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A B S T R A C T   

Many cities in low- and medium-income countries (LMICs) are facing rapid unplanned growth of built-up areas, 
while detailed information on these deprived urban areas (DUAs) is lacking. There exist visible differences in 
housing conditions and urban spaces, and these differences are linked to urban deprivation. However, the 
appropriate geospatial information for unravelling urban deprivation is typically not available for DUAs in 
LMICs, constituting an urgent knowledge gap. The objective of this study is to apply deep learning techniques 
and morphological analysis to identify degrees of deprivation in DUAs. To this end, we first generate a reference 
dataset of building footprints using a participatory community-based crowd-sourcing approach. Secondly, we 
adapt a deep learning model based on the U-Net architecture for the semantic segmentation of satellite imagery 
(WorldView 3) to generate building footprints. Lastly, we compute multi-level morphological features from 
building footprints for identifying the deprivation variation within DUAs. Our results show that deep learning 
techniques perform satisfactorily for predicting building footprints in DUAs, yielding an accuracy of F1 score =
0.84 and Jaccard Index = 0.73. The resulting building footprints (predicted buildings) are useful for the 
computation of morphology metrics at the grid cell level, as, in high-density areas, buildings cannot be detected 
individually but in clumps. Morphological features capture physical differences of deprivation within DUAs. Four 
indicators are used to define the morphology in DUAs, i.e., two related to building form (building size and inner 
irregularity) and two covering the form of open spaces (proximity and directionality). The degree of deprivation 
can be evaluated from the analysis of morphological features extracted from the predicted buildings, resulting in 
three categories: high, medium, and low deprivation. The outcome of this study contributes to the advancement 
of methods for producing up-to-date and disaggregated morphological spatial data on urban DUAs (often referred 
to as ‘slums’) which are essential for understanding the physical dimensions of deprivation, and hence planning 
targeted interventions accordingly.   

1. Introduction 

African cities are in a period of rapid urbanization. African urban 
population grows on average by 3.55% per year (UN-Habitat, 2020). 
Between 1999 and 2009, the population of Nairobi, Kenya, increased 
from 2 million to 3.1 million people. The latest census (KNBS, 2019) 
indicates that the Nairobi urban population reaches up to 4.3 million 

people, implying an annual growth rate of 3.8% per year. These new 
urban residents need housing, and if low-cost formal housing is under
provided, many end up living in unplanned areas that grow organically 
(Davis, 2006; Oberay, 1993). Already, 56% of the urban population in 
Kenya is living in poor and unplanned areas (World Bank, n.d) referred 
to as slums by international institutions such as the World Bank (WB) 
and the United Nations (UN). Specifically, in the city of Nairobi, where 
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this study is carried out, 75% of the urban population growth is absorbed 
by unplanned areas (UN-Habitat, 2006). 

There are many ways of referring to unplanned areas with high 
poverty rates depending on the local context (UN-Habitat, 2003) and 
these differ between various international organizations, experts (e.g., 
Sliuzas, Mboup, & de Sherbinin, 2008; UN-Habitat, 2003; UN-Habitat, 
Statistics-Division, U, and Alliance, C, 2002; World Bank, 2008), and 
may even vary within the same government itself. For instance, the 
KENSUP and KISIP programs in Kenya, refer to them as slums or 
informal settlements. Many historical definitions of slums exist (De 
Castro, 2018), and although the word slum is commonly used, it has 
pejorative and ideological connotations (Gilbert, 2007). In contrast, the 
‘deprived area’ designation is considered devoid of ideological meaning 
given that it is a technical term referring to scarcity. The terminology 
deprived urban area (DUA) is a concept that refers to areas lacking one or 
more urban indicators at different levels- household level, area level-. 
Hereafter, the term deprived area will be used to define poor areas and 
their inhabitants. Although there are efforts to define the indicators that 
best describe urban deprivation (Abascal et al., 2021; Taubenböck, 
Kraff, & Wurm, 2018), there is still no global methodological agreement 
to conceptualise, quantify or map deprivation (Baud, Sridharan, & 
Pfeffer, 2008; Kohli, Sliuzas, Kerle, & Stein, 2012; Thomson et al., 2020). 
Identifying and characterizing poverty from a multidimensional 
perspective is essential for urban planners and policy makers to target 
and monitor pro-poor policies (Arimah, 2001; Henninger & Snel, 2002; 
Huchzermer, 2011). 

According to UN-Habitat (2003), a “slum” is a household-level 
concept to characterize deprivation, which is defined as the absence of 
any one of the following indicators: quality water, improved sanitation, 
sufficient living space, durable housing, or secure tenure. This definition 
of a slum is a household-level characterisation that does not incorporate 
the surrounding area (Lilford et al., 2019). More recently, efforts have 
been made to understand deprivation as a sum of scarcities and it has 
been argued that further understanding requires characterisation 
through a multidimensional perspective (Abascal et al., 2021; Liang, De 
Jong, Schraven, & Wang, 2021). In line with Thomson et al. (2020), this 
study argues that encompassing deprivation levels within a broader 
scope requires not just characterisation of the inhabitants but also of the 
area in which they live. This area-level characterisation refers to both 
the physical characteristics of the focal area as well as its relative spatial 
configuration with its neighbouring regions. 

Further, in order to proceed with the spatial analysis, urban spatial 
data is required, i.e., building footprints. Spatial data on DUAs are 
outdated or even non-existent, creating a gap in knowledge of the 
physical characteristics of deprivation. To generate such data, manual 
digitizing is the most conventional way of mapping, but it requires 
expert interpretation and field work, which is costly and time- 
consuming. Moreover, it falls short in terms of updatability, scalabil
ity, and transferability. Hence, a more efficient methodology is needed 
to address these challenges, while also responding to the UN’s demand 
to update data for the Sustainable Development Goals (SDGs) (UN- 
Habitat, 2015). Clearly, there is a need to improve data availability, 
quality, consistency, timeliness, and disaggregation in DUAs (Kuffer 
et al., 2021). 

Remote sensing (RS) has shown good potential in the extraction of 
urban physical features by providing spatial disaggregated and geo
located urban data (Camps-Valls, Tuia, Xiang-Zhu, & Reichstein, 2021; 
Jochem & Tatem, 2021). Additionally, it can provide up-to-date data 
due to its constant monitoring of the Earth’s surface. Spatial Analysis 
(SA) applications of RS data have been explored in recent years to 
provide operational support for the characterisation and measurement 
of urban forms (Chen, Leu, & Wang, 2019). Specifically, it is a useful 
source of data to characterise urban morphology (Ibrahim, Haworth, & 
Cheng, 2021) and apply it to urban planning (Zhong et al., 2010). 

Deep learning (DL) algorithms have obtained remarkable results in 
many computers vision tasks (Lecun, Bengio, & Hinton, 2015) and are 

recently being applied successfully to the processing of RS data for 
generating building maps (Camps-Valls et al., 2021; Wu et al., 2018), 
offering better performance for object detection and image segmenta
tion compared to traditional algorithms (Li, Wang, Wang, & Lu, 2018). 
Specifically, convolutional neural networks (CNN) and deep neural 
networks (DNN), algorithms improve considerably the performance of 
semantic segmentation (Krizhevsky, Sutskever, Hinton, & G., 2015; 
Simonyan & Zisserman, 2015). The conclusions in recent literature on 
the best performing deep learning architecture for building footprint 
extraction from VHR imagery suggest that U-Net is one of the best op
tions (Ayala, Aranda, & Galar, 2021; Rastogi, Bodani, & Sharma, 2020; 
Peng, Zhang, & Guan, 2019; Li, Wang, Zhang, & Zhang, 2019; Xing 
et al., 2019). Furthermore, U-Net is used by companies such as Microsoft 
and Google for mapping building footprints (Sirko et al., 2021; Yang, 
2018). However, as both data sets have not been trained with enough 
buildings from Deprived Urban Areas (DUAs), they perform poorly and 
inconsistently within DUAs. 

Mapping applications of DUAs through RS-based methods have 
increased since the availability of more very-high-resolution sensors 
(Kuffer, Pfeffer, & Sliuzas, 2016; Mason & Fraser, 1998). In the past 
decade, many studies highlighted the capacity of RS to map DUAs 
(Kuffer et al., 2020; Ranguelova et al., 2018). Several studies stressed the 
utility of contextual features for DUA mapping (Engstrom, Harrison, 
Mann, & Fletcher, 2019). Such aspects capture the built-up morphology. 
Recently, there has been a growing body of literature that maps DUAs 
using DL, i.e., by using CNNs (Ajami, Kuffer, Persello, & Pfeffer, 2019; 
Wang, Kuffer, Roy, & Pfeffer, 2019) or FCNs (Wurm, Stark, Zhu, Wei
gand, & Taubenböck, 2019). 

Several studies have detected DUAs areas mainly at the city scale, 
focusing on the boundary of the settlements (Kohli, Sliuzas, & Stein, 
2016; Kuffer & Barros, 2011; Wurm & Taubenböck, 2018). For this, an 
automatic global process remains a challenge due to their variability in 
types and definitions between cities (Duque, Patino, Ruiz, & Pardo- 
Pascual, 2015; Kuffer, Barros, & Sliuzas, 2014; Sliuzas & Kuffer, 
2008a, 2008b) and due to their often-rapid development processes (Liu, 
Kuffer, & Persello, 2019). Semantic segmentation of buildings in DUAs 
from RS-based methods is still challenging due to the urban complexity 
(i.e., variety of physiognomy and materiality of the roofs of buildings) 
(Fig. 1). CNN building segmentation in a DUAs was seen for the first time 
in Guangzhou City, Southern China (Pan, Xu, Guo, Hu, & Wang, 2020) 
and in Ahmedabad city in Gujarat, India. The U-net architecture was 
adopted for building segmentation, showing robust performance. 
However, the spatial urban characteristics found in Nairobi City are 
different from those in Guangzhou and in Ahmedabad, where the roof
ings are more regular, with similar materials and the space between 
buildings is larger. 

Cities are complex systems where diverse domains interact in a static 
physical structure (White, Engelen, & Uljee, 2015). The urban form fa
cilitates the social, economic, and cultural life of the city, and when a 
design is inadequate, processes are hindered (e.g., mobility). Therefore, 
characterizing and mapping the urban form is essential to understand 
the flow of different domains (Wurm & Taubenböck, 2018), relating 
spatiality to urban behaviour, and guiding evidence-based planning 
accordingly (Simon, 1962). The physical structure of cities can be 
further understood as being characterised by quantifiable elements, also 
known as morphological features. This urban morphology can be 
defined by its fundamental elements, i.e., buildings and open spaces, 
plots, and streets (Mumford, 1961), and it can be quantified by a set of 
geometric measures – indicators – characterizing the different urban 
spaces. The morphological characterisation helps in capturing the high 
degree of variation observed across urban forms. Meanwhile, this vari
ation is not just limited to the differences between non-deprived and 
deprived urban areas (DUAs), but in fact as Davis (2006) points out there 
exist intrinsic differences between and within DUAs themselves Davis 
(2006). This morphological characterisation can be an expression of 
inequality and socio-economic disparities visible from both facets: from 
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the street and from space (Naik, Raskar, & Hidalgo, 2016; Sliuzas & 
Kuffer, 2008a) (Fig. 2). 

Although DUAs have existed in cities from their beginning and some 
governments acknowledge their existence (Davis, 2006), deprivation 
research has greatly increased following the third United Nations Con
ference on Human Settlements (Habitat III) in 2015, calling for an SDG 
assessment. Since then, the scientific literature has become increasingly 
interested in studying deprived urban characterisation (in response to 
SDG 11). Urban spatial deprivation has often been simplified by map
ping socio-economic data aggregated to administrative units, as poverty 
has predominantly been characterised as household-level deprivation 
based on census data (Schirmer, van Eggermond, & Axhausen, 2014). 
Meanwhile, the area-level characterisation in DUAs is mostly ignored 
(Abascal et al., 2021; Baud, Kuffer, Pfeffer, Sliuzas, & Karuppannan, 
2010; Kuffer et al., 2014; Taubenböck et al., 2018; Thomson et al., 
2020). Spatial characteristics of deprivation are still unknown and there 
is even less global agreement to formulate deprivation through 
morphological variables. 

Few studies have acknowledged the diversity within DUAs (e.g., 
Graesser et al., 2012; Krishna, Sriram, & Prakash, 2014, Kuffer, Pfeffer, 
Sliuzas, Baud, & van Maarseveen, 2017; Wurm & Taubenböck, 2018), 
and the categorization has mostly been based on statistical methodolo
gies (e.g., PCA). Nonetheless, local expertise (i.e., link with local urban 
policies) and ground knowledge (i.e., DUA inhabitant’s insights) have 
been important in interpreting and categorising deprivation (Joshi, Sen, 
& Hobson, 2002). The physical characterisation in quantifying 

deprivation have been conducted mostly based on household-level 
characteristics, such as building conditions which are defined by 
building size or building material, and primarily extracted from census 
or survey data (Anurogo, Lubis, Pamungkas, Hartono, & Ibrahim, 2017). 
Deprivation conceptualisation through urban physical characteristics is 
still largely under-researched, without an agreement on the indicators 
conceptualisation nor the methods of measurement. On the other hand, 
the physical conditions of the area that are analysed by RS-based 
methods (Kohli, Sliuzas, Kerle and Stein, 2012; Taubenböck et al., 
2018) are mainly focused on isolated features such as buildings and open 
spaces within a settlement. Both the relative location of the area within 
the larger urban spatial configuration as well as the subtler aspects of the 
building orientation are found missing from the literature. Therefore, 
there is a need for an integrated approach that situates these isolated 
features within a larger spatial configuration and considers the orien
tation within the settlement pattern. 

This paper aims to investigate the following research question: Can 
deep learning be used to characterise degrees of deprivation based on 
the morphology of DUAs in LMICs? To this end, the following specific 
objectives are pursued:  

1. To generate a reference dataset of building footprints in DUAs in 
LMICs through participative community-based crowdsourcing  

2. To employ deep learning for the automatic generation of building 
footprints 

Fig. 1. WorldView-3 imagery (resolution: 0.3 m). A dense urban slum in Nairobi. Variable building sizes and compact urban form. Right: Ground photo taken by the 
author. The roofs overlap at different levels and the street below cannot be detected from the satellite image. 

Fig. 2. Top row: RS imagery (Google Earth) of Nairobi city. Bottom row: 3 images from ground level; an example of a deprived area image taken by the author (left: 
red frame), a low-cost housing area (centre: blue frame) and a middle-class housing area (right: yellow frame), the latter two from Google Street View. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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3. To perform a morphological analysis based on the building footprints 
from deep learning (predicted buildings) and on the participative 
crowdsourcing reference dataset (digitised buildings) and link its 
output to deprivation levels 

We claim that morphological characteristics can be captured by RS 
and be linked with deprivation. The paper is organised as follows: Sec
tion 2 covers the Study Area and Data used, Section 3 the Methodology, 
Section 4 the Results, Section 5 the Discussion and Section 6 the 
Conclusion. 

2. Study area and data 

2.1. Study area 

This study is conducted in Nairobi City, Kenya. Nairobi’s first set
tlement dates to the year 1899 and was set up as a colonial railway 
settlement (Morgan, 1967). The political responses to the basic right to 
housing has been inadequate since the colonial era, and the continued 
existence and growth of DUAs constitute a real challenge to urban life in 
Nairobi (Van Zwanenberg, 1972). Nowadays, more than half of its 
population live in deprived urban areas, which cover less than 6% of the 
total city area (APHRC, 2012). 

The administrative area of Nairobi city covers 695 km2, while the 
total area of the urban deprived regions within the city is 7,75 km2 

(APHRC, 2012). The administrative boundary remains the same as in the 
year 1963, just after the Kenyan independence. It is now outdated, as the 
city has expanded outwards, and it is in this periphery that new DUAs 
are emerging today. Based on the data availability and contacts with 
community-based groups, the DUAs analysed in this study are limited to 
ones that are within the Nairobi city administrative area. Nairobi city is 
divided into sub-counties (11), divisions (29), locations (72) and the 
lower disaggregated unit are the sublocations (147) (KNBS, 2019). 
Despite these fine-scale subdivisions (e.g., smaller sublocation size is 

0.07 km2), not all DUAs are delimited within an administrative 
boundary, and therefore cannot be adequately analysed through a 
census analysis. 

From its earliest times, spatial patterns in Nairobi reflected divisions 
in terms of social class, mostly related to race due to colonial planning. 
This segregation was between the Central Business District (CBD) and 
European, Asian, and African residential areas (Morgan, 1967). Today, 
this structure is reflected not so much in terms of race, but instead in 
terms of spatial and economic deprivation (K’Akumu & Olima, 2007). 
The wealthiest people live in Nairobi West, which is characterised by its 
greener areas and lower built-up density. On the other hand, low- and 
middle-income groups dominate in the eastern locations (Fig. 3). 
However, within the areas populated by the low-income groups itself, 
one observes differences in terms of economic deprivation and the 
corresponding physical characteristics. 

The DUAs analysed are shown in Fig. 3, marked with white boxes, 
namely Korogocho, Mathare, Kariobangi, Waruku, Pumwani, Soweto, 
Kibera, Mukuru, and Mukuru Kwa Njenga. 

2.2. Datasets 

2.2.1. Satellite imagery 
VHR images were acquired by the Worldview-3 (WV-3) satellite in 

2019. They cover Nairobi City County almost entirely (excluding the 
Nairobi National Park) while extending to part of the peripheric 
urbanised areas that fall outside of the Nairobi administrative boundary 
(blue polygon in Fig. 3). For this study, only the DUAs area was used 
with total coverage of 7 km2 (more details in Table 2). The WV-3 data 
consist of eight multispectral bands (MS) (1.20-m resolution) and a 
panchromatic band (0.30-m resolution). The WV-3 MS bands contain 
information across the visible and near-infrared spectrum (coastal, blue, 
green, yellow, red, red edge, NIR 1, and NIR 2 bands). Table 1 shows the 
satellite imagery specifications (DigitalGlobe, 2014). 

Fig. 3. WV-3 image shown as RGB colour composite of the City of Nairobi. Blue polygon represents the Nairobi administrative boundary. Red polygons indicate 
“slum areas” provided by Spatial Collective. The ones inside the white boxes are used in this research. 1. Korogocho; 2. Mathare; 3. Kariobangi; 4. Waruku; 5. 
Pumwani; 6. Soweto; 7. Kibera; 8. Mukuru; 9. Mukuru Kwa Njenga. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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2.2.2. Reference data 
The reference data consist of manually delineated buildings foot

prints (digitised buildings). Three entire settlements were selected, 
namely Mathare, Korogocho and Mukuru, as well as parts of other set
tlements (Kariobangi, Waruku, Pumwani, Soweto, Kibera, Mukuru Kwa 
Njenga). Different characteristics guided their selection i.e., diversity in 

size and shape of buildings (as small-sized buildings are commonly 
found in DUAs), diversity in roofing materials, diversity in urban pat
terns, diversity in open space forms, and diversity of street widths. 

First, we obtained a building footprint layer generated by the com
munity of Mathare through participatory mapping coordinated by the 
Nairobi-based Spatial Collective (SC) company. A total of 4410 buildings 
in Mathare North (locally known as Mlango Kubwa) were digitised using 
a Google Satellite image of 2019 as background. The original dataset can 
be found in SC GitHub repository (SCollective, 2020). Then, we 
inspected the building footprints and corrected the digitizing errors. 
Subsequently, we extended this dataset to the other DUAs through photo 
interpretation (over the WV3 reference image from 2019) and digitised 
25,000 additional buildings (Zenodo, 2022). During this process, com
munity members carried out targeted ground visits to validate a number 
of digitised footprints for which photo interpretation was uncertain. 

3. Methodology 

The methodology section is structured in two steps (Fig. 4). The first 

Table 1 
WV-3 images specifications.  

Bands Spatial 
resolution 

Geometric 
processing 
level 

Radiometric 
processing level 

Date 

Panchromatic 0.30 m Map Ready 
Ortho 

Automatic 
atmospheric 
correction 

Mosaic of 2 
images (13/ 
01/2019 and 
01/02/2019) 

8 multispectral 
bands 

1.20 m Map Ready 
Ortho 

Automatic 
atmospheric 
correction 

Mosaic of 2 
images (13/ 
01/2019 and 
01/02/2019)  

Fig. 4. Overview of the main steps of the methodology.  
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step introduces the extraction of the building footprints (Section 3.1), 
and the second step details the computation of the morphological met
rics and the analysis of these metrics in link with deprivation levels 
(Section 3.2 and Section 3.3). 

3.1. Building footprints extraction with DNN 

The extraction of the building footprints was performed with a DNN 
and is structured as follows: (1) Data Pre-processing; (2) Adaptation of 
the Network Architecture; (3) Network training; (4) Validation; (5) 
Application. The complete procedure is shown in Fig. 4 (step 1). 

3.1.1. Data pre-processing 
The reference dataset needs to be split while training the DNN model 

in training (data used to fit the model), validation (parameter optimi
zation of the model) and testing datasets (unbiased evaluation of final 
model (Kuhn & Johnson, 2013). As shown in Table 1, data from 
Mathare, Korogocho and Mukuru was used for training and validation of 
the deep learning model, whereas data from Mathare Central, Kar
iobangi, Waruku, Pumwani, Soweto, Kibera and Mukuru Kwa Njenga 
provided unseen data for testing. This choice was motivated by the need 
to test the generalisation ability of the deep learning model across 
datasets exhibiting spatial diversity. 

The Coastal band was discarded due to atmospheric noise. The WV-3 
MS bands were pansharpened with Gram-Schmidt Average Neighbour
hood method based on the nearest neighbourhood diffusion pan 
sharpening algorithm (NNDiffuse) (Sun, Chen, & Messinger, 2014). 
Next, the images were clipped in a grid of 512*512 px and split into the 
datasets (Table 2). 

The reference data were manually delineated by community mem
bers and by authors in the QGIS software with WGS 84/ UTM zone 37S 
as coordinate reference system. The reference data was rasterised with 
the algorithm Rasterize of QGIS 3.12, using 0.30 cm as pixel resolution. 
Afterwards, the raster was clipped in a grid of 512*512 pixels and split 
similarly to the satellite images. 

3.1.2. Adaptation of the deep learning architecture 
The U-Net architecture proposed in Ronneberger, Fischer, and Brox 

(2015) is adapted in this work. The network has a characteristic 
encoding-decoding structure. As shown in Fig. 5, feature maps from one 
encoding layer are concatenated to the corresponding decoding layer 
using skip connections. In the contracting branches, downsampling is 
achieved using maxpooling with a size of 2 × 2. On the other hand, 
upsampling is achieved through bilinear upsampling with a factor of 2 in 
the expanding branches. 

3.1.3. Network model training 
In total, 276 patches comprising seven bands and dimensions of 512 

× 512 pixels were generated with an overlap of 64 pixels (px) (to cover 
unconcluded buildings after being clipped). The dataset was randomly 
partitioned into 75% training, i.e., 192 patches and 25% validation, i.e., 

64 patches. To expand the training dataset, data augmentation was 
applied to the training patches. Geometric augmentation was done by 
rotating (45, 90, 135, 180, 270) and flipping (horizontal and vertical), 
allowing the network to learn invariance to such changes. This is an 
interesting approach not only because it provides more training data, 
but also because DUAs do not follow any spatial pattern, and all possible 
orientations can be simulated. During training, the categorical loss 
function is minimised (Bishop, 2006), and the optimisation done using 
Adam optimizer (Kingma & Ba, 2015) with a learning rate of 0.0001. In 
case the validation accuracy fails to improve after 19 epochs, the 
training is stopped. 

The U-Net was implemented based on the Tensorflow (Tensorflow 2.0) 
and Keras (Keras 2.2.4) deep learning frameworks with Python (Python 
3.7.3) programming language, on a computer running on Linux 5.10, 
with Intel i7, 32GB RAMand Nvidia GeForce RTX 2070 (8GB). For 
further details, the code is available at Zenodo scientific repository 
(Zenodo, 2022). 

3.1.4. Accuracy assessment 
Accuracy assessment of the U-net model performance for extracting 

building footprints in DUAs was evaluated by the confusion matrix 
(Table 3). 

TP is known as True Positive, FP as False Positive, TN as True 
Negative and FN as False Negative. Recall and Precision scores were 
extracted from the confusion matrix represented by the ground truth 
with the predicted values. 

Recall =
TP

TP + FN
,Precision =

TP
TP + FP

(1) 

The F1-score evaluation is derived from the confusion matrix as the 
harmonic mean of Precision and Recall. It can be interpreted as a 
weighted average of the precision and recall and varies from 1 (best) to 
0 (worst). The relative contributions of precision and recall to the F1- 
score are equal. 

F1 − score = 2*
Precision*Recall

Precision + Recall
(2) 

The Jaccard Index, also known as Intersection-over-Union (IoU) was 
calculated as an additional accuracy metric. IoU is the area of overlap 
between the prediction (A) and the reference (B) divided by the area of 
union between the prediction (A) and the reference (B). IoU tends to 
have lower accuracies than F1-score, as it penalises misclassification. 

IoU =
|А ∩ В|
|А ∪ В|

(3)  

3.2. Computing morphological metrics 

Physical differences in urban patterns from a fine-scale morpholog
ical perspective were computed. Mathare Central, locally known as 
Huruma, was selected since it comprises heterogeneous morphologies 
(Fig. 6). 

Urban form is assessed through morphological indicators related to 
the building form and the open space form (Mumford, 1961). A subset of 
metrics is derived from each indicator. Morphological metrics are usu
ally based on clearly demarcated building outlines and are categorised 
according to 1) building form (size and internal irregularity) and 2) open 
space form (proximity and directionality). However, since U-Net 
building predictions can result in building clumps rather than individual 
buildings, especially where the urban area consists of densely clustered 
buildings constructed using a variety of hard-to-distinguish materials, 
we propose a series of equivalent metrics to be computed at a grid level 
for the predicted buildings, as shown in Table 4. (See Table 4.) 

Different levels (scales) were used in the morphological analysis, as 
shown in Fig. 7. The digitised buildings metrics were computed at the 
building level and aggregated at the grid level. The predicted buildings 

Table 2 
Split of the reference dataset.  

Dataset DUAs Purpose Area 

1 Mathare North Training and validation dataset 6,50 km2 
Mathare South 
Korogocho 
Mukuru 

2 Mathare Central Testing dataset 0,5 km2 
Kariobangi 
Waruku 
Pumwani 
Soweto 
Kibera 
Mukuru Kwa Njenga  
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metrics were computed at the grid level. At the grid level both building 
datasets were characterised and deprivation clustering was performed 
(section 3.3). There is no building footprint coverage in DUAs, so there 
are no settlement level metrics for the digitised buildings. The settle
ment level was used to show deprivation degrees results within the 
studied DUAs in Nairobi City. 

3.2.1. Computation at the building level – Digitised buildings 
The building level defines the attributes related to the physical 

characteristics of the building form as well as its proximities (e.g., size 
and arrangement). Several aspects were considered while performing 
the morphological analysis, reflected in four main indicators: size, inner 
irregularity, proximity, and directionality. Thirty-five metrics were 
extracted related to statistics from each indicator (Table 3). 

Related to the building form only the shape characteristics were 
chosen displayed in building size and inner irregularity. The condition of 
the buildings (e.g., building materials) was not considered, since only 
the roofs are visible on monoscopic satellite images. Techniques such as 
3D building models (Taubenböck & Kraff, 2014) were not implemented, 
as Google Street View is not available for most DUAs in the city of 
Nairobi. Seven metrics were extracted relating to the indicator building 
size. Among the variables related to the inner irregularity of the 

Fig. 5. An adaptation of U-net architecture (Ronneberger et al., 2015). Each black rectangle represents a multi-channel feature map. The number of channels is 
denoted at the top of each. The left label denotes the size of the patch. Coloured arrows represent the different operations. 

Table 3 
Confusion matrix.  

Ground truth 

Prediction  Roofs No roofs 
Building TP FP 
No building FN TN  

Fig. 6. Mathare Central area (See the location of Mathare DUAs at the city scale on label 2 of Fig. 3).  
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building, the internal angle of each corner was measured, and diverse 
statistics were calculated (formula in Fig. 8). The more irregular the 
internal building angles are, the more irregular the shape of the building 
itself and the more informal the building is understood. 

Another morphological feature that characterizes the physical 
structure is the open space form. To define it, proximity and direction
ality indicators were extracted. The proximity between buildings rep
resents the open space width. Proximity approximation was computed 
by measuring the distance between the building of study and the four 
nearest buildings. As opposed to what was presented in other studies, 
our metrics were calculated with the four nearest buildings, instead of 
using ten neighbouring buildings (Taubenböck & Kraff, 2014) as the 
building surrounding open space captures the width of the street. The 
four buildings selected were the closest centroids from each quadrant of 
the Cartesian axes (see Fig. 8). Different metrics were performed to 
define the best approximation: distances between centroids (Tau
benböck et al., 2018), named: dcc; distance between the nearest vertices, 
named: dvv; and the minimum distance between the vertex of the study 
building and the orthogonal distance to the nearest facade of the 
neighbouring building, named: dvl. The directionality of the open spaces 
is defined by the building orientation index, oi (formula 6 in Fig. 8), as a 
proxy for measuring the alignment between buildings (Taubenböck 
et al., 2018; Venerandi, Quattrone, & Capra, 2018). To capture the 
index, instead of using pairs or buildings (Taubenböck et al., 2018), the 
four nearest buildings were used. Different statistics were performed. 
DUAs are characterised by being unplanned, which is reflected by their 
irregular physical structure. 

3.2.2. Computation at the grid level – Digitised and predicted buildings 
The grid cell level defines the attributes related to the physical 

characteristics of the urban pattern as the aggregation of each individual 
building and the open space disposition. The grid level was selected, as 
compared to blocks, as there are often no administrative boundaries or 
recognised roads available from which blocks can be extracted in DUAs 
(Grippa et al., 2018). The selected grid unit size is 75 m × 75 m as it 
permits optimal granularity representing a high variety of urban form, 
while protecting privacy. For example, the total number of grids was 52 
within Mathare. At this level, the metrics can be computed from both 
datasets (Table 3), i.e., in the manually delineated set (digitised building 
footprints), by aggregating the building level metrics to the grid level; 
and from the U-net output set (predicted building footprints) by 
computing metrics and deriving statistics within the grid. 

To characterize the grid level from the predicted footprints, certain 
metrics were calculated directly from the building footprints, while 
others were calculated from Delaunay Triangulation (DT) in the open 
space, using the building footprint corners as vertices. DT was produced 
in QGIS 3.12. (Fig. 9). Triangles from DT are conformed by two long 

Table 4 
Metrics at the grid level. Thirty-five digitised building metrics. Twenty-six 
predicted building metrics.  

Urban 
form 

Indicators Metrics - digitised 
buildings 

Metrics - predicted buildings 

Building 
form 

Building Size 

“area” “area” 
“perimeter” “perimeter” 
Length façade (“long 
side”, “short side”) 

– 

Number vertices 
building 
(“num_vertices”) 

Number vertices clump 
(“num_vertices”) 

“eccentricity” – 
“elongation” – 
Number of buildings 
(“num_build”) 

Number of clumps 
(“num_clumps”) 

Inner 
Irregularity 

Internal angle 
(inn_angle) min 
(”inn_angle_min”) 

– 

Inn_angle maximum 
(“inn_angle_max”) 

– 

Inn_angle mean 
(“inn_angle_mean”) 

– 

Inn_angle irregularity 
(“inn_irr_angle”) 

– 

Open 
Space 
form 

Proximity 

Distance between 
centroids (dcc) min 
(”dcc_min”) 

– 

Dcc maximum 
(“dcc_max”) 

– 

Dcc mean 
(“dcc_mean”) 

– 

Dcc range 
(“dcc_range”) – 

Dcc median 
(“dcc_med”) – 

Dcc standard 
deviation (sd) 
(“dcc_sd”) 

– 

Distance between 
nearest vertices (dvv) 
minimum 
(”dvv_min”) 

Max length of DT long sides 
(max long side) minimum 
(“min_max_long_side”) 

Dvv maximum 
(“dvv_max”) 

max long side maximum 
(“max_max_long_side” 

Dvv mean 
(“dvv_mean”) 

max long side mean 
(“mean_max_long_side”) 

Dvv range 
(“dvv_range”) 

max long side range 
(“range_max_long_side”) 

Dvv median 
(“dvv_med”) 

max long side median 
(“med_max_long_side”) 

Dvv standard 
deviation (“dvv_sd”) 

max long side sd 
(“sd_max_long_side”) 

Distance between 
vertex and nearest 
façade (dvl) minimum 
(”dvl_min”) 

Mean length of DT long 
sides (mean long side) 
minimum 
(“min_max_long_side”) 

Dvl maximum 
(“dvl_max”) 

mean long side maximum 
(“max_max_long_side”) 

Dvl mean 
(“dvl_mean”) 

mean long side mean 
(“mean_max_long_side”) 

Dvl range 
(“dvl_range”) 

mean long side range 
(“range_max_long_side”) 

Dvl median 
(“dvl_med”) 

mean long side median 
(“med_max_long_side”) 

Dvl standard 
deviation (“dvl_sd”) 

mean long side sd 
(“sd_max_long_side”) 

Directionality 

Orientation index (oi) 
minimum (“oi_min”) 

– 

Orientation index 
maximum (“oi_max”) 

– 

Orientation index 
mean (“oi_mean”) 

Orientation of DT short side 
mean (“mean_oi_short”) 

Orientation index 
range (“oi_range”) 

Orientation of DT short side 
range (“range_oi_short”) 

Orientation index 
median (“oi_med”) 

Orientation of DT short side 
med (“med_oi_short”)  

Table 4 (continued ) 

Urban 
form 

Indicators Metrics - digitised 
buildings 

Metrics - predicted buildings 

Orientation index 
standard deviation 
(“oi_sd”) 

Orientation of DT short side 
sd (“sd_oi_short”) 

– 

Angle between DT long 
sides (ang long sides) 
minimum 
(“min_ang_long_sides”) 

– 
Ang long sides maximum 
(“max_ang_long_sides”) 

– 
Ang long sides mean 
(“mean_ang_long_sides”) 

– 
Ang long sides range 
(“range_ang_long_sides”) 

– 
Ang long sides median 
(“med_ang_long_sides”) 

– 
Ang long sides sd 
(“sd_ang_long_sides”)  
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sides (with a similar length) and a short side. DT mainly implies that the 
short side of the triangle links two vertices of the same building foot
print, whereas the two long sides link vertices of distinct footprints. 
Except, rarely occurring, when a footprint is isolated between others, 
then the triangles do not always follow this placement (Fig. 9). 

Metrics referring to the building form were extracted for the building 
size indicator (Table 3). Inner irregularity could not be simulated due to 
the pixel-based output that did not allow to measure the angles of the 
predicted buildings. Related to the building size the “area” and the 
“perimeter” of the predicted buildings were extracted, as well as the sum 
of all the predicted buildings (“num_clumps”), and the total number of 
predicted building corners (“num_vertices”). Related to the open space 
form, proximity and directionality indicators were defined by Delaunay 
Triangulation (DT) measures. Related to the proximity indicator, both 
DT long sides lengths were measured (“max_long_sides”; “mean_long_
sides”). Intuitively, the distance between buildings is related to the 
width of the streets (Fig. 9). Related to the indicator directionality, the 
orientation of the short side of the DT was measured (oi_short = 1-(| 
angle-45|/45), expecting it can show differences in the orientation 
pattern, as that the direction of the street could estimate the direction of 
the buildings (“oi_short”). If angle = 0◦ OR 90◦ then oi_short = 0; if 
angle = 45◦ then oi_short = 1. The angles of the short side (“short_ang”) 
were extracted as they simulate the orientation of the urban pattern. The 
angles between DT long sides were extracted as we observed that they 
vary depending on the width and direction of the open space 
(“mean_ang_long_sides”). 

The Pearson correlation coefficient between each pair of variables 
was calculated to define the independent variables that most define 
variability in the morphological characterisation. Thirty-five metrics 
were computed and highly correlated metrics, − 05 > r > 05 were dis
carded. Weakly correlated metrics were aggregated to the grid cell level. 
Principal Component Analysis (PCA) was performed with the final weak 
correlated metrics to reduce dimensionality, not by creating new vari
ables, as the metrics would lose urban interpretability, but to check 
whether all selected metrics had a high loading in the PCA test, and if 
not, to remove those variables and reduce the set of metrics. 

Furthermore, to capture spatial patterns not only metrics within a 
grid cell were studied, for each grid cell, the difference between its value 
(j) and the mean of the eight neighbours’(i) was calculated. The 
Neighbour Index (Ineig) is based on the heterogeneity index from Tau
benböck and Kraff (2014), capturing the similarity of the neighbours in 
those metrics. 

Ineig =

(∑N
i=1

⃒
⃒Vi1 − Vj

⃒
⃒

N

)

(10) 

where Ineig = Neighbourhood index; N = total number of neighbours 
studied; Vi = metric value of the neighbour grid; Vj = metric value of the 
studied grid. 

3.3. Assessing degrees of deprivation at settlement level 

Urban spatial deprivation was categorised based on the morpho
logical variables extracted from grid level metrics (Fig. 10). Trans
ferability, scalability, and replicability were aimed, so we wanted to 
obtain as an output of the model an interpretable degree of deprivation 
(based on predicted building metrics). Thus, we wanted to avoid the 
process of manually digitising building footprints to interpret the clus
ters and their morphological indicators but to interpret them directly 
from the model output metrics. 

Firstly, a multivariate analysis was performed between both datasets 
to select among the metrics those that are highly representative in both 
sets. Because we have multiple responses, i.e., diverse predicted foot
print metrics related to each indicator, tests for separate regression pa
rameters are insufficient. It is important to establish whether our 
independent variables (ν) affect all the variables in the index (dependent Ta
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variables, y) or only a few, i.e., whether all the digitised footprint 
metrics are explained by those in the model (predicted footprint met
rics). For this purpose, the Multivariate Multiple Regression Analysis 
(MMRA) method was selected, to model the relationship between the 
metrics derived from the predicted footprints (independent variables) 
and the metrics derived from the digitised footprints (dependent 
variables). 

y = α0 +α1*ν1 + α2*ν2 +…+αn*νn (11) 

To achieve accurate results, both datasets assumed linearity, no 

multicollinearity, no outliers, similar spread across range and normality 
of residuals. MMRA was computed in the R statistical environment (R- 
3.6.1). We decided to keep the predicted footprints with a high level of 
significance (p < 0.05) and the digitised footprints with the adjusted R- 
squared value higher than 0.4, a threshold that captures approximately 
23% of the standard deviation (Everit & Skrondal, 2010). The resulting 
MMRA metrics were used for cluster performance. 

Secondly, the clustering process was carried out. We decided to go 
for an unsupervised method for both sets of metrics to propose a more 
objective and data-driven approach that can be interpreted in a more 

Fig. 7. Morphological analysis at different levels.  

Fig. 8. Indicators, metrics, formulas, and geometry illustration at the building level.  
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rigorous manner. For instance, creating references or labels (supervised 
methods) for such complex and largely unknown concepts as urban 
deprivation would bring a significant degree of uncertainty to our 
research. 

Before performing clustering, the optimal number of clusters was 
determined. Several methods were tested to find the optimal number of 
clusters, using measures such as connectivity, the Dunn index, and the 
Silhouette index (Milligan & Cooper, 1985), using the Clvalid R package 
(Brock, Susmita, Pihur, & Datta, 2008). We proved varying the number 
of clusters from 2 to 6. 

Different unsupervised clustering methods (k-means, k-medoids, 
hierarchical) were performed to guide the definition of degrees of 
deprivation. A hybrid method, hierarchical-k-means, was also per
formed as the post application of k-means optimizes and improves the 
initial partitioning generated by the hierarchical clustering method. All 
variables were scaled, to avoid the influence over the clustering of 
variables with greater value ranges. 

The clustering method was selected based on the performance with 
the digitised footprint metrics, as it is the “reference clustering” and 
needs to be interpreted and validated. The same clustering method was 

performed with both sets of metrics. Clustering based on the digitised 
footprints metrics was used as a “reference clustering” for validating the 
clustering based on predicted footprints. The method selected was 
guided by the correspondence of each class and the levels of deprivation. 
Validation was carried out by consulting the current Kenya’s building 
code legal document and through visual evaluation by local-based urban 
experts (i.e., urban planners and architects working in Nairobi). 

The Building Code of Kenya (BCK) (Local Government, 1968) is the 
most up-to-date Kenyan legal code that delimits urban morphology. The 
BCK was analysed to interpret the morphological indicators and to relate 
them to degrees of deprivation. Concerning building form, only the 
building size indicator was assessed with the BCK, as no law is stipulated 
regarding the geometry of the building (i.e., inner irregularity). Ac
cording to Act 72 (section 3 from the BCK) a “small house” is defined as a 
house with an area of less than 68 square metres (20,000 cu. feet). The 
higher the number of buildings per grid (num_build) in relation to the 
density (sum_area), the smaller the estimated area of each building, and 
the higher the degree of deprivation. As far as the open space form is 
concerned, only the Proximity indicator was taken as a reference for the 
BCK, as no law is stipulated regarding the Directionality of the urban 

Fig. 9. On the left, DT procedure from U-net model output set at the grid cell. On the right, DT illustration.  

Fig. 10. Degrees of deprivation assessment procedure.  
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pattern. To define proximity, part 2 of the BCK was used, specifically Act 
18, which stipulates 2.4 m (8 ft) as the minimum spacing between 
buildings. Act 17 mandates that each building must have a space in front 
of it of at least 6 m (20 ft). The distance between buildings was measured 
through the variables mean_dvl_mean and the sd_dvl_mean. They cap
ture respectively the average and the sd per grid of the average of the 
distances of each individual building with the four nearest buildings. It is 
interpreted that the greater the distance between buildings, the less the 
area is deprived. 

4. Results 

4.1. Building footprint extraction with DNN 

During the training process, the DNN model for extracting building 
footprints was evaluated in terms of accuracy-loss and the following 
values were obtained: Training Loss: 0.18; Training Accuracy: 0.92; 
Validation Loss: 0.24; Validation accuracy: 0.92. 

The accuracy assessment of the model was also evaluated using the 
validation dataset (64 patches), at pixel level with the F1-score, and at 
area level with the Jaccard Index (IoU). The result from the validation 
set was F1-score ¼ 0.76 and IoU ¼ 0.61. Besides the quantitative ac
curacy assessment, the results were also visually analysed, by comparing 
them to the reference data. The performance of the model on the vali
dation dataset is shown in Fig. 11. 

Subsequently, the testing dataset, composed of 80 patches (256 by 
256 pixel) from nine different settlements, had an F 1-score ¼ 0.84 and 
IoU ¼ 0.73. The performance of the model in the testing dataset is 
shown in Fig. 12. 

It was found that the predicted areas visually cover all the roofs. In 
certain areas, because of the high density of buildings and the barely 
existing space between them, the model had difficulties distinguishing 
the buildings individually. The WV3 pixel size in some areas is larger 

than the space between buildings. As illustrated in Fig. 1, overlapping of 
roofs is common in these areas. Therefore, in some cases it leads to a 
merging of buildings, showing one uniform polygon (clump) where 
several individual buildings should be observed. 

4.2. Computing morphological metrics 

Deep learning predictions face challenges in dense and closely 
packed urban areas where individual roofs are difficult to extract. In this 
type of urban setting, the objects that are extracted often represent 
building clumps (Fig. 13). For this reason, performing a morphological 
analysis at the building level would lead to inaccurate conclusions. 
Consequently, the morphological analysis needs to be conducted at an 
aggregated level, e.g., at the grid level. 

Eight weakly correlated metrics from the digitised footprints 
extracted at the building level were selected (see Appendix). The 
selected eight metrics cover all four indicators. The Size Indicator was 
characterised by the area of each individual building (“area”), and the 
“perimeter” metric was discarded. The short side of the facade (“short”) 
was chosen over “long” as some buildings share the same roof, and the 
short façade represents each individual house. The total number of 
corners (“num_vertices”) was also selected. Eccentricity and elongation 
metrics (“ecc”, “elong”) were discarded due to high correlation with 
variables selected. The Inner irregularity Indicator was represented by 
the index of internal irregularity of their angles (“inn_irr_angle”) 
calculated as shown in Fig. 10. Other variables within the indicator are 
correlated with it. In relation to Proximity Indicator, the min and mean 
distances between buildings were selected “dvl_min”, “dvl_mean”). The 
minimum orthogonal distance between a vertex of the building and the 
closest facade of the neighbour (dvl) was selected over distance between 
centroids (dcc) and distances between vertex (dvv) as it better captures 
the real distance between buildings (i.e., street width). The minimum 
distance alludes to Act 18, and the mean to the Act 17 from the BCK. For 

Fig. 11. Performance of building footprint extraction by U-net. Samples from all the DUAs. Top row: VHR Image, middle row: Digitised building footprint, bottom 
row: Predicted building footprint. 
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the Directionality Indicator metrics “oi_mean” and “oi_sd” were chosen. 
At the grid cell level, the eight metrics were aggregated by calcu

lating their associated best-fit statistics (sum, min, max, mean, med, sd). 
The total number of buildings per grid (“num_build”) was also calcu
lated. Forty-nine was the total number of metrics aggregated to each 
grid cell. After computing Pearson Correlation coefficients, thirteen 
weakly correlated metrics were selected related to the four indicators. 
Size: “sum_area”, “mean_area”, “sd_area”, “mean_short”, “sd_short”, 
“mean_num_vert” “num_build”; Inner Irregularity: “mean_inn_irr_ang”, 
“max_inn_irr_ang”. Proximity: “mean_dvl_mean”, “mean_dvl_mean”. 
Directionality: “mean_oi_mean”, “sd_oi_mean”. Then, for each weakly 
correlated metric, the neighbour index was also calculated, and aggre
gated to the grid. The Pearson Correlation Coefficient was calculated to 
measure the strength of correlation between the twenty-six metrics 
(Fig. 14). 

Most grid cells show urban similarities with their surroundings i.e., 
neighbouring grid cells, which is reflected in the high correlation the 
metrics have with the neighbour (metric_neig). The more deprived the 
neighbours are, the more deprived the studied grid is. To capture spatial 
patterns, even if there were some metrics correlated with their neigh
bours, both metrics were kept to proceed with the deprivation clus
tering. Twenty-six total metrics were used for the deprivation clustering. 

The predicted buildings metrics were extracted directly from each 
grid. Twenty-six was the total number of metrics aggregated to each grid 
cell. After computing the Pearson Correlation Coefficient, eight metrics 
were selected related to three main indicators. The final metrics were 
chosen as most alike to those of the digitised footprint metrics, i.e., the 
more interpretable. From the Size Indicator, metrics “area”, “num_
clumps”, “num_vert” were kept. Proximity was defined by “max_
mean_long_sides”, “mean_mean_long_side” metrics. Both metrics were 
chosen, even if they present high correlation (0.75) as some grids show 
higher variability in their open space (e.g., very dense areas in the DUA 
edges are close to private, and not accessible, open spaces) and the 
“max_mean_long_sides” can detect this variability. The metric “mean_
mean_long_side” also shows high correlation (− 0.95) with the “area”. As 
the built-up area increases, the proportion of open space is reduced, 
which is distributed and laid out in very narrow streets. Both metrics 
were kept as they define different deprivation indicators. The Direc
tionality indicator was defined by “mean_ang_long_sides”, “mean_
oi_short”, “sd_oi_short”, metrics. The interpretability of these metrics in 
relation to the reference metrics is uncertain, so it was decided to retain 
them even though there is a high correlation. After performing PCA all 
metrics were kept since their loadings in at least one of the principal 
components obtained the largest absolute value. Finally, for each 

Fig. 12. Performance of building footprint by U-net using an independent testing dataset. 
Samples from 6 deprived areas were tested. Top row: VHR Image, middle row: Digitised building footprint, bottom row: Predicted building footprint. 

Fig. 13. Manually delineated set (left) and U-net output set (right) with centroids in each polygon. The manually delineated set consists of 4010 units, whereas the U- 
net output set contains 724 units. 
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variable the neighbour index was applied, and aggregated to the grid. 
The Pearson Correlation Coefficient was again calculated for the Sixteen 
metrics (Fig. 15). 

4.3. Assessing degrees of deprivation from metrics 

Table 4 shows the MMRA results of the digitised footprint metrics 
using the predicted footprint metrics as explanatory variables. For 
further analysis, we retained only statistically significant values (p <
0.05) with an adjusted R-squared value higher than 0.4. These values 

operate as a threshold that captures approximately 23% of the standard 
deviation explained by the digitised footprint metrics. Low values of the 
adjusted R-squared (as in num_build) indicate that the model does not 
capture the complexity of the relationships. 

Since the goal was to capture deprivation from space (satellite im
agery), the interpretability of the predicted metrics was of key 
importance. Therefore, we captured the relationships between the 
metrics of both sets that produce the same deprivation indicator, and we 
discarded the metrics that were not significant for modelling the degrees 
of deprivation. 

Fig. 14. Pearson correlation coefficients for twenty-six digitised buildings metrics calculated at the grid level including the neighbouring metrics. Values without 
circle refer to-significant p-values, p < 0.05. 
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Therefore, to proceed with the “reference clustering”, eight metrics 
were selected from the digitised footprint metrics: “area_sum”, “inn_ir
r_angle_max”, “oi_mean_mean”, “dvl_mean_mean”; and their corre
sponding difference metrics with the neighbours: “area_sum-neig”, 
“inn_irr_angle_max-neig”, “oi_mean_mean-neig”, “dvl_mean_mean- 
neig”. From the predicted footprint metrics, we retained eight metrics 
with significant values along the MMRA: “area”, “num_clumps-neig”, 
“max_mean_long_sides-neig”, “mean_ang_long_sides”, and their corre
sponding neighbour metrics: “area-neig”, “num_clumps”, “max_mean_
long_sides”, “mean_ang_long_sides-neig”. 

As it can be observed, not all the digitised footprint metrics can be 
explained by the predicted footprint metrics. The building size metrics 
(“mean_area”, “mean_short”, “mean_num_vert”) and the inner irregu
larity metrics (“mean_inn_irr_ang”) cannot be captured by metrics in the 
predicted footprints. This comes from the difficulty of the U-net model to 
extract individual building footprints consistently. 

The optimal number of clusters was determined using the Dunn 
index. The Dunn index was selected as it showed a robust performance 
for metrics from both datasets. The optimal number of clusters was 
three. A hybrid method was chosen, hierarchical-k-means unsupervised 
clustering, as it produced meaningful clusters for differentiating degrees 
of deprivation. The three classes of deprivation are colour-coded: class 
number one (red colour), is named “High deprivation”; class number 
two (green colour) represents the “Medium deprivation” areas; and class 

number three (blue colour), refers to “Low deprivation” areas (Figs. 17 
and 18). 

In Highly deprived areas the Size Indicator reflects the high density 
per block (labelled in the Fig. 18 as “sum_area”). The density has a high 
and positive association with the number of buildings and we can as
sume that according to Act 72 (BCK) the higher density, the smaller the 
estimated area of each building, and the higher the degree of depriva
tion. With respect to the Inner Irregularity Indicator, the High depri
vation class exhibits the highest values of inner irregularity of the 
buildings (“max_inn_irr_angle_max”). The BCK does not refer to this 
metric, but local urban experts and community members agree that 
building materials influence the shape of the building (i.e., brick or 
concrete are used in less deprived areas, and their construction tech
niques require more orthogonality of the walls, so less irregularity in the 
building internal angles) (Fig. 16). As such, the higher the Inner Irreg
ularity Indicator, the higher the degree of deprivation. 

The Proximity Indicator within the Mathare DUA, represented by the 
“mean_dvl_mean” metric, shows that streets in Mathare are charac
terised by being narrow (Table 5). Act 18 (BCK) indicates a minimum 
spacing between buildings of 2.4 m. The High Deprivation class shows 
the lowest values for proximity between buildings, below the minimum 
BCK measure (i.e., with an average distance of 2.02 m). Consequently, 
the smaller the distance between buildings, the larger the degree of 
deprivation of the area. 

Fig. 15. Sixteen low correlated predicted building metrics from the building level including the neighbouring metrics. Values without circle refers to-significant p- 
values, p < 0.05. 
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The values of the Directionality Indicator (“mean_oi_mean”) do not 
clearly follow the initial hypothesis that the higher the metric, the 
higher the deprivation, but the opposite. This can be explained by the 
fact that directionality is only defined by the four neighbouring build
ings. In highly deprived areas, due the high density and the proximity, 
buildings have low chances to settle freely, so the urban pattern is not as 
organic as parts with greater open spaces. However, it should be noted 
that this indicator has often been used to differentiate formal areas from 
deprived areas, as the fabric is much more organic in the latter (Gomes, 

2015). 
Furthermore, the neighbouring blocks show homogeneity (lower 

values refer to homogeneity with the block studied) from which we can 
derive that the Highly deprived areas are surrounded by high degrees of 
deprivation in the neighbouring blocks (see “sum_area-neig”, “max_
inn_irr_angle-neig”, “mean_dvl_mean-neig”, “mean_oi_mean-neig” in 
Fig. 18). 

The clustering obtained from the predicted footprints was assessed 
against the “reference clustering”, extracted from the digitised foot
prints. The overall accuracy was 0.71 (proportion of grids correctly 
classified). The overall F1-score was 0.47, and the F1-score by class was 
0.82 for High Deprivation, 0 for Medium Deprivation, and 0.58 for Low 
Deprivation, which indicates that the model is able to capture high and 
low deprivation but fails to capture medium deprivation (Fig. 17). 

The values metrics (scaled variables) from both datasets were plotted 
in a box plot graphic to illustrate the performance of each metric 
through the deprivation cluster classes (Fig. 18). 

Top: metrics from the manually delineated set. Bottom: metrics from 
the U-net output set. 

It can be observed, that in the predicted clustering, the metric density 
(“area”), and the difference in density of the neighbour’s (“area_neig”) 
define High deprivation in a very precise way, even better than with the 
digitised building metric “sum_area”. The number of clumps 

Fig. 16. All images within Mathare DUA taken by the author. Left: Buildings with walls made of bricks. Middle: Buildings with walls made of iron-sheets. Top- right: 
Iron-sheet wall detail. Bottom-right: Brick wall detail. 

Table 5 
Descriptive statistics of the proximity between buildings (m) measured by 
“mean_dvl_mean” (i.e., the mean per grid of the mean of the four closest 
neighbours per building). Each Deprivation class is represented.  

Descriptive 
Statistics 

All 
grids 

High 
Deprivation 

Medium 
Deprivation 

Low 
Deprivation 

Min. 0.92 0.92 1.07 6.95 
1st Qu. 1.51 1.39 2.88 9.56 
Median 2.18 1.80 3.39 12.17 
Mean 2.93 2.02 3.79 10.74 
3rd Qu 3.37 2.38 4.62 12.64 
Max 13.11 4.55 7.87 13.11  

Fig. 17. Left: 52 grids clustered from the digitised footprint metrics. Right: 52 grids clustered from the predicted footprint metrics.  

A. Abascal et al.                                                                                                                                                                                                                                



Computers, Environment and Urban Systems 95 (2022) 101820

17

(“num_clumps”), compared to the number of digitised footprints 
(correlated with “area”), show that the model is unable to extract single 
buildings when they are very close and their roofs overlap. The number 
of clumps metric (“num_clumps”) and the neighbours’ metric (“num_
clumps_neig”) are the metrics characterising the medium deprivation 
class, which is not well captured by the predicted cluster. Thus, both 
metrics do not improve the clustering of degrees of deprivation. The 
distance between buildings (“max_mean_long_sides”) also relates to 
deprivation degrees, along with the difference in distance between 
neighbours (“max_mean_long_sides-neig”). These metrics do not 
perform as well as the “mean_dvl_mean” and “mean_dvl_mean-neig” 
metrics, but in both cases, the classes are well defined. The metric 
“mean_ang_long_sides” and its difference with the neighbours (“mean_
ang_long_sides-neig”) does not capture the orientation index variables of 
the digitised model. 

5. Discussion 

In LMIC cities, most inhabitants are living in DUAs, but we know very 
little - or we have very little quantitative information - about them, due 
to the absence of data (UN-Habitat, 2020; Kuffer et al., 2017). Avail
ability of open spatial data sets, such as OSM, offers opportunities for the 
study of urban patterns, however, there still remains an insufficient data 
coverage of DUAs. The development of new tools that bring building 
footprints up to date is urgently needed. 

Manually digitizing has been the traditional building mapping 
method, but it is time costly and doesn’t allow for frequent updates. This 
research develops a model based on deep learning techniques (U-Net 
architecture) designed to cover the gap in DUAs. U-Net has proved 
successful for extracting building footprints, achieving an F1-score of 
0.84, and by visual interpretation examination, getting good coverage of 
the urban pattern. However, individual segmentation of overlapping 
buildings or close buildings (less than 60 cm) is still challenging, as the 
building edges are not well defined (i.e., iron sheets roofs exhibit 

Fig. 18. Box plot graphs of the morphological metrics of the clustered morphological metrics.  
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irregularities as are made up of several sheets) and the materials of all 
roofs are similar, making it difficult to distribute pixels (30 cm) into the 
appropriate classes. The model needs to introduce separation borders 
between overlapping buildings so the smallest buildings and the densest 
areas can extract buildings individually. Such a semi-automatic building 
footprint extraction could be also a first step in producing a building 
map by manually splitting the building clumps if this would be required. 

Also, for future research, it would be interesting to compare the 
selected architecture, U-Net, with other representative deep neural 
network architectures (Alom et al., 2019; Bianco, Cadene, Celona, & 
Napoletano, 2018), such as AlexNet, VGG, DenseNet, GoogLeNet, or 
FractalNet to analyse their performance for DUAs building 
segmentation. 

The resulting outputs show robust results from the transferability to 
other nine DUAs of the city. A global application (transferability to other 
cities) has not been tested as more WV-3 images would be required. 
Further research will aim to provide a trained model by adding DUAs 
from other cities, as urban patterns differ from cities (Brown, 1997). This 
will help to create a global tool to analyse the morphology of DUAs. The 
ability to map building footprints in deprived areas at large scale will 
bridge one of the urgent data gaps for global models (e.g., population 
models), but it is also of significant relevance for local applications such 
as supporting based data for urban renewal. 

Furthermore, the design of urban analytical tools based on 
morphological metrics, being easily reproducible, is needed. We cate
gorise a deprivation classification approach based on morphological 
analysis, reflecting area-level deprivation. Building materials (McCart
ney & Krishnamurthy, 2018), building height (3D analysis) (Tau
benböck et al., 2018) or other physical features are recommended for 
further analysis. Understanding the morphology of urban deprivation 
is a necessary step towards characterizing urban poverty. This has not 
previously been well covered, due to the lack of data. Neither are global 
morphological welfare standards, and outdated codes, such as the 
Building Code of Kenya, are not sufficiently developed documents to 
categorize deprivation. In addition, it would be needed to go further into 
the predicted metrics (metrics from the clumps) and provide more useful 
metrics from them. 

Modelling deprivation based on the clustering of morphological 
features is complex and may also be subjective when identifying 
deprivation patterns. The morphological metrics only capture the 
physical characteristics and lack other relevant aspects of deprivation (e. 
g., socio-economic characteristics). Even if some of the datasets used in 
this study were generated by local community members, the results 
must be complemented by robust local knowledge based on community 
engagement. To fully verify the validity of the morphological charac
teristics that determine deprivation, the analysis could be linked to other 
socio-economic variables to understand deprivation in a more multidi
mensional way (Abascal et al., 2021). Therefore, further research will 
analyse the transferability of morphological deprivation clustering 
together with socio-economic indicators in the studied areas, as well as 
in other areas across the globe. Also, the incorporation of some image- 
derived features, such as textures and image edges, partially linked 
from the literature to some facets of deprivation, could add robustness to 
our degrees of deprivation measured from satellite imagery (Engstrom 
et al., 2019; Wang, Kuffer, & Pfeffer, 2019). 

As we claim, open data is needed. Not only to continue developing 
tools to characterize deprivation, but also for providing municipalities, 
NGOs, and communities with missing information. Information could 
empower stakeholders to advocate on behalf of deprived areas. Mapping 
poverty should be also discussed from a geo-ethics point of view. In this 
respect, aggregating metrics at the grid level could be preferable than 
using disaggregated building metrics. Our aim is that this tool can be 
merged with other platforms that provide deprivation data at a grid level 
(Chi, Fang, Chatterjee, & Blumenstock, 2021; Stewart & Oke, 2012; 
WorldPop, 2020). The implementation of a more common grid size (100 
by100 meters grid cell) would make it possible to combine results with 

other global gridded datasets, e.g., WorldPop (WorldPop, 2020), to 
derive new spatial indicators of deprivation. 

6. Conclusion 

This research has generated a method for the reliable identification 
and delineation of urban deprivation patterns by the characterisation of 
urban morphology using satellite imagery. The above results, in line 
with other RS studies, such as DUAs location (Wang, Kuffer, Roy, & 
Pfeffer, 2019), characterisation (Taubenböck & Kraff, 2014; Georganos 
et al., 2021) and categorization (Taubenböck et al., 2018) contribute to 
the improvement of existing data gaps of the most deprived urban areas 
(Taubenböck, Kraff, & Wurm, 2018b). The extent of our research 
significantly recalls the scope and limitations of the urban morphology 
extracted from the satellite, and to which extent degrees of urban 
deprivation can be defined. Deep learning - U-Net architecture - can 
extract building footprints in DUAs using VHR imagery - VW3 imagery - 
showing good performance with an F1 score of 0.84 and a Jaccard index 
of 0.73 in the testing set. Thus, our results show the ability of U-Net to 
extract building footprints in diverse DUAs of the city of Nairobi. The 
extraction of individual buildings remains a challenge, due to the 
complex urban environments, e.g., variety of physiognomies and limited 
space between buildings, of DUAs. Moreover, it has been proven that 
morphological characteristics are linked with degrees of deprivation at a 
grid level. The deep learning model output combined with a morpho
logical analysis has the capability of characterizing urban deprivation. 
The availability of building footprint data could act as a game-changer. 
Commonly, city and local-area planning are done without data, and 
hence planners do not realize the scale of the consequences of infra
structure developments for communities, such as large-scale evictions. 
Such evictions are very common in Nairobi, as well as in other 
sub-Saharan African cities. Overlaying detailed building footprints on 
planned infrastructure development plans would enable developers to 
understand, at least partially, the scale of the consequences for com
munities. Moreover, categorizing physical deprivation could allow for 
the most critical areas to be detected, and for prioritizing upgrading 
programs accordingly. 
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