliviously written in the off -

th free slot of the bucket, where off is uniformly sampled from

{1, . . . ,Z+D−i+1}; the block and leaf ids in the bucket metadata are

updated accordingly. Since the bucket is initialized with all dummy

blocks, after Z sweeps, each writing one block,D slots of the bucket

certainly contain a dummy block. As this strategy requires Z obliv-

ious writes over a bucket with Z+D slots, EarlyReshuffle costs

O(Z ·(Z+D)·B) per bucket. We show in Appendix A.3 that this strat-

egy guarantees that each block is placed with uniform probability

over all the Z+D slots of the bucket.

In the oblivious FindBlock procedure, reported in Alg. 4, first

the metadata for all the buckets along the path with id lid are

fetched (line 1). Then, the procedure iterates over the metadata

to choose one block per bucket to be retrieved from the server

(lines 2-5). The offset of the chosen block in the bucket, computed

by the SelectOffset procedure (line 3), is appended to the set

Offsets (line 4). Furthermore, the bucket metadata are updated by

marking the chosen block as invalid and by increasing the number

of accesses to the bucket (line 5). Subsequently, the DORAM server,

upon receiving from the client the id of the path lid and, for each

bucket in this path, the offset of the block to be retrieved, sends

back the O(log(N )) blocks requested by the client (line 6), among

which the client obliviously searches the block with id bid through

a linear sweep (lines 7-8). Then, the DORAM client iterates over

the stash (lines 9-14) to either insert the block retrieved from the

server (line 12) or locate the block with id bid (line 11). Afterwards,

the FindBlock procedure, for each bucket, invokes, if necessary

(line 16), the EarlyReshuffle procedure (line 18), fetching the Z
valid blocks left in the bucket from the DORAM tree (line 17) and
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Algorithm 5: Eviction in Circuit DORAM

Input: Path: path to be evicted

lid: id of Path
Data: Stash: S real/dummy blocks not evicted to the DORAM yet

1 dest← ComputeDestinations(Path, lid)
2 max_depth← −1, target← dest[0], hold.bid = ⊥
3 foreach blk ∈ Stash do

4 depth← MaxDepth(blk.lid, lid)
5 OblSwap(dest[0],⊥∧depth>max_depth, hold, blk)
6 OblWrite(depth > max_depth, max_depth, depth)
7 for i← 0 to log(N+1)−2 do
8 max_depth← i, deeper_bucket← (target,i ∧ target,⊥)
9 foreach blk ∈ Path[i] do

10 depth← MaxDepth(blk.lid, lid)
11 swap← (dest[i+1],⊥ ∧ depth>max_depth) ∨

(dest[i+1]=⊥∧blk.bid=⊥)
12 OblSwap(swap ∧ ¬deeper_bucket, hold, blk)
13 OblWrite(depth>max_depth, max_depth, depth)
14 OblWrite(¬deeper_bucket, target, dest[i+1])

writing the whole bucket back after the reshuffle (line 19). Lastly,

the FindBlock procedure writes back the updated metadata to the

DORAM tree (line 20).

The Eviction procedure follows the blueprint of the oblivi-

ous one described in Path DORAM. Indeed, although buckets in

Ring DORAM has Z+D slots, at most Z of them may be filled with

real blocks; hence, buckets with Z slots can be employed during

evictions, as in Path DORAM. At the end of the Eviction, the

EarlyReshuffle procedure is invoked on each of these buckets

with Z blocks to construct a bucket with Z+D blocks, which is

written back to the DORAM tree after re-encryption. As in Path

DORAM, Eviction is split in two phases: in-place and stash evic-

tion. While the latter works exactly as in Path DORAM, in the

former, for each bucket, only the R≤Z valid real blocks must be

evicted, while all the other Z+D−R blocks can be discarded, as they

are either dummies or invalid real blocks. To avoid leaking R to

the adversary, during in-place eviction the client has to always

choose Z blocks for each bucket. In particular, for each bucket, the

client must choose Z blocks out of the V≥Z valid blocks: R real

valid blocks and Z−R blocks among the V−R dummy valid blocks.

To this extent, we employ the Knuth’s algorithm reported in [25,

pag. 142], which chooses uniformly at random k elements out of h
ones, with k≤h; this algorithm can be trivially made oblivious by

relying on oblivious write/swap primitives while retaining O(h)
computational complexity. Once the offsets of the Z blocks are com-

puted, they are obliviously fetched from the bucket with Z linear

sweeps and evicted in deeper buckets. The overall computational

cost of Eviction procedure is O(log(N )·B·Z (log(N )·Z+S+Z+D)),
which is the sum of the costs of in-place eviction, stash eviction

and EarlyReshuffle for all the buckets along the evicted path,

respectively; this cost is amortized over A≥1 DORAM accesses.

3.3 Circuit DORAM

The simplicity of the client in Circuit ORAM makes its oblivious

design the easiest one among our three DORAMs. The FindBlock

procedure in our Circuit DORAM is equivalent to our Path DORAM,

reported in Alg. 2. Conversely, the Eviction procedure of Circuit

ORAM significantly differs from the one of Path and Ring ORAMs.

Specifically, the non-oblivious eviction involves two sweeps over

Table 2: Client-side asymptotic computational costs

FindBlock Eviction

ORAM our DORAM ORAM our DORAM

Path O(log(N )·Z ·B) O(log(N )·Z ·B) O(B·log(N )·Z ) O(
log

2(N )·Z 2 ·B
A )

Ring O(log(N )·B) O(log(N )·B) O(
B ·log(N )·Z

A ) O(
log

2(N )·Z 2 ·B
A )

Circuit O(log(N )·Z ·B) O(log(N )·Z ·B) O(log(N )·Z ·B) O(log(N )·Z ·B)

the metadata of the evicted path (which correspond to the block

ids and the corresponding leaf ids), and a single sweep over the

evicted path. In the oblivious Eviction procedure, reported in

Alg. 5, the two sweeps over the metadata are performed by the

ComputeDestinations procedure (line 1), which compute, for

the stash and for each bucket in the evicted path, the additional

metadata dest. To avoid leaking these metadata while computing

them, we employ oblivious writes to remove conditional dependent

updates to these metadata. In the subsequent sweep over the evicted

path (lines 2-14), dest specify how the blocksmust bemoved among

buckets: indeed, for each i ∈ {0, . . . , log(N+1)−1} (dest[0] refers
to the stash), dest[i] stores the bucket where the block of the i-
th bucket that can go deepest in the path must be moved, while

dest[i]=⊥ if no block from the the i-th bucket must be moved

down in the path. During the sweep over the evicted path, at most

one block, stored in hold, is simultaneously moved down along

this path; the variable target stores the destination bucket of such

block. Throughout the sweep over the evicted path, a procedure

MaxDepth allows to compute the deepest bucket of the path that

can store a given block by hinging upon the leaf id of the block at

hand and the id of the evicted path. First, the block in the stash that

can go deepest in the path is obliviously moved to hold through a

linear sweep of the stash (lines 3-6). Then, this block is moved to

its destination bucket, where it is swapped (line 12) with either a

dummy block, in case no block in the destination bucket must be

moved down (i.e., if dest[i+1]=⊥ in line 11), or with the block in the

destination bucket than can go deepest in the path (lines 11, 13). The

computational cost of oblivious Eviction is O(B·(S+log(N )·Z )),
given by the linear sweeps over the stash and the evicted path,

respectively.

To conclude, we summarize the computational costs of clients

of our DORAMs in Tab. 2. We observe that Circuit DORAM is

asymptotically faster than Ring and Path DORAMs; nonetheless,

as 3 paths have to be fetched and written back for each DORAM

access, a performance gain may be observed only for DORAMs

with a significant number of blocks. Instead, Ring DORAM saves

a factor of Z in the computational cost of the FindBlock proce-

dure; nonetheless, its oblivious algorithms involve cumbersome

operations, which may increase actual response time of DORAM

accesses.

3.4 Security Against Malicious Adversaries

In all our DORAMs, we add a mechanism to efficiently detect any

tampering (including replacement with old blocks) on any path

fetched from the DORAM, while storing in the enclave a single di-

gest for the whole DORAM. Specifically, we combine the DORAM



ACSAC 2020, December 7–11, 2020, Austin, USA N. Mainardi, D. Sampietro, A. Barenghi, G. Pelosi

Algorithm 6:Oblivious Rank procedure with ABWT strat-

egy for a string s ∈ Σn with BWT L

Input: c: character of the alphabet Σ
i: integer in {0, . . . , n+1}

Output: ctr: number of occurrences of c in L[0, . . . , i]
Data: DORAM: DORAM storing the ABWT AP with sample period P

1 Entry← DORAM.Access( ⌊ iP ⌋)

2 foreach char ∈ Σ do

3 OblWrite(c = char, ctr, Entry.rank[char])
4 for j← 0 to P − 1 do

5 OblWrite(Entry.l [j] = c ∧ j ≤ i mod P, ctr, ctr + 1)

6 return ctr

tree with a Merkle tree, as proposed in [37] for Path ORAM; how-

ever, we encrypt the buckets with an AEAD scheme to avoid an

unkeyed hash computation for the digest of each bucket.

Lemma 1. When the client algorithms of our DORAMs are run

inside an SGX enclave, any malicious adversary, with full control over

the untrusted machine hosting the enclave and able to observe through

SGX side channels the pattern on code and data memory accesses of

algorithms run inside the enclave, learns no more than the public

parameters of the DORAMs (e.g., B, Z ) and the size of the dataset

stored in the DORAMs. Furthermore, the clients of our DORAMs can

detect any tampering on code and data performed by a malicious

adversary.

These security guarantees stem from the obliviousness of the

client algorithms of our DORAMs: indeed, as formally proven in

Appendix A.1, both their control flow and their memory access

pattern are independent from the block accessed by the DORAM.

4 OBLIVIOUS SUBSTRING SEARCH

We first present two algorithms to obliviously compute the Rank

procedure required by Alg. 1, and then we employ them to build two

oblivious backwards search algorithms that derive the positions of

occurrences oq of a substring q∈Σm over a string s∈Σn .

Augmented BWT. This algorithm obliviously computes the Rank

procedure by employing the Augmented BWT (ABWT) as the full-

text index L̃ constructed from the BWT L of s . Given an integer

parameter P , called sample period, the ABWT AP is an array with

⌈n+1P ⌉ entries, each containing a pair of elements (rank, l); for the
i-th entry of AP , AP [i].rank is a dictionary of |Σ|+1 entries that

binds to a character c∈Σ the value Rank(c, i ·P−1), while AP [i].l is
a string of P characters, namely the substring L[i ·P , . . . , (i+1)·P−1]
of the BWT L. The value Rank(c, i), c∈Σ, i∈{0, . . . ,n}, is computed

from the j=⌊ iP ⌋-th entry ofAP as the sum ofAP [j].rank[c] and the
number of occurrences of character c in AP [j].l[0, . . . , i mod P].

In the oblivious implementation of Rank procedure, reported

in Alg. 6, the ABWT is stored inside a DORAM; the algorithm first

fetches the block storing the h=⌊ iP ⌋-th entry of AP (line 1); then,

ctr is set to AP [h].rank[c] through a linear sweep over the entries

of AP [h].rank (lines 2-3); lastly, the algorithm sweeps over the

stringAP [h].l , obliviously increasing by 1 ctrwhenever a character
among the first i mod P + 1 ones equals c (lines 4-5). Each access

to an entry of AP costs O(C ·log2(n)·Z ·B) if the ABWT is stored in

Circuit DORAM, while the cost becomes O(C ·log3(n)·Z 2·B) in case

of Path or Ring DORAMs, as each Eviction costs O(log2(n)·Z 2·B)

Algorithm 7: Non-oblivious Rank procedure with bal-

anced BST for a string s ∈ Σn with BWT L

Input: c: character of the alphabet Σ
i: integer in {0, . . . , n+1}

Output: Rank(c, i): number of occurrences of c in L[0, . . . , i]
Data: BST: balanced BST constructed from the string s

Enum: enumeration of characters in Σ
Occ: dictionary binding a char c ∈Σ to RankL (c, n)

1 node← BST.root, k← Enum(c)·(n + 1)+i
2 while node , ⊥ do

3 if node.key = k then

4 return node.value
5 go_left← 0, parent← node, node← node.right
6 if node.key < k then

7 go_left← 1, node← node.left
8 if parent.key<Enum(c)·(n+1)∨parent.key≥(Enum(c)+1)·(n+1) then
9 return Occ(c)·go_left

10 return parent.value − go_left

instead of O(log(n)·Z ·B). Given that B = O(log(n)+|Σ|+P) and Z ,
C , |Σ| and P are small constants, our ABWT based oblivious Rank

procedure has O(log3(n)) computational cost.

Oblivious Data Structure BWT. In the Oblivious Data Structure

BWT (ODSBWT)method, instead of an array, we employ a balanced

Binary Search Tree (BST) as a full-text index constructed from the

BWTL. To build this index, we employ an enumeration Enum of char-
acters c∈Σ. For each j∈{0, . . . ,n}, we create a node in the BST as a

key-value pair (Enum(s[j])·(n+1)+posL(s[j]), Rank(s[j],posL(s[j]))),
where posL(s[j]) denotes the position in the BWT L of the charac-

ter s[j]. Once the BST is built, Rank(c, i), c∈Σ, i∈{0, . . . ,n} can be

computed by looking-up the node with key k=Enum(c)·(n + 1)+i in
the balanced BST, as outlined in Alg. 7. If the node is found (line 4),

then Rank(c, i) equals the value stored in this node by construction

of the BST. Otherwise, the last node explored is either the prede-

cessor (if go_left=0) or the successor (if go_left=1) of the node
with key k. Since Enum(c)·(n+1) is added to the key of each node,

then all the nodes referring to occurrences of the same character

c have consecutive keys. As a consequence, the predecessor node
corresponds to the last occurrence of c in L[0, . . . , i], while the suc-
cessor node corresponds to first occurrence of c in L[i+1, . . . ,n].
In the former case, Rank(c, i) equals the value of the predecessor
node, while in the latter case the value of the successor node must

be decremented by 1 (line 10). In case there is no occurrence of c
in L[0, . . . , i] (resp. L[i+1, . . . ,n]), the predecessor (resp. successor)
node refers to an occurrence of a character c ′,c , as checked in

line 8; thus, Rank(c, i) equals 0 (resp. the number of occurrences of

c in L), as returned in line 9.

Tomake this algorithm oblivious, each of theO(log(n)) nodes vis-
ited in the search path of the tree should be accessedwith a DORAM.

In particular, we rely on the Oblivious Data Structure (ODS) [50]

framework to obliviously access nodes in the BST. Indeed, ODS

relies on the fact that each node of a BST can be reached only from

another node, i.e., its parent in the tree, to store the position map

entries inside ORAM blocks. Specifically, each node of the BST

stores the ids of the paths of the ORAM tree containing the blocks

that store the children of the node at hand. Therefore, to access

any node of the BST, the client only needs to store the root node:

from this one, the client chooses to fetch one of its two children,

employing the corresponding leaf id stored in the root node. This
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In this way, the look-up of a node in a BST with n nodes stored

inside an ODS requires log(n) direct (i.e., with no recursive position

map) accesses, one for each level of the BST, to the DORAM. In

our ODS, we roughly halve the look-up cost by applying a trick

proposed by Gentry [17]: instead of storing all the nodes of the BST

in the same DORAM, a distinct DORAM is employed for each level

of the BST.

Employing distinct Circuit DORAMs (resp. Path or Ring DO-

RAMs) to store each level of the BST allows to obliviously compute

the Rank procedure with O(log2(n)·Z ·B) (resp. O(log3(n)·Z 2·B))
cost. Since B=O(log(n)) and Z=O(1), the ODSBWT based oblivious

Rank procedure has the same O(log3(n)) computational cost of the

ABWT one; nonetheless, the ODSBWT method accesses log
2
(n)

DORAMs with small blocks instead of logC (n) DORAMs with large

blocks, in turn allowing different implementation tradeoffs.

Oblivious Backward Search and ObSQRE Security Analysys.

To make Alg. 1 oblivious, both the dictionary C and the SA Suf

must be obliviously accessed: indeed, the entries fetched from the

dictionary C would leak the characters of q, while the entries re-
trieved from the SAwould leak the values α and β , which are related
to both the string s and the substring q. To prevent such informa-

tion leakages, Suf is stored inside a DORAM, while C (with its |Σ|
entries) is stored inside the enclave and each search over it is (obliv-

iously) performed through a linear sweep. These implementation

choices together with each of the proposed oblivious Rank proce-

dures yield two substring search algorithms with computational

cost O((m+oq ) log
3(n)) and the following security guarantees.

Lemma 2. Consider a document collection D with z≥1 documents

and d≥1 substrings q1, . . . ,qd withm1, . . . ,md characters, respec-

tively. Consider a malicious adversary with full control of the machine

hosting the SGX enclave, which learns the access pattern of algorithms

run inside the enclave through side channel attacks. ObSQRE, when

endowed with a DORAM secure as per Lemma 1, exhibits a leakage

L={n, z,m1,oq1 , . . . ,md ,oqd } to such adversary and allows the data
owner to detect any computation or data tampering.

We formally define and prove in Appendix A.2 the security guar-

antees stated in Lemma 2. These security guarantees derive from

three factors: the confidentiality and integrity guarantees of SGX;

the control flow of our substring search algorithms being indepen-

dent from any other information than the leakage L; access pattern

privacy guarantees on data structures given by our DORAMs.

5 EXPERIMENTAL RESULTS

We realized a publicly available C++ implementation [39] of Ob-

SQRE employing the Intel SGX SDK 2.5 [12]. To encrypt blocks

in the DORAM, we employed the AES implementation of Wolf-

SSL [45]. We performed all our tests on an Ubuntu 16.04 LTS server

equipped with 64 GiB of RAM memory and an Intel Xeon E3-1220

v6 CPU clocked at 3 GHz, where SGX is available. To evaluate

our substring search algorithms with different alphabets, we con-

sidered three datasets: the 21-st human chromosome [3] (Chr in

short), which encodes DNA sequences employing 7 symbols of the

FASTA format [11]; the SwissProt database [47], (Prot in short),

which contains 550k human proteins, encoded with 25 symbols as

a sequence of aminoacids; the Enron dataset [24], (Enron in short),

which contains real emails of a financial firm over an alphabet of

96 ASCII characters.

DORAM Benchmarking. First of all, we compared the response

time of the Access procedure for our three DORAMs, excluding

accesses to the position map in order to make these tests mean-

ingful also for ODS. We instantiated each of these DORAMs with

parameters chosen according to the configurations provided by the

authors of corresponding ORAM, except for Path DORAM where

we employed the same configurations of Ring DORAM. For Path

and Ring DORAMs, we considered two possible configurations to

explore the trade-off between the size of a bucket and the eviction

period A: indeed, while smaller buckets reduce the computational

cost of DORAM procedures, evictions, which are the most expen-

sive operations, are performed more frequently. The configurations

employed for our tests are reported in Table 3; we empirically veri-

fied that no stash overflow occurs after 2
30

round robin accesses

with the chosen parameters. For all the configurations, we mea-

sured the response time to access one block, averaged over 1024

accesses, for DORAMs with 2
i
, i∈{5, . . . , 25}, real blocks storing 8

bytes of data each. In all the tests, we fully initialized all the blocks

in the DORAM before measuring the response time.

Figure 2a reports the results of our benchmark, showing that

Path DORAM is the fastest one among our DORAMs. This outcome

(a) Response time of accesses for our DORAMs and the Path DORAM of Zero-

Trace [40]
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In this way, the look-up of a node in a BST with n nodes stored

inside an ODS requires log(n) direct (i.e., with no recursive position

map) accesses, one for each level of the BST, to the DORAM. In

our ODS, we roughly halve the look-up cost by applying a trick

proposed by Gentry [17]: instead of storing all the nodes of the BST

in the same DORAM, a distinct DORAM is employed for each level

of the BST.

Employing distinct Circuit DORAMs (resp. Path or Ring DO-

RAMs) to store each level of the BST allows to obliviously compute

the Rank procedure with O(log2(n)·Z ·B) (resp. O(log3(n)·Z 2·B))
cost. Since B=O(log(n)) and Z=O(1), the ODSBWT based oblivious

Rank procedure has the same O(log3(n)) computational cost of the

ABWT one; nonetheless, the ODSBWT method accesses log
2
(n)

DORAMs with small blocks instead of logC (n) DORAMs with large

blocks, in turn allowing different implementation tradeoffs.

Oblivious Backward Search and ObSQRE Security Analysys.

To make Alg. 1 oblivious, both the dictionary C and the SA Suf

must be obliviously accessed: indeed, the entries fetched from the

dictionary C would leak the characters of q, while the entries re-
trieved from the SAwould leak the values α and β , which are related
to both the string s and the substring q. To prevent such informa-

tion leakages, Suf is stored inside a DORAM, while C (with its |Σ|
entries) is stored inside the enclave and each search over it is (obliv-

iously) performed through a linear sweep. These implementation

choices together with each of the proposed oblivious Rank proce-

dures yield two substring search algorithms with computational

cost O((m+oq ) log
3(n)) and the following security guarantees.

Lemma 2. Consider a document collection D with z≥1 documents

and d≥1 substrings q1, . . . ,qd withm1, . . . ,md characters, respec-

tively. Consider a malicious adversary with full control of the machine

hosting the SGX enclave, which learns the access pattern of algorithms

run inside the enclave through side channel attacks. ObSQRE, when

endowed with a DORAM secure as per Lemma 1, exhibits a leakage

L={n, z,m1,oq1 , . . . ,md ,oqd } to such adversary and allows the data
owner to detect any computation or data tampering.

We formally define and prove in Appendix A.2 the security guar-

antees stated in Lemma 2. These security guarantees derive from

three factors: the confidentiality and integrity guarantees of SGX;

the control flow of our substring search algorithms being indepen-

dent from any other information than the leakage L; access pattern

privacy guarantees on data structures given by our DORAMs.

5 EXPERIMENTAL RESULTS

We realized a publicly available C++ implementation [39] of Ob-

SQRE employing the Intel SGX SDK 2.5 [12]. To encrypt blocks

in the DORAM, we employed the AES implementation of Wolf-

SSL [45]. We performed all our tests on an Ubuntu 16.04 LTS server

equipped with 64 GiB of RAM memory and an Intel Xeon E3-1220

v6 CPU clocked at 3 GHz, where SGX is available. To evaluate

our substring search algorithms with different alphabets, we con-

sidered three datasets: the 21-st human chromosome [3] (Chr in

short), which encodes DNA sequences employing 7 symbols of the

FASTA format [11]; the SwissProt database [47], (Prot in short),

which contains 550k human proteins, encoded with 25 symbols as

a sequence of aminoacids; the Enron dataset [24], (Enron in short),

which contains real emails of a financial firm over an alphabet of

96 ASCII characters.

DORAM Benchmarking. First of all, we compared the response

time of the Access procedure for our three DORAMs, excluding

accesses to the position map in order to make these tests mean-

ingful also for ODS. We instantiated each of these DORAMs with

parameters chosen according to the configurations provided by the

authors of corresponding ORAM, except for Path DORAM where

we employed the same configurations of Ring DORAM. For Path

and Ring DORAMs, we considered two possible configurations to

explore the trade-off between the size of a bucket and the eviction

period A: indeed, while smaller buckets reduce the computational

cost of DORAM procedures, evictions, which are the most expen-

sive operations, are performed more frequently. The configurations

employed for our tests are reported in Table 3; we empirically veri-

fied that no stash overflow occurs after 2
30

round robin accesses

with the chosen parameters. For all the configurations, we mea-

sured the response time to access one block, averaged over 1024

accesses, for DORAMs with 2
i
, i∈{5, . . . , 25}, real blocks storing 8

bytes of data each. In all the tests, we fully initialized all the blocks

in the DORAM before measuring the response time.

Figure 2a reports the results of our benchmark, showing that

Path DORAM is the fastest one among our DORAMs. This outcome
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procedure is repeated to visit the entire path of the BST. In this

way, the look-up of a node in a BST with n nodes stored inside

an ODS requires log(n) direct (i.e., with no recursive position map)

accesses, one for each level of the BST, to the DORAM. In our ODS,

we roughly halve the look-up cost by applying a trick proposed by

Gentry [17]: instead of storing all the nodes of the BST in the same

DORAM, a distinct DORAM is employed for each level of the BST.

Employing distinct Circuit DORAMs (resp. Path or RingDORAMs)

to store each level of the BST allows to obliviously compute the

Rank procedure with O(log2(n)·Z ·B) (resp. O(log3(n)·Z 2·B)) cost.
SinceB=O(log(n)) andZ=O(1), theODSBWTbased oblivious Rank

procedure has the sameO(log3(n)) computational cost of theABWT

one; nonetheless, the ODSBWT method accesses log
2
(n) DORAMs

with small blocks instead of logC (n) DORAMs with large blocks,

in turn allowing different implementation tradeoffs.

Oblivious Backward Search and ObSQRE Security Analysys.

To make Alg. 1 oblivious, both the dictionary C and the SA Suf

must be obliviously accessed: indeed, the entries fetched from the

dictionary C would leak the characters of q, while the entries re-
trieved from the SAwould leak the valuesα and β , which are related
to both the string s and the substring q. To prevent such informa-

tion leakages, Suf is stored inside a DORAM, while C (with its |Σ|
entries) is stored inside the enclave and each search over it is (obliv-

iously) performed through a linear sweep. These implementation

choices together with each of the proposed oblivious Rank proce-

dures yield two substring search algorithms with computational

cost O((m+oq ) log
3(n)) and the following security guarantees.

Lemma 2. Consider a document collection D with z≥1 documents

and d≥1 substrings q1, . . . ,qd withm1, . . . ,md characters, respec-

tively. Consider a malicious adversary with full control of the machine

hosting the SGX enclave, which learns the access pattern of algorithms

run inside the enclave through side channel attacks. ObSQRE, when

endowed with a DORAM secure as per Lemma 1, exhibits a leakage

L={n, z,m1,oq1 , . . . ,md ,oqd } to such adversary and allows the data
owner to detect any computation or data tampering.

We formally define and prove in Appendix A.2 the security guar-

antees stated in Lemma 2. These security guarantees derive from

three factors: the confidentiality and integrity guarantees of SGX;

the control flow of our substring search algorithms being indepen-

dent from any other information than the leakage L; access pattern

privacy guarantees on data structures given by our DORAMs.

5 EXPERIMENTAL RESULTS

We realized a publicly available C++ implementation [39] of ObSQRE

employing the Intel SGX SDK 2.5 [12]. To encrypt blocks in the

DORAM, we employed the AES implementation of WolfSSL [45].

We performed all our tests on an Ubuntu 16.04 LTS server equipped

with 64 GiB of RAM memory and an Intel Xeon E3-1220 v6 CPU

clocked at 3 GHz, where SGX is available. To evaluate our sub-

string search algorithms with different alphabets, we considered

three datasets: the 21-st human chromosome [3] (Chr in short),

which encodes DNA sequences employing 7 symbols of the FASTA

format [11]; the SwissProt database [47], (Prot in short), which

contains 550k human proteins, encoded with 25 symbols as a se-

quence of aminoacids; the Enron dataset [24], (Enron in short),

which contains real emails of a financial firm over an alphabet of

96 ASCII characters.

DORAM Benchmarking. First of all, we compared the response

time of the Access procedure for our three DORAMs, excluding

accesses to the position map in order to make these tests mean-

ingful also for ODS. We instantiated each of these DORAMs with

parameters chosen according to the configurations provided by the

authors of corresponding ORAM, except for Path DORAM where

we employed the same configurations of Ring DORAM. For Path

and Ring DORAMs, we considered two possible configurations to

explore the trade-off between the size of a bucket and the eviction

period A: indeed, while smaller buckets reduce the computational

cost of DORAM procedures, evictions, which are the most expen-

sive operations, are performed more frequently. The configurations

employed for our tests are reported in Table 3; we empirically veri-

fied that no stash overflow occurs after 2
30

round robin accesses

with the chosen parameters. For all the configurations, we mea-

sured the response time to access one block, averaged over 1024

accesses, for DORAMs with 2
i
, i∈{5, . . . , 25}, real blocks storing 8

bytes of data each. In all the tests, we fully initialized all the blocks

in the DORAM before measuring the response time.

Figure 2a reports the results of our benchmark, showing that

Path DORAM is the fastest one among our DORAMs. This outcome
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Figure 3: Comparison of ObSQRE oblivious substring search algorithms for Chr, Prot and Enron datasets.

Table 3: Parameters chosen for DORAMs. S is the stash size,

A the eviction period, Z (resp. D) the max. (resp. min.) num-

ber of real (resp. dummy) blocks per bucket

DORAM Z S D A

Path [44]

4 32 0 3

8 41 0 8

Circuit [49] 3 8 0 1

Ring [36]

4 32 6 3

8 41 13 8

is motivated by the simplicity of the client operations w.r.t. Ring

DORAM and by the higher eviction period than Circuit DORAM.

Nonetheless, we observe that the response time of Circuit DORAM

grows slower w.r.t. Path and Ring DORAMs, confirming that Circuit

DORAM is asymptotically faster. It is worth noting the different

impact of the eviction period and bucket size in Ring and Path

DORAMs: indeed, in the former, evicting less frequently achieves

better performance, even if each eviction is slower due to the larger

buckets; conversely, since in Path DORAM both Eviction and

FindBlock procedures become slower with larger buckets, a lower

eviction period yields better performance. To compare our DO-

RAMs with existing ones, we report in Fig. 2a the access response

time of our own implementation of the Path DORAM proposed in

ZeroTrace [40], referred to as ZT Path DORAM. The comparison

shows that all our DORAMs are faster than ZT one. In particular,

our Path DORAM is about 2× faster than ZT one, clearly showing

the performance gain given by amortizing the cost of evictions over

A≥1 accesses.
To assess the overhead introduced by our oblivious clients in

DORAMs, in Fig. 2b we compare their access response time with the

one of Singly Oblivious RAMs (SORAMs), which correspond to the

original versions of the ORAMs. For Path ORAM, we compare the

configuration achieving best performance for the DORAM with a

configuration for the SORAM suggested by authors in [44], i.e.,Z=4
and S=64. The results in Fig. 2b show that the computational over-

head introduced by oblivious clients is acceptable, being at most

2.5×. As expected, the slowdown of Circuit DORAM is negligible,

given the simple modifications required to make the client oblivi-

ous. Conversely, Path DORAM exhibits the highest slowdown: this

overhead comes from making the Eviction procedure oblivious

and from the additional path that is written back to the DORAM

tree in the FindBlock one.

ObSQRE PPSS Protocol Evaluation. We now evaluate the two

proposed oblivious substring search algorithms, combining each

of them with each of our DORAMs, choosing, for Path and Ring

ones, the most efficient configuration identified in our benchmark

(Fig. 2a). We evaluate the response time to compute the number of

occurrences of a substring with 24 characters for increasing sizes

of the datasets, without considering the retrieval of the positions

of the said occurrences as they depend neither on the specific

substring search algorithm nor on the alphabet size. To achieve

the maximum performance for the ABWT based algorithm, we

perform an exhaustive parameter space exploration to find the

optimal values for the sample period P and the factor C , which are

employed to construct the ABWT and the recursive position map

for the DORAM, respectively.

The results of the evaluation for both our oblivious substring

search algorithms are reported in Fig. 3. We observe that, regardless

of the DORAM being employed, the ABWT based algorithm is by

far the fastest, as its response time is about 3 to 5 times smaller than

ODSBWT one. This performance gap is due to the logC (⌈
n+1
P ⌉)

DORAMs accessed in the ABWT based Rank procedure instead of

the log
2
(n) ones in the ODSBWT based method. The comparison

among different datasets reveals that the ABWT algorithm is more

affected by the alphabet size |Σ|, as, regardless of the DORAM,

the queries for the Enron dataset are slower than Chr and Prot
ones. This is expected, as the size of the entries in the ABWT, and

thus the block size of the DORAM storing it, depends linearly on

|Σ|; conversely, ODSBWT algorithm is negligibly affected by |Σ|.
Concerning the different DORAMs employed to store the full-text

index, the ABWT based algorithm achieves the best performance

when combined with Circuit DORAM (blue lines in the right pane

in Fig. 3), while Path DORAM outperforms the other ones in the

ODSBWT algorithm (green lines in the left pane in Fig. 3). However,

while Path DORAM is the most efficient in our benchmarks in

Fig. 2a, it exhibits the largest slowdown when employed for the

ABWT algorithm. This outcome is due to the low value of the factor

C (comparatively with the values derived for the other DORAMs)

which is identified as optimal for Path DORAM in the previously

mentioned exhaustive parameter space exploration for the ABWT

Figure 3: Comparison of ObSQRE oblivious substring search algorithms for Chr, Prot and Enron datasets.
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8 41 13 8
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DORAMs: indeed, in the former, evicting less frequently achieves

better performance, even if each eviction is slower due to the larger

buckets; conversely, since in Path DORAMboth Eviction and Find-

Block procedures become slower with larger buckets, a lower evic-

tion period yields better performance. To compare our DORAMs

with existing ones, we report in Fig. 2a the access response time
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perform an exhaustive parameter space exploration to find the

optimal values for the sample period P and the factor C , which are

employed to construct the ABWT and the recursive position map

for the DORAM, respectively.

The results of the evaluation for both our oblivious substring

search algorithms are reported in Fig. 3. We observe that, regardless

of the DORAM being employed, the ABWT based algorithm is by

far the fastest, as its response time is about 3 to 5 times smaller than

ODSBWT one. This performance gap is due to the logC (⌈
n+1
P ⌉)

DORAMs accessed in the ABWT based Rank procedure instead of

the log
2
(n) ones in the ODSBWT based method. The comparison

among different datasets reveals that the ABWT algorithm is more

affected by the alphabet size |Σ|, as, regardless of the DORAM,

the queries for the Enron dataset are slower than Chr and Prot
ones. This is expected, as the size of the entries in the ABWT, and

thus the block size of the DORAM storing it, depends linearly on

|Σ|; conversely, ODSBWT algorithm is negligibly affected by |Σ|.
Concerning the different DORAMs employed to store the full-text

index, the ABWT based algorithm achieves the best performance

when combined with Circuit DORAM (blue lines in the right pane

in Fig. 3), while Path DORAM outperforms the other ones in the

ODSBWT algorithm (green lines in the left pane in Fig. 3). However,

while Path DORAM is the most efficient in our benchmarks in

Fig. 2a, it exhibits the largest slowdown when employed for the

ABWT algorithm. This outcome is due to the low value of the factor

C (comparatively with the values derived for the other DORAMs)

which is identified as optimal for Path DORAM in the previously

mentioned exhaustive parameter space exploration for the ABWT
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algorithm. Indeed, a lowC implies a high number of deployed Path

DORAMs to recursively store and access the position map. Since

the only performance benefit given by a low value for C is that the

blocks of all these DORAMs are smaller, our conjecture is that Path

DORAM is more affected by the block size than other DORAMs;

to validate our hypothesis, we evaluate the response time of our

DORAMs with blocks of increasing size, hereby observing a much

worse performance degradation in Path DORAM than in Circuit

and Ring ones.

Once determined that ObSQRE achieves the best performance

when the ABWT based backward search is paired with Circuit

DORAM, we validated the practicality of this solution on two real-

istic use cases: the look-up of the occurrences of a DNA sequence

corresponding to a protein in the entire human genome, whose size

is approximately 3 GB, and the look-up of all the occurrences of

three typical strings (i.e., Fitch, Business Trip and Investment Port-

folio) in the financial domain over the whole Enron email corpus,

whose size is about 1 GB. Furthermore, we evaluated the overhead

of ObSQRE w.r.t. baseline solutions with weaker security guaran-

tees: an application running the ABWT based substring search

algorithm outside the enclave, which has no security guarantees;

an application running the algorithm inside the enclave but em-

ploying Path SORAM (i.e., the fastest among our SORAMs) instead

of Circuit DORAMs, which is secure only if the critical leakage of

memory access patterns inside SGX is ignored (as in SGX threat

model). Table 4 outlines the results of this evaluation. Although

the overhead incurred by ObSQRE over a solution with no security

guarantees in both the use cases amounts to about 3 order of mag-

nitudes, ObSQRE is only 3× slower than a solution that ensures

confidentiality of the data in the SGX threat model. Furthermore,

the results show the practicality of ObSQRE in real-world scenarios,

as the occurrences of a protein over the whole genome are found in

only 1.019 seconds, while the occurrences of a string in the whole

Enron corpus are found in just few milliseconds.

Finally, the benefits provided by running a DORAM client inside

an enclave (on the server side) compared to the traditional setting

where the ORAM client and server run on separate machines are a

performance gain in overall response time which ranges from one

to two orders of magnitude, in our genomic use-case. Indeed, consid-

ering the RTTs provided by the Akamai’s content delivery network

(CDN), from local connections to intercontinental ones [32, Tab.

1], the network latency of our genomic use-case in the traditional

ORAM setting would range from 10 to 600 seconds, depending on

Table 4: Performance ofObSQREand less secure alternatives

applied to the genomic and Enron datasets with different

lengths of the queried subsring (m). Response time to com-

pute the number of occurrences is denoted as S, while R de-

notes the time to retrieve all the corresponding positions

Dataset m #Occ.

ObSQRE SGX+ no SGX+

(ms) SORAM (ms) no ORAM (µs)

Genome 3050 1 S: 1019 R: 0.6 S: 347 R: 0.3 S: 167 R: 0.2

Enron 5 2657 S: 1.6 R: 2.1 S: 0.6 R: 0.8 S: 0.8 R: 10.4

Enron 13 290 S: 5.0 R: 0.5 S: 1.7 R: 0.2 S: 3.1 R: 1.1

Enron 20 154 S: 7.8 R: 0.6 S: 2.8 R: 0.2 S: 5.1 R: 0.6

the type of network connection, without even considering further

network latencies due to recursive accesses to the position map.

6 CONCLUDING REMARKS

ObSQRE is the first solution enabling substring search queries over

outsourced data combining the SGX technology and the design of a

DORAM to provide private data access with no information leakage

coming from memory access patterns. The experimental evaluation

demonstrates the practical deployment of ObSQRE on off-the-shelf

hardware with real-world genomic and financial datasets.
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A FORMAL SECURITY ANALYSIS

We provide here the formal proofs of the security guarantees of

ObSQRE, hereby formalizing the security notion reported in Lemma 2.
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Experiment out ← Realρ,A (λ): Experiment out ← Idealρ,A,S(λ):
(D, stA ) ← AInit (1

λ) (D, stA ) ← AInit (1
λ)

res0 ← ρ.Init([Di ]
n
i=1) (DS , stS) ← SInit (LInit )

∀i ∈ {1, . . . ,d}: res0 ← ρ.Init([DSi ]
n
i=1)

dis (bidi , stA ) ← AAcc,i (stA ,D, [bidj ]
i−1
j=1,LInit , [LAcc, j ]

i−1
j=1, ∀i ∈ {1, . . . ,d}:

TInit , [TAcc, j ]
i−1
j=1) dis (bidi , stA ) ← AAcc,i (stA ,D, [bidj ]

i−1
j=1,LInit , [LAcc, j ]

i−1
j=1,

dis resi ← ρ.Access(bidi ) TInit , [TAcc, j ]
i−1
j=1)

out ← {[resi ]
d
i=0, [TAcc,i ]

d
i=1,TInit , stA } dis (bidSi , stS) ← SAcc,i (stS ,LInit , [LAcc, j ]

i
j=1)

dis resi ← ρ .Access(bidSi )
if resi , abort: resi ← Dbidi
out ← {[resi ]

d
i=0, [TAcc,i ]

d
i=1,TInit , stA }

Figure 4: Security Experiments for DORAM protocol ρ

Our security analysis is carried out in two main steps: first, we

define and prove the security guarantees of our DORAMs; then,

we define and prove the security guarantees of ObSQRE assuming

that a secure DORAM is employed. For the sake of conciseness, we

prove the security only for the components of our best performing

solution, composed by Circuit DORAM and ABWT based oblivious

substring search algorithm; similar proofs can be constructed for

Path and Ring DORAMs and for the ODSBWT algorithm.

As customary in the context of privacy-preserving protocols, our

security definitions are based on the simulation paradigm, which

mandates to prove the security guarantees of the protocol by show-

ing that its actual execution can be simulated by a simulator S

which knows only the information L leaked to the adversary in the

actual execution of the protocol. The leakage L must be defined

beforehand, and it is specific for each protocol; the existence of

the simulator S allows to prove that the adversary learns no more

information than L throughout the execution of the protocol.

A.1 DORAM Security

We assume that the DORAM stores a dataset D split in n blocks,

each of size B bits. In our security definition, besides the Access pro-

cedure already described throughout the manuscript, we consider

also an Init procedure, which is employed to build the DORAM

tree and insert the n blocks of D in the DORAM: specifically, for

each block, the algorithm obliviously adds to the stash the block at

hand and then evicts the stash to the DORAM tree following the

eviction strategy of the DORAM. In order to properly construct

the DORAM tree, the Init procedure employs several parameters

specified by the user: the recursive factor C to build the recursive

position map, the maximum number of real blocks per bucket Z ,
the stash size S , the number of dummy blocks per buckets D and

the eviction period A. The security guarantees of DORAM are not

weakened if the adversary knows these values, since they depend

only on the number of blocks of the DORAM; thus, to simplify

our security analysis we assume that the Init procedure always

employs the same values for these parameters. Since our DORAMs

employs an integrity-check mechanism based onMerkle-trees, both

the Init and Access procedures may return the special value abort
in case they detect data tampering on the DORAM.

To outline the security definition for the DORAM primitive, we

need to introduce two further concepts: the trace T and the leakage

L for the adversary. The former represents the information directly

observed by the adversary while interacting with the DORAM:

Definition 1 (Trace of DORAM). Given a DORAMwhose client

runs inside an SGX enclave and the DORAM tree is stored in the unpro-

tected memory, the trace of the DORAM is T = {CodeAP ,DataAP ,
DataSrv }, with CodeAP and DataAP denoting the code and data

access patterns of the DORAM client, respectively, while DataSrv de-

notes the information sent by the DORAM client outside the enclave.

In our security definition, we split the trace in two components

TInit and TAcc , which refer to the trace of the Init and the Access

procedures, respectively. The leakage L denotes the information

about the dataset and the accessed blocks which is inferred by the

adversary from the trace T . We split the leakage L in two compo-

nents LInit and LAcc that represent the information inferred by

the adversary from TInit and TAcc , respectively.

Definition 2 (DORAM Security). Given a security parameter λ,
a DORAM ρ with trace T as in Def. 1, leakage L = {LInit ,LAcc }

and an integerd≥1, consider the two interactive experiments Realρ,A
and Idealρ,A,S , outlined in Fig. 4, between a challenger and an

adversary A consisting of d+1 probabilistic polynomial time algo-

rithms, i.e., A={AInit ,AAcc,1, . . . ,AAcc,d }. Throughout the ex-

periments, the challenger may invoke the DORAM ρ and a simu-

lator S consisting of d+1 probabilistic polynomial time algorithms,

i.e., S={SInit ,SAcc,1, . . . ,SAcc,d }; the adversary A can tamper

with data and computation of the DORAM as described in our threat

model. Denoting asD a probabilistic polynomial time algorithm that,

given the output o of an experiment determines if o refers to Realρ,A
(D(o) = 0) or Idealρ,A,S (D(o) = 1) experiment, the DORAM ρ,
with leakage L and trace T , is secure against malicious probabilistic

polynomial time adversaries A if, for every possible A, there exists a

simulator S such that for every D:

Pr(D(o)=1|o←Realρ,A )−Pr(D(o)=1|o←Idealρ,A,S)≤ϵ(λ)

where ϵ(·) is a negligible function.

In the experiments outlined in Fig. 4, both the adversary and

the simulator are stateful, that is they have a state stA (resp. stS )
employed to store any information learned throughout the exper-

iment. In short, our security definition is satisfied if the outputs

of the two experiments outlined in Fig. 4 are computationally in-

distinguishable. This property is sufficient to guarantee that the
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DORAM protocol leaks to any malicious adversary no more infor-

mation than the leakage L. Indeed, the information available to

the adversary at the end of the Idealρ,A,S experiment, namely

the trace of the DORAM T and the state stA of the adversary,

depends on the fake input data {DS , [bidSi ]
d
i=1} constructed by the

simulatorS. SinceSconstructs the fake input data by knowing only

the leakage L provided by the challenger, no more information

than L about the actual data can be inferred by the adversary from

the operations observed over fake data. Since this experiment is

computationally indistinguishable from the Realρ,A one, then the

information available to the adversary in the Realρ,A experiment

cannot reveal more information than L about the actual data.

Furthermore, since the results of the d+1 operations must be

indistinguishable between the two experiments, our definition guar-

antees also that a malicious adversary cannot affect the result of the

computation without being detected by the DORAM client. Indeed,

in the Idealρ,A,S experiment, the challenger ensures that the result

of the computation is always the correct one, unless the DORAM

ρ has detected a misbehavior of the adversary. Thus, in case there

exists a misbehavior of the adversary affecting the correctness of

the result that is not detected by the DORAM, the result would be

correct in the Idealρ,A,S experiment but wrong in the Realρ,A
one, hence making them distinguishable.

Theorem 1. Our DORAMs meet the security guarantees of Def. 2

against a malicious adversary with leakage L = {LInit ,LAcc,1,

. . . ,LAcc,d }, where LInit = {n,B} and LAcc,i = ∅, i = 1, . . . ,d .

Proof. To prove this statement, we show the construction of a

simulatorS that makes the transcript of the Idealρ,A,S experiment

computationally indistinguishable from the Realρ,A one.

Simulator SInit . This algorithm, given LInit as input, randomly

samples n blocks DSi of B bits, and then it invokes the Init proce-

dure of the DORAM to instantiate the DORAM with these n blocks.

The traces TInit observed by the adversary in the two experiments

are indistinguishable: indeed, the DORAM is constructed with sim-

ilar parameters, and the Init procedure accesses the same blocks

in both the experiments (as path for evictions are chosen accord-

ing to a deterministic schedule). Since the blocks inserted in the

DORAM are encrypted with a semantically secure cipher, it is not

possible to distinguish the blocks with random data employed in

the Idealρ,A,S experiment from the blocks with actual data of the

Realρ,A one. The result res0 of the Init procedure is the same in

both experiments, as the tampering of the tree is detected inde-

pendently from the data stored inside the DORAM. Furthermore,

except for such tampering, there are no other adversarial behav-

iors that may alter the result of the computation, since it entirely

involves code and data stored inside the SGX enclave.

Simulator SAcc, i, i ∈ {1, . . . , d}. This simulator simply chooses at

random the block id bidSi to be accessed by the DORAM. We now

show that the traces TAcc,i of our Circuit DORAM observed by the

adversary in both the experiments are computationally indistin-

guishable. We start by proving the following claim about the code

and data access patterns of the client algorithm in Circuit DORAM:

Theorem 2. The code and data access patterns (CodeAP and

DataAP ) of our Circuit DORAM client in the Access procedure are

independent from the block id bid given as input to the procedure

Proof. The Access procedure of the DORAM has two main

phases: the former retrieves from the position map the leaf id lid
corresponding to block bid , replacing lid with a new random leaf

id lid ′ in the corresponding entry of the position map; the latter

employs the FindBlock and Eviction procedures to retrieve the

block with id bid from the DORAM. We first prove our claim for

these two procedures; then, we prove it also for the first phase in

the case the position map is recursively stored in several DORAMs.

FindBlock. The DORAM client executes the FindBlock proce-

dure reported in Alg. 2. Both the control flow and the memory

locations accessed by this procedure are clearly independent from

the block id bid : indeed, the former depends only on parameters of

the DORAM known to the adversary, while all conditionally depen-

dent memory accesses are performed through oblivious operations.

Eviction. This procedure, reported in Alg. 5, is executed over two

paths, chosen by the client with a deterministic schedule known to

the adversary and independent frombid ; furthermore, as the control

flow of this procedure depends only on parameters of the DORAM

known to the adversary and all the conditionally dependent mem-

ory accesses are performed through oblivious operations, both code

and data access patterns of this procedure are independent from

the block id bid .

Recursive Position Map. We recall that the position map of the

DORAM is stored in O(logC (n)) DORAMs of increasing size, and

the client stores only the position map of the smallest among these

DORAMs. The algorithm to retrieve the leaf id corresponding to

block bid has O(loдC (n)) iterations; in each of them, the algorithm

accesses one of the DORAMs storing the position map, hinging

upon FindBlock and Eviction procedures: as we have just shown,

their operations are independent from bid . The algorithm, after

retrieving a block from these DORAMs, performs a linear sweep

over such block; this block is a small array with O(C) entries, and
each of them is obliviously swapped with a target memory location

through OblSwap operation. Therefore, the sweep over the block

does not depend on bid . No other operations are performed in each

iteration of the algorithm, thus making the retrieval of the leaf id lid
corresponding to the block with id bid independent from bid . □

The claim in Thm. 2 implies that there is no difference on the

access patterns observed by the adversary in the Realρ,A and

Idealρ,A,S experiments. Regarding Datasrv , that is the informa-

tion sent outside the enclave from the DORAM client, we observe

that this is limited to the leaf ids of the paths being fetched or

evicted, and the blocks of these paths written back to the DORAM

tree. The paths to be fetched in our DORAMs are chosen in the

same way as in the corresponding ORAM; thus, the leaf ids of these

paths are distributed as in the corresponding ORAM. Since leaf

ids of fetched paths in Circuit ORAM are uniformly distributed,

independently from the accessed blocks, then the distribution of

the leaf ids fetched by our DORAM is uniform in both the Realρ,A
and Idealρ,A,S experiments. Regarding the paths being evicted,

in all our DORAMs they are chosen according to a deterministic

schedule that depends only on the eviction period A, which is the

same in both experiments; thus, the ids of the evicted paths cannot

be employed to distinguish the traces between the two experiments.

Finally, since the blocks are encrypted with a semantically secure
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Experiment out ← RealP,A (λ): Experiment out ← IdealP,A,S(λ):
(D, stA ) ← A0(1

λ) (D, stA ) ← A0(1
λ)

I ← P .Setup(D) (IS , stS) ← S0(LSetup ,LLoad )

res0 ← P .Load(I) res0 ← P .Load(I
S)

∀i ∈ {1, . . . ,d}: ∀i ∈ {1, . . . ,d}:
dis (qi ,occi , stA )←Ai (stA ,D, [qj ]i−1j=1, [occ j ]

i−1
j=1,LSetup ,LLoad , dis (qi ,occi , stA )←Ai (stA ,D, [qj ]i−1j=1, [occ j ]

i−1
j=1,LSetup ,LLoad ,

disagi [LQuery, j ]
i−1
j=1,TSetup ,TLoad , [TQuery, j ]

i−1
j=1) disagi [LQuery, j ]

i−1
j=1,TSetup ,TLoad , [TQuery, j ]

i−1
j=1)

dis resi ← P .Query(qi ,occi ) dis (qSi ,occ
S
i , stS) ← Si (stS ,LSetup ,LLoad , [LQuery, j ]

i
j=1)

out ← {[resi ]
d
i=0, [TQuery,i ]

d
i=1,TSetup ,TLoad , stA } dis resi ← P .Query(qSi ,occ

S
i )

dis if resi , abort: resi ← Rqi
out ← {[resi ]

d
i=0, [TQuery,i ]

d
i=1,TSetup ,TLoad , stA }

Figure 5: Security Experiments for PPSS protocol P

scheme, the paths being written back after fetch or eviction ap-

pear as indistinguishable random data in both the experiments. In

conclusion, the traces TAcc,i , i = 1, . . . ,d are computationally in-

distinguishable between the Realρ,A and Idealρ,A,S experiments.

Regarding the results resi of the Access procedure, the integrity
check mechanism ensures that any tampering on the path fetched

from the DORAM tree is detected in both experiments. Conversely,

in case the adversary decides to tamper with a randomly chosen

path before knowing which path will be fetched, the results be-

tween the two experimentsmay differ; nonetheless, as the adversary

cannot guess with other than uniform probability the path being

fetched in the Access procedure in both experiments, the statistical

distribution of tampering detection is equivalent to the distribu-

tion of correctly guessing the path being fetched, which is uniform

in both experiments. The adversary has no other ways to tamper

with data and computation, thus proving that the results resi are
computationally indistinguishable between the experiments. □

A.2 ObSQRE Security Analysis

We now prove the security guarantees of ObSQRE, assuming that a

DORAM fulfilling the security requirements of Thm. 1 is employed

in our oblivious substring search algorithms. Some of these algo-

rithms may employ several parameters, such as the sample period

employed in the construction of the ABWT; since these parameters

are not sensitive and can be derived by the adversary itself, for

simplicity in our security analysis we assume that the same value

is always employed. Similarly, we assume that the alphabet of the

documents in the document collection D is publicly known.

As in the DORAM security analysis, we define the traces of

the three procedures as the information observed by the adversary

throughout the execution of these procedures. For the ones running

inside the enclave, namely Load andQuery, the traces TLoad and

TQuery are defined as in Def. 1, with the DORAM client being

trivially replaced by the corresponding procedure; instead, since the

Setup procedure is executed at data-owner’s side, its trace TSetup is

limited to the encrypted full-text index sent to the untrusted server,

denoted as I. We also define the leakage L as the information

inferred by the adversary about the document collection D, the
substring queried q and the occurrences of q in D; we split L

in three components LSetup , LLoad and LQuery , denoting the

leakage in the corresponding ObSQRE procedure.

In our security definition, we consider a modified Query proce-

dure that, instead of retrieving all the oq occurrences of a string

q in D, allows to specify the number occ of occurrences to be re-

trieved. This procedure can be implemented by fetching occ entries
instead of oq ones from the suffix array SA in the second phase of

backwards search algorithm (lines 6-7 of Alg. 1). This modification

allows to prove that ObSQRE is secure against an adversary that

can choose the query to be performed after observing the traces

of previous queries. In this way, the protocol remains secure even

if the adversary can somehow control ObSQRE operations (e.g.,

forcing to always querying the same string).

Definition 3 (PPSS Security). Given a security parameter λ, a
PPSS protocol P with trace T = {TSetup ,TLoad ,TQuery }, leakage

L = {LInit ,LLoad ,LQuery } and an integer d ≥ 1, consider the

two interactive experiments RealP,A and IdealP,A,S , outlined in

Fig. 5, between a challenger and an adversary A consisting of d+1
probabilistic polynomial time algorithms A0,A1, . . . ,Ad . Through-

out the experiments, the challenger may invoke the protocol P and

a probabilistic polynomial time simulator S consisting of d+1 prob-
abilistic polynomial time algorithms S0,S1, . . . ,Sd ; the adversary

A can tamper with data and computation of the PPSS protocol as de-

scribed in our threat model. Denoting asD a probabilistic polynomial

time algorithm that, given the output o of an experiment determines

if o refers to RealP,A (D(o) = 0) or IdealP,A,S (D(o) = 1) exper-

iment, the PPSS protocol P, with leakage L and trace T , is secure

against malicious probabilistic polynomial time adversaries A if, for

every possible A, there exists a simulator S such that for every D:

Pr(D(o)=1|o←RealP,A )−Pr(D(o)=1|o←IdealP,A,S)≤ϵ(λ)

where ϵ(·) is a negligible function.

Theorem 3. For a document collectionD={D1, . . . ,Dz } with z≥1
documents and d ≥ 1 strings q1, . . . ,qd , assuming that a DORAM

with the security guarantees outlined in Thm. 1 is employed, ObSQRE

is secure according to Def. 3 with a leakage L = {LSetup ,LLoad ,

LQuery,1, ...,LQuery,d } defined as:

• LSetup = {z,n =
∑z
i=j |D j |}

• LLoad = {n}
• LQuery,i = {mi ,occi }, i ∈ {1, . . . ,d}, where mi=|qi | and
occi is the number of occurrences of qi in D retrieved by the

user



ACSAC 2020, December 7–11, 2020, Austin, USA N. Mainardi, D. Sampietro, A. Barenghi, G. Pelosi

Proof. To prove the theorem, we describe the simulator S and

we show that the output of the IdealP,A,S experiment is compu-

tationally indistinguishable from the output of the RealP,A one.

Simulator S0. This simulator, upon receiving LSetup and LLoad ,

constructs a document collection DS over the publicly known al-

phabet Σ by randomly sampling z strings whose lengths sum up

to n. Then, the simulator computes the ABWT-based full-text in-

dex from DS and encrypts it with an AEAD scheme, obtaining the

encrypted index IS . This index has the same size of the index I

computed from the document collectionD chosen by the adversary;

furthermore, each of its entries are encrypted with a semantically

secure scheme, in turn making the indexes I,IS (and thus the

traces TSetup in the experiments) computationally indistinguish-

able. The traces TLoad are also computationally indistinguishable

in both the experiments. Indeed, in the Load procedure, IS is

decrypted, and then the ABWT and the SA are inserted into the

DORAM through the Init operation. The security guarantees of the

DORAM ensures that this operation leaks only the number and the

size of the DORAM blocks: their number is proportional, for both

the ABWT and the SA, to n, which is the same in both experiments;

the size of each block corresponds to the size of each entry of the

ABWT and the SA, respectively, which are already known to the

adversary. Finally, the security guarantees of the DORAM ensures

that Init procedure is secure against any tampering to the DORAM

tree, while the AEAD scheme guarantees that any tampering on

the encrypted indexes I, IS is detected in the Load procedure,

hence making the results res0 equivalent in both experiments.

Simulator Si, i ∈ {1, . . . , d}. This simulator, upon receiving the

leakage LQuery,i , chooses a random string qSi of lengthmi and

sets occSi = occi . The Query procedure employs the oblivious

backward search algorithm with ABWT based oblivious Rank pro-

cedure. The number of iterations of backwards search depends

only onmi and occi in both the experiments. The linear sweeps

over the dictionary C adds to the trace TQuery only its size |Σ|, as
each entry is involved in an oblivious write. The oblivious Rank

procedure, outlined in Alg. 6, retrieves a block from the DORAM,

whose security guarantees ensures that no information is leaked

during the Access operation. After retrieving such block, the Rank

procedure obliviously sweeps over this block, an operation that

reveals only the block size, which is already known from TLoad .

Concerning the result of the query, all the operations, except for the

DORAM Access, are performed inside the SGX enclave, where any

code and data tampering is prevented. As the security guarantees

of DORAM ensures that accesses are secure against any tamper-

ing strategy, then the results of the queries are computationally

indistinguishable in both experiments. □

A.3 Oblivious EarlyReshuffle Analysis

Weprove that the strategy employed by EarlyReshuffle procedure

of our Ring DORAM places Z blocks out of the Z+D slots available

in the bucket uniformly at random. To this extent, we define the

event Ei, j , i∈{1, . . . ,Z }, j∈{0, . . . ,Z+D−1}, which is verified if the

slot j of the bucket is full in the i-th iteration. Similarly, we define

the event Bi, j , i∈{1, . . . ,Z }, j∈{0, . . . ,Z+D−1}, which is verified

if the i-th block placed by EarlyReshuffle is assigned to the slot

j of the bucket. Clearly, the i-th block is assigned to the slot j if
and only if this slot is chosen in the i-th iteration and it is never

chosen in all previous iterations, i.e, Bi, j =
∧i−1
h=1 ¬Eh, j ∧Ei, j . The

probability of the event Bi j can be thus computed as:

Pr(Bi, j ) = Pr(
i−1∧
h=1

¬Eh, j ∧ Ei j ) = Pr(Ei, j |
i−1∧
h=1

¬Ehj )Pr(
i−1∧
h=1

¬Eh, j )

= Pr(Ei, j |
i−1∧
h=1

¬Eh, j )Pr(¬Ei−1, j |Pr(
i−2∧
h=1

¬Eh, j ))Pr(
i−2∧
h=1

¬Eh, j )

= Pr(Ei, j |
i−1∧
h=1

¬Eh, j )Pr(¬Ei−1, j |Pr(
i−2∧
h=1

¬Eh, j ) · · · Pr(¬E1, j )

(1)

We now compute each of these probabilities. Pr(¬E1, j ) is the prob-
ability that the slot j is not chosen in the first iteration; since

each of the Z+D slots may be chosen with uniform probability,

Pr(¬E1, j ) =
Z+D−1
Z+D . Pr(¬Eh, j |

∧h−1
k=1 ¬Ek, j ) is the probability that

the slot j is not chosen among the Z+D−h+1 ones still available
in the h-th iteration; since each of them may be chosen with uni-

form probability, then Pr(¬Eh, j |
∧h−1
k=1 ¬Ek, j ) =

Z+D−h
Z+D−h+1 . Finally,

Pr(Ei, j |
∧i−1
z=1 ¬Ez, j ) is the probability that the slot j is chosen in

the i-th iteration; as the slot is chosen uniformly at random among

Z+D−i+1 ones, then Pr(Ei, j |
∧i−1
z=1 ¬Ez, j ) =

1

Z+D−i+1 . Substitut-

ing these probabilities in Equation 1, we obtain:

Pr(Bi, j ) =
1

Z + D − i + 1

i−1∏
h=1

Z + D − h

Z + D − h + 1
=

1

Z + D

Since the analysis may be repeated for each slot j and for each of

the z blocks, we conclude that each block is placed with uniform

probability over all the Z+D slots of the bucket.
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