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A B S T R A C T   

In recent years, various forecasters have been developed to decrease the uncertainty related to the intermittent 
nature of photovoltaic generation. While the vast majority of these forecasters are usually just focused on 
deterministic or probabilistic prediction points, few studies have been carried out in relation to prediction in
tervals. In increasing the reliability of photovoltaic generators, being able to set a confidence level is as important 
as the forecaster’s accuracy. For instance, changes in ambient temperature or solar irradiation produce variations 
in photovoltaic generators’ output power as well as in control parameters such as cell temperature and open 
voltage circuit. Therefore, the aim of this paper is to develop a new mathematical model to quantify the con
fidence interval of ambient temperature in the next 10 min. Several error metrics, such as the prediction interval 
coverage percentage, the Winkler score and the Skill score, are calculated for 95%, 90% and 85% confidence 
levels to analyse the reliability of the developed model. In all cases, the prediction interval coverage percentage is 
higher than the selected confidence interval, which means that the estimation model is valid for practical 
photovoltaic applications.   

Introduction 

In recent years different eco-friendly technologies such as solar, 
wave, hydropower, wind and geothermal/biomass have been proposed 
and developed depending on a countries’ renewable resources. How
ever, some of these technologies have been developed more quickly 
because it is easier to introduce them in the traditional grid, they have 
higher efficiency or their expected investment return is greater [1,2]. 
For instance, the installed capacity power of solar, wind and 
geothermal/biomass technologies has greatly increased in the last 
decade, and this trend is expected to continue in the following years 
[3,4]. Traditionally, electric networks were hierarchically organized 
systems, where generators, transmission and distribution operators and 
customers had well-defined assignments. However, as the installed ca
pacity as well as the energy generated by solar, wind and geothermal/ 
biomass technologies increases, traditional grid operators have more 
trouble ensuring system reliability due to the uncertainty introduced by 
intermittent renewable generation [5]. 

To be able to guarantee reliable operation of each electric system, 
network operators need to know what the system’s energy demand and 
the generators’ power production will be in different horizon times 
[6,7,8]. Moreover, some international bodies, such as the European 
Commission or the International Renewable Energy Agency, are 
creating roadmaps that will allow renewable technologies to both pro
duce electric power and provide ancillary services in the near future as a 
means to maximizing energy production [9,10]. 

To achieve the goal of making eco-friendly generators more reliable 
to provide both, electric power and ancillary services, researchers have 
developed different prediction horizon forecasters. Based on the horizon 
step, these tools are commonly divided in the following groups [6]: a) 
very short-term forecasters which provides information for the next 
minutes and are commonly used for real-time dispatch operations 
[11,12], b) short-term forecasters that provides information for the 
range from a few minutes to a few hours, and forecast values are applied 
at unit commitment/economic dispatch operations [13,14] and c) 
medium-term and long-term forecasters which makes forecasts for the 
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ranges of a day to few weeks ahead and few weeks to months ahead. The 
information provided is used for maintenance and new infrastructure 
planning [15,16]. 

From [17,18,19], it can be deduced that it is mandatory to improve 
the control strategies of renewables by developing accurate forecasters 
in all the above-mentioned horizons. These control strategies would 
allow renewables to raise their installed power capacity to provide 
power and also to make them suitable for ancillary service operations. 
With regards to ancillary services, accurate very short-term prediction 
tools with time steps lower than 15 min ahead must be developed [17]. 
Although different renewable technologies have been developed in 
recent years, solar and wind technologies seems to be the most suitable 
ones to provide ancillary services. 

With regard to photovoltaic (PV) generators, Ayvazoğluyüksel et al. 
[20] established solar irradiation, PV cell temperature (TC), PV effi
ciency, and generated output power (PM) as relevant parameters for 
improving generators’ control strategies. However, a close analysis of 
Ayvazoğluyüksel et al.’s study [20], shows that TC is also affected by 
ambient temperature and wind speed [21,22]. Moreover, it was also 
demonstrated in [23] that other less relevant control parameters such as 
open voltage circuit (VOC) and short circuit current (ISC) are also 
affected by TC and therefore, by ambient temperature and wind speed. 
Consequently, we determined that solar irradiation, wind speed and 
ambient temperature are the involved meteorological parameters in PV 
generation. Solar irradiation [24,25] and wind speed [26,17] parame
ters very short-term forecasting has been deeply examined due to their 
strong relationship with PV and wind power generation. However, 
ambient temperature, has been typically predicted in order to develop 
management algorithms or load demand forecasting tools [28,29], but 
few forecasters that predict this parameter have been developed in 
relation to PV generation. 

Conventionally, very short-term prediction tools have been orga
nized into two main groups: statistical or physical approaches [30]. 
While statistical approaches use a combination of historical databases 
and machine learning tools to develop forecasters [24–27], physical 
approaches are based on the mathematical expression of weather or sky 
imagery via satellites [31,32]. However, these last types of approaches 
are less developed due to the high cost or lack of the required equipment. 
With respect to statistical approaches, the vast majority of the studies 
have focused on increasing the accuracy of deterministic point fore
casters (DPFs). Although Artificial Neural Networks (ANNs) are the most 
popular statistical approaches for forecasting different parameters 
[12,24,33], other researchers have based their forecasters on other 
statistical approaches like support vector machines [34] or autore
gressive approaches [35,36]. Nevertheless, some authors have recently 
claimed that DPFs do not provide complete information due to their 
deviation between real and forecasted values [37,38], and thus they 
have suggested that confidence interval forecasters (CIFs) be developed 
to improve the quality of the information. In addition, these CIFs also 
allowed decision makers avoiding local minima in their optimization 
algorithms as well as an over cost of the system when they are quanti
fying the power reserve [39]. 

Based on approaches developed in recent years for DPFs, CIFs pro
vide additional information which can help grid operators or energy 

management systems to make better decisions in scheduling as well as 
ensure power systems’ real-time stability. CIFs can be classified into two 
main groups: parametric approaches, which are based on developing 
forecasters through probability density functions (PDFs), or non- 
parametric approaches, which do not rely on using PDFs. With regard 
to parametric approaches, after reviewing the literature, we found some 
studies where different PDFs, such as Normal, Laplacian or Gaussian 
distributions, were used to predict random variables [40,41]. For 
instance, Junior et al. [41] described PV generation errors by either 
Laplacian or Gaussian PDFs; the related parameters for each PDF were 
calculated from a one-year database, where the deviation between 
measured and forecasted data was recorded; then, the CIF was computed 
using calculated PDFs. 

However, other studies do not consider using PDFs to develop CIFs 
[38,42]. Some of the most popular non-parametric approaches are: 
quantile regression approaches, which are based on obtaining a rela
tionship between a previously analysed group of relevant parameters 
and the target parameter’s chosen quantile [43]; the bootstrap method, 
which relies on using the chosen samples’ distribution instead of the 
population’s distribution [37,44], has been also widely applied in 
modelling non-parametric PDFs. 

This study develops a novel parametric model for very short-term 
ambient temperature CIF, namely for the next 10 min. The model re
lies on examining the effect that produces a small variation in each 
parameter of the forecaster in the final predicted value. Our model is 
based on function linearization. Main contributions of this study are:  

1) A novel very short-term parametric ambient temperature CIF, for 10 
min ahead, was examined. The parametric approach is based on the 
combination of a feedforward neural network, the optimal number of 
nearest meteorological stations, and the effect of each parameter of 
the forecaster in the final predicted value through the use of partial 
derivatives. CIF accuracy was validated with the database for a 
specific location, Vitoria-Gasteiz, Basque Country.  

2) The same mathematical model for CIF prediction was applied in two 
different DPF approaches: a single station model and a spatiotem
poral or multiple station model. Computed error metrics show that 
the spatiotemporal model overcomes the single station approach 
when confidence intervals are predicted.  

3) Our model’s reliability was examined through an analysis of the 
accuracy of predicted values for different confidence levels, namely 
95%, 90% and 85%. For each of those confidence levels, different 
accuracy and sharpness error metrics were calculated to examine the 
reliability of the proposed forecaster. 

Methodology 

To develop our model, we used as baseline a couple of temperature 
statistical approach forecasters that were developed in a previous work 
[45]. Table 1 summarizes the main characteristics of those forecasters, 
which are based on feedforward ANNs. The feedforward neural network 
(FFNN) forecaster only uses target location information to predict future 
temperature values, whereas the spatiotemporal feedforward neural 
network (FFNNST) forecaster uses information from the target location 

Table 1 
Main characteristics of statistical approach forecasters for CIFs development.  

Network type FFNN FFNNST 

Inputs (K) 146 = season (1), time (1), target location’s temperature 
data (144) 

1022 = season (1), time (1), target location’s (144) and surroundings stations’ 
temperature data (876) 

Outputs 1 – temperature 1 – temperature 
Number of Layers 3 – input, hidden, output 3 – input, hidden, output 
Number of Hidden Neurons 
(N)

15 15 

Number of Weights 2190 15,330 
Number of Biases 15 15  
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as well as from the optimized number of surrounding stations to predict 
future values. More information about FFNN as well as FFNNST, and 
how they work can be found in [45]. 

In the context of this paper, the output of the n-th neuron of the 
hidden layer is represented by a real function f of a linear combination of 
several variables that is mathematically expressed as: 

zn = f

(
∑K

k=1
wk,n[x]k,1 + bn

)

, n ∈ {1, 2,⋯,N} (1)  

where x ∈ RK is the input, wk,n are the weights of the n-th neuron with 
k ∈ {1,2,⋯,K}, bn is the bias value of the n-th neuron and 

f (ω) = 1
1 + e− ω. (2) 

Similarly, the output neuron is represented by a linear combination 
of the outputs of the hidden neurons: 

ŷ =
∑N

n=1
wn,N+1zn + bN+1. (3) 

The CIF model that we develop in this study is based on analysing the 
actual effect that produces a small variation of each neuron’s weights 
and biases in the forecaster’s final output. By estimating these varia
tions, the desired confidence interval is predicted. 

Confidence interval forecast model 

In this subsection we obtain the CIF model. For the reader’s conve
nience, Fig. 1 summarizes the steps followed in this subsection. 

We denote with φ =
(
w1,1,⋯,wK,1, b1,⋯,w1,N,⋯,wK,N, bN,w1,N+1,⋯,

wN,N+1, bN+1
)
∈ RN(K+2)+1 the column vector of all weights and biases of 

the neurons that compose the ANN. The output of the ANN can be 
represented as g(x;φ), where x ∈ RK is the input and g is the scalar 
function that represents the ANN, i.e., 

g(x;φ) =
∑N

n=1
wn,N+1f

(
∑K

k=1
wk,n[x]k,1 + bn

)

+ bN+1. (4) 

Observe that for a fixed ANN, the current output only depends on the 
current input and on the set of parameters φ. 

Consider a physical system whose output y can be modelled by an 
unknown scalar function h as 

y = h(x). (5) 

The goal is to approximate the physical system’s output with the 
ANN, in such a way that 

y = g(x;φ*)+ ∊ (6)  

where ∊ is the approximation error and φ* ∈ RN(K+2)+1 is the optimal set 
of parameters, which is unknown. Assume that L input/output pairs of 
the physical system are known, namely (x1, y1), ⋯, (xL, yL). Let φ̂ =
(

φ̂1,⋯, φ̂N(K+2)+1
)T ∈ RN(K+2)+1 denote the set of parameters that 

minimize the approximation errors in the mean square sense, that is, 

φ̂ = argmin
φ∈RN(K+2)+1

∑L

t=1
(yt − g(xt;φ) )2. (7) 

In other words, φ̂ is the least squares estimator of φ*. The least 
squares problem (7) can be efficiently solved using the well-known 
Levenberg–Marquardt algorithm [46]. Consequently, we denote with 
ŷ the output value estimated by the ANN, that is, 

ŷ = g(x; φ̂). (8) 

From (6) and (8), and using a first-order Taylor polynomial, the 
approximation error can be written as 

∊ = y − g(x; φ*) ≈ y − g(x; φ̂) − (D(φ̂) )T(φ* − φ̂)

= y − ŷ − (φ* − φ̂)TD(φ̂) (9)  

where D(φ̂) is the gradient of g evaluated at φ = φ̂, that is, 

D(φ̂) =
(

∂g(x; φ̂)
∂φ̂1

,⋯,
∂g(x; φ̂)

∂φ̂N(K+2)+1

)
T . (10) 

Observe that (9) can be written as 

y − ŷ = ∊ − (φ̂ − φ*)TD(φ̂). (11) 

In order to compute the sought confidence interval bound (CIB), we 
perform a statistical analysis and we view y and ŷ as random variables. 
We assume that the approximation error ∊ is a Gaussian random variable 
with zero mean and variance σ2 and independent from (φ̂ − φ*). 
Observe that under this assumption, for N(K+2) + 1 ≤ M ≤ L 

s2 =
1

M − N(K + 2) − 1
∑M

t=1
(yt − g(xt; φ̂) )2 (12) 

is the unbiased estimator of σ2 and, 

E
[
(φ̂ − φ*)T(φ̂ − φ*)

]
= σ2C− 1, (12)  

Where E denotes expectation, C = (J(φ̂) )TJ(φ̂), and J(φ̂) is the Jacobian 
matrix 

J(φ̂) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂g(x1, φ̂)
∂φ̂1

⋯
∂g(x1, φ̂)

∂φ̂N(K+2)+1

⋮ ⋱ ⋮
∂g(xM , φ̂)

∂φ̂1
⋯

∂g(xM , φ̂)
∂φ̂N(K+2)+1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (13) 

Therefore, from (11) and (13) we conclude that 

E
[
(y − ŷ)2 ] = E

[
∊2]+(D(φ̂) )T E

[
(φ̂ − φ*)(φ̂ − φ*)T ]D(φ̂)

= σ2( 1+(D(φ̂) )T C− 1D(φ̂)
)
. (14) 

Finally, for a large enough M samples taken from the training 
database, 

T =
y − ŷ

s
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (D(φ̂) )T C− 1D(φ̂)

√ (15) 

Fig. 1. Flowchart of the most relevant steps to compute proposed CIF model.  
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is a random variable with Student’s t-distribution and 
M − N(K+2) − 1 degrees of freedom [47]. Therefore, an approximated 
CIB for the estimated output ŷ with confidence 100(1 − α)% is given by 

CIB = ŷ ± tα/2
M− N(K+2)− 1s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (D(φ̂) )T C− 1D(φ̂)

√
, (16) 

where α ∈ (0,1), tα/2
M− N(K+2)− 1 = P

(
T < α

2

)
and P denotes probability. 

Uncertainty evaluation error metrics 

From previous works in the literature (see, e.g., [38,40,48]), error 
metrics can be classified into two main groups: the first group focuses on 
analysing forecasters’ reliability through indexes such as prediction in
terval coverage percentage (PICP) or coverage error (CE), and the sec
ond group examines sharpness, which is related to how close upper and 
lower bounds are from the forecasted point through a skill score (SS) or 
confidence interval normalized average width (CINAW) indexes. In this 
section, we compute five error metrics. 

From (16), the actual output of the physical system at time instance t, 
yt , is expected to lie within the CIB, that is, yt ∈ (LBα(xt),UBα(xt) ), 
where 

LBα(xt) = g(xt; φ̂) − t
α
2
M− N(K+2)− 1s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (D(φ̂) )T C− 1D(φ̂)

√
, (17)  

UBα(xt) = g(xt; φ̂)+ t
α
2
M− N(K+2)− 1s

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + (D(φ̂) )T C− 1D(φ̂)

√
. (18) 

The best known uncertainty error metric for analysing a CIF’s reli
ability is the PICP index. PICP examines the difference between the 
actual values that fall into CIBs and those that do not. The larger the 
PICP is, the better the CIF’s reliability. PICP can be mathematically 
expressed as, 

PICPα =
1
T

∑T

t=1
χ(LBα(xt),UBα(xt) )

(yt) (19)  

where T is the total amount of tested points, and χS denotes the char
acteristic (or indicator) function of S⫅R, that is, 

χS(ω) =

{
1 ifω ∈ S,
0 otherwise. (20) 

If the PICP value is greater than or equal to the user’s selected con
fidence level (i.e., PICPα ≥ (1 − α)), then the CIF model is valid; other
wise, the model needs to be revised in order to increase its reliability 
[38]. In addition, the width of the interval obtained through the 
examined CIF is also a key parameter that must be analysed. It must be 
taken into account that a narrower prediction interval, one that is closer 
to the actual value, is identified with a better and more accurate CIF. 
This concept is also known in the literature as sharpness [40,48]. The 
confidence interval’s width (CIW) can be defined as, 

CIWα(xt) = UBα(xt) − LBα(xt) (21) 

In 1972, Winkler [49] defined the so called winkler score (WS), 
which is used to analyse the forecasted intervals’ quality and sharpness. 
Winkler defined the score as 

WSα(xt) =

⎧
⎨

⎩

− 2αCIWα(xt) − 4(LBα(xt) − yt ) ifyt ≤ LBα(xt),

− 2αCIWα(xt) ifLBα(xt)< yt < UBα(xt),

− 2αCIWα(xt) − 4(yt − UBα(xt) ) ifyt ≥ UBα(xt).

(22) 

The overall score,WSα, can be computed as, 

WSα =
1
T
∑T

t=1
WSα(xt). (23) 

As shown in (23), when the actual value yt falls into the CIB, the WS 
penalty just depends on the interval’s width, whereas when yt falls out 

from the bounds, the WS penalization is larger and does not depend only 
on the interval’s width. Moreover, WSα is usually normalized by an 
appropriate parameter P: 

WSNα =
1
P

WSα. (24) 

The less negative the WS is, the better the sharpness of the CIF. The 
CINAW is an easy way of analysing and computing the quality of the 
forecasted confidence intervals and is expressed as, 

CINAWα =
1

TP

∑T

t=1
CIWα(xt). (25) 

The closer to zero the CINAW parameter is, the sharper and narrower 
the CIBs calculated by the CIF. The last computed sharpness index is 
denoted as the SS and it is defined as, 

SSα =
1
T

∑T

t=1

⃒
⃒χ(LBα(xt),UBα(xt) )

(yt) − (1 − α)
⃒
⃒max(|LBα(xt) − yt |, |yt

− UBα(xt) | ) (26) 

The SS index is always positive and a lower value means higher 
scores. As happens with the WS index, the SS index is also often 
normalized by an appropriate parameter P: 

SSNα =
1
P

SSα. (27)  

Results and discussion 

Description of the data used 

The meteorological information stored in the database was provided 
by Euskalmet, the Basque Government’s Meteorological Agency (http:// 
www.euskalmet.euskadi.eus/). While the database used in FFNN only 
contains the target station’s (‘C040 Vitoria-Gasteiz’) temperature in
formation with 10 min resolution, the database used in FFNNST contains 
the target station’s information as well as the surrounding stations’ in
formation with the same temporal resolution. For the development of 
FFNN and FFNNST, data from the years 2015–16 were used in the 
training step, whereas data from 2017 were used in the validation step to 
obtain the estimated ŷ values (see Eq. (8)). In this study, it was also 
necessary to differentiate between both databases; while the 2015–16 
database was used to fit J(φ̂), the 2017 database was used to compute 
D(φ̂). 

As demonstrated in several studies [50–53], databases of DPFs are 
normalized to increase the generalization capacity of forecasters and 
thus improve the accuracy of predictions from previously unseen data. 
Therefore, in this study both the training and validation databases were 
normalized to have zero mean and unit variance. In addition, the da
tabases use had to be checked to examine if there were corrupt data, 
such as abnormal or missing values. Ouyang et al. [54] suggested using 
exponential smoothing equations for abnormal values, whereas linear or 
spline interpolation is used when there are missing data. These strategies 
were applied in this study. Fig. 2, shows a flowchart that explains the 

Fig. 2. Flowchart of the most relevant decisions take to select final CIF’s 
configuration. 
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main decisions taken in the following sections. 

Results of CIF for FFNN forecaster 

In order to develop the CIF’s structure, we considered two scenarios:  

a) Simplified scenario: we assumed that the output of the ANN mostly 
depends on the N+1 = 16 parameters of the last layer’s neuron (i.e., 

w1,N+1, ⋯, wN,N+1, bN+1). Accordingly, we set ∂g(xt ,φ̂)

∂φ̂ j
= 0 for 

j ∈ {1,2,⋯,N(K+1)} and t ∈ {1,2,⋯,M}. 
b) General scenario: we considered all the N(K+2)+1 = 2221 param

eters of the ANN. 

The PICP results for randomly chosen days obtained from these 
sensitivity analyses with a confidence level CL = 100(1 − α) = 95% are 
presented in Table 2 for both scenarios. 

From Table 2, we conclude that the lower the number of samples is, 
the better the accuracy of the CIF. This fact is related to the approach’s 
ability to generalize, i.e., the ability to produce accurate predictions 
with previously unseen data. Therefore, if databases with a large num
ber of samples are used, the proposed approach memorizes instead of 
learns and its accuracy reduces. From the mathematical analysis per
formed in Section 2, recall that the number of samples M is conditioned 
by N(K+2) + 1 ≤ M ≤ L. 

In addition, the forecasters obtained for both scenarios are valid 
because they satisfy the condition PICPα > (1 − α) for at least one of the 
chosen data sets, so it will be necessary to examine the sharpness error 
metrics. In those indexes where a normalization parameter P is required 
for computation, P takes the average temperature value for the year for 
the target location, Vitoria-Gasteiz, Basque Country, which is 12 ◦C. 
Table 3 shows the results for each computed sharpness error metric in 

those cases where PICPα > (1 − α). 
In terms of the simplified scenario, the results suggest that the lower 

the number of samples, the higher the associated PICP error metrics. 
However, if the sharpness error metrics are examined, a higher PICP is 
based on a wider range of the forecasted interval. Therefore, depending 
on the application, the user of the forecaster must decide whether a 
higher PICP or a narrower interval is preferable, balancing both error 
metrics. In this study, a database with M = 20 samples was chosen as the 
optimal forecaster to compare with other computed forecasters. With 
regard to the general scenario, we obtained the same conclusions as for 
the simplified scenario; for this scenario, a database with M = 2278 
samples was chosen in order to balance accuracy and sharpness error 
metrics. 

To compare the forecasters for both scenarios and decide which has 
better skills, it was necessary to compare samples that had similar PICP 
values. Indeed, in comparing the sharpness error metrics for the same 
PICP values, it was observed that the forecaster obtained from the 
general scenario outperforms the forecaster obtained from the simplified 
scenario and obtains narrower interval predictions. 

Results of CIF for FFNNST forecaster 

With respect to the FFNNST forecaster’s parameter fitting, we again 
consider the simplified and the general scenario. In this case, the 
simplified scenario considers N+1 = 16 relevant parameters while the 
general scenario considers all the N(K+2)+1 = 15361 parameters. The 
PICP results from these sensitivity analyses with a confidence level 
CL = 100(1 − α) = 95% are presented in Table 4 for both scenarios. 

As occurred with the FFNN CIF, the lower the number of samples, the 
higher the PICP of the CIF. The forecasters obtained for both scenarios 
were valid because they satisfied the condition PICPα > (1 − α) for at 
least one of the chosen data sets, and thus it was necessary to examine 

Table 2 
PICP0.05 results to fit M parameter for both scenarios (FFNN model).   

Scenario M Date 

09/02/ 
2017 

04/05/ 
2017 

25/07/ 
2017 

16/08/ 
2017 

100 ×
PICP0.05 

(T = 144) 

Simplified 21  91.67  93.06  93.06  97.22 
20  98.61  99.31  99.31  100.00 
19  98.61  99.31  99.31  100.00 
18  100.00  100.00  100.00  100.00 

General 2285  95.13  99.31  95.83  96.52 
2278  97.91  99.31  96.52  97.91 
2272  98.61  99.31  96.53  97.92 
2260  98.61  100.00  99.31  100.00  

Table 3 
Error metrics for M fitting sets for both scenarios (FFNN model).   

Date Simplified scenario General scenario 

20 19 18 2285 2278 2272 2260 

100 × PICP0.05 (T = 144) 09/02/2017  98.61  98.61  100.00  95.13  97.91  98.61  98.61 
04/05/2017  99.31  99.31  100.00  99.31  99.31  99.31  100.00 
25/07/2017  99.31  99.31  100.00  95.83  96.52  96.53  99.31 
16/08/2017  100.00  100.00  100.00  96.52  97.91  97.92  100.00 

100×WSN0.05 (T = 144)  09/02/2017  − 1.55  − 1.57  − 3.05  − 1.13  − 1.13  − 1.15  − 1.51 
04/05/2017  − 1.64  − 2.15  − 3.74  − 1.36  − 1.45  − 1.57  − 2.20 
25/07/2017  − 1.39  − 1.68  − 3.06  − 1.01  − 1.01  − 1.06  − 1.33 
16/08/2017  − 1.49  − 1.86  − 2.74  − 0.83  − 0.83  − 0.93  − 1.22 

100 × CINAW0.05 (T = 144) 09/02/2017  14.39  14.78  30.51  8.78  9.21  10.31  14.85 
04/05/2017  16.30  21.24  37.49  12.85  13.78  14.90  21.95 
25/07/2017  13.72  16.75  30.62  7.65  8.15  8.98  12.80 
16/08/2017  14.92  18.62  27.43  6.98  7.39  8.22  12.20 

100×SSN0.05 (T = 144)  09/02/2017  0.46  0.46  0.84  0.33  0.35  0.35  0.44 
04/05/2017  0.48  0.60  1.00  0.40  0.43  0.46  0.62 
25/07/2017  0.40  0.47  0.82  0.29  0.29  0.31  0.39 
16/08/2017  0.43  0.52  0.74  0.25  0.25  0.28  0.36  

Table 4 
PICP0.05 results to fit M parameter for both scenarios (FFNNST model).   

Scenario M Date 

09/02/ 
2017 

04/05/ 
2017 

25/07/ 
2017 

16/08/ 
2017 

100 ×
PICP0.05 

(T = 144) 

Simplified 21  84.02  93.75  94.44  91.66 
20  91.67  93.75  90.97  95.83 
19  95.83  95.83  95.83  98.61 
18  97.92  97.92  97.92  98.61 

General 15,747  14.59  22.92  21.53  23.61 
15,438  55.56  74.30  66.67  62.50 
15,387  96.53  99.31  96.53  97.92 
15,374  100.00  100.00  100.00  100.00  
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the sharpness error metrics again. As was done for the FFNN forecaster,P 
took the average temperature value during the year for the target 
location, Vitoria-Gasteiz, Basque Country, which was 12 ◦C. Table 5 
shows the results for each computed sharpness error metric in those 
cases where PICPα > (1 − α). 

Based on the criteria of balancing the accuracy and interval width of 
the forecasters obtained in both scenarios, for the simplified scenario we 
chose the database with M = 19 samples, whereas for the general sce
nario we chose the database with M = 15387 samples. From the results 
presented in Table 9, it can be seen that the forecaster obtained from the 
general scenario outperforms the forecaster obtained from the simplified 
scenario, due to the fact that in the vast majority of the cases for nar
rower sharpness error metrics the PICP is higher. 

Optimal CIF choice 

Table 6 summarizes the error metrics for the chosen FFNN and 
FFNNST forecasters. 

To be able to properly analyse the results provided in Table 6, it is 
necessary to classify the data sets in different cases:  

• Case 1: FFNN and FFNNST have the same or similar PICP values. Six 
of the ten chosen data sets are in this situation (04/05, 14/06, 25/07, 
15/08, 16/08, 28/09). In five of those six tested data sets, the 
FFNNST forecaster produced more accurate predictions while 
achieving a narrower interval for the same or similar PICP value.  

• Case 2: FFNN and FFNNST have the same or similar sharpness error 
metric values. Three out of ten examined data sets are in this situa
tion (05/03, 10/11, 17/12). In all these cases, the FFNNST forecaster 
produced more accurate predictions as it had higher PICP values for 
the same or similar sharpness error metrics.  

• Case 3: Higher PICP value for narrower sharpness error metric 
values. One of the analysed data sets is in this situation (09/02). The 
FFNN forecaster achieved a higher PICP value with a narrower 
interval. 

Table 5 
Error metrics for M fitting sets for both scenarios (FFNNST model).   

Date Simplified 
scenario 

General scenario 

19 18 15,387 15,374 

100 × PICP0.05 (T = 144) 09/02/ 
2017  

95.83  97.92  96.53  100.00 

04/05/ 
2017  

95.83  99.31  99.31  100.00 

25/07/ 
2017  

95.83  97.92  96.53  100.00 

16/08/ 
2017  

98.61  98.61  97.92  100.00 

100×WSN0.05 (T = 144)  09/02/ 
2017  

− 1.40  − 1.95  − 1.23  − 2.02 

04/05/ 
2017  

− 1.21  − 1.73  − 1.13  − 2.49 

25/07/ 
2017  

− 0.97  − 1.39  − 0.96  − 1.64 

16/08/ 
2017  

− 0.84  − 1.29  − 0.84  − 1.59 

100 × CINAW0.05 (T =
144) 

09/02/ 
2017  

9.88  18.22  9.66  20.23 

04/05/ 
2017  

9.72  17.16  11.24  24.86 

25/07/ 
2017  

7.53  13.11  7.38  16.44 

16/08/ 
2017  

7.89  12.86  7.43  15.89 

100×SSN0.05 (T = 144)  09/02/ 
2017  

0.40  0.54  0.36  0.58 

04/05/ 
2017  

0.35  0.50  0.35  0.69 

25/07/ 
2017  

0.28  0.39  0.28  0.47 

16/08/ 
2017  

0.26  0.37  0.26  0.45  

Table 6 
Error metrics for the chosen FFNN and FFNNST forecasters for.CL = 95%  

Date 100 × PICP0.05 (T = 144) 100×WSN0.05 (T = 144)  100 × CINAW0.05 (T = 144) 100×SSN0.05 (T = 144)  

FFNN FFNNST FFNN FFNNST FFNN FFNNST FFNN FFNNST 

04/05/2017  99.31  99.31  − 1.57  − 1.13  14.90  11.24  0.46  0.35 
14/06/2017  100.00  99.31  − 2.84  − 1.80  28.42  17.76  0.80  0.54 
25/07/2017  96.53  96.53  − 1.06  − 0.96  8.98  7.38  0.31  0.28 
15/08/2017  100.00  100.00  − 2.13  − 2.01  23.11  20.11  0.64  0.57 
16/08/2017  97.92  97.92  − 0.93  − 0.84  8.22  7.43  0.28  0.26 
28/09/2017  100.00  100.00  − 1.84  − 2.30  18.44  23.03  0.53  0.66 
05/03/2017  97.92  98.61  − 1.13  − 1.13  10.65  10.53  0.32  0.32 
10/11/2017  97.92  98.61  − 0.60  − 0.62  5.63  6.01  0.19  0.19 
17/12/2017  95.83  97.92  − 0.87  − 0.87  6.73  6.95  0.26  0.26 
09/02/2017  97.91  96.53  − 1.15  − 1.23  10.31  9.66  0.35  0.36  

Table 7 
Calculated error metrics by FFNNST CIF for CL = 90% and.CL = 85%  

Date 100 × PICPα (T = 144) 100×WSNα (T = 144)  100 × CINAWα (T = 144) 100×SSNα (T = 144)  

α = 0.1 α = 0.15 α = 0.1 α = 0.15 α = 0.1 α = 0.15 α = 0.1 α = 0.15 

04/05/2017  97.92  95.14  − 1.93  − 2.63  9.33  8.26  0.60  0.79 
14/06/2017  99.31  98.61  − 3.02  − 4.03  14.74  13.05  0.93  1.26 
25/07/2017  93.06  91.67  − 1.57  − 2.08  6.12  5.43  0.45  0.59 
15/08/2017  100.00  99.31  − 3.34  − 4.44  16.69  14.78  0.97  1.30 
16/08/2017  92.36  90.97  − 1.42  − 1.93  6.16  5.46  0.42  0.57 
28/09/2017  100.00  100.00  − 3.82  − 5.08  19.11  16.92  1.13  1.53 
05/03/2017  97.92  97.22  − 1.87  − 2.48  8.74  7.74  0.54  0.72 
10/11/2017  97.92  97.22  − 1.03  − 1.38  4.99  4.41  0.33  0.45 
17/12/2017  94.44  90.97  − 1.39  − 1.86  5.77  61.30  0.41  0.54 
09/02/2017  94.44  95.14  − 2.00  − 2.63  8.01  8.26  0.59  0.79  
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Based on this comparison of the predictions provided by each fore
caster, we concluded that FFNNST CIF was more accurate for our study. 
In addition, it is mandatory to analyse which is the reliability of the 
forecaster when the end user decided to modify the error rate, α after the 
M has been selected. Table 7 shows the calculated error metrics for CL =

90% and CL = 85%, respectively. 
Through the analysis of Tables 6 and 7 we conclude that the lower 

the CL is, the lower the PICP value. This conclusion is supported by the 
fact that a decrease in the CL is related to a narrower prediction interval, 
as the results of the WSN, CINAW and SSN error metrics suggested. 
Therefore, the compromise between the CL and the PICP value is up to 
the user and will depend on the application and chosen error rate. Figs. 3 
and 4 present two examples to show that the actual samples fall into the 
bounds calculated by the developed CIF (CL = 95%) in the vast majority 
of the analysed samples. The blue line represents actual temperature 
measurements and the red lines are the upper and lower bounds 
computed by our CIF. 

Fig. 3. CIF and actual temperature evolution for May 4, 2017.  

Fig. 4. CIF and actual temperature evolution for November 11, 2017.  

Fig. 5. CIF and actual TC’s evolution for August 13, 2017.  

Fig. 6. CIF and actual VOC’s evolution for August 13, 2017.  

Fig. 7. CIF and PM’s evolution for August 13, 2017.  
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CIF for PV parameters 

After concluding that the CIF in the FFNNST model outperforms the 
reliability as well as the error metric indexes of FFNN’s, some simula
tions were run to examine model’s suitability in PV control strategies. 
Ayvazoğluyüksel et al. [20,55] suggested that key parameters VOC, TC, 
ISC and PM must be monitored to ensure new reliable control strategies. 
The TC, VOC and ISC parameters are often used for the assessment of the 
PV generator’s security strategies [20], whereas the PM parameters are 
required for power management control strategies [17]. TC and VOC are 
mainly influenced by temperature, whereas ISC is influenced by solar 
irradiation; PM is influenced by the combination of both [20]. Figs. 5-7 
show how developed confidence interval ambient temperature fore
caster, combined with Rodríguez et al. [24] proposed solar irradiation 
forecaster as well as Ayvazoğluyüksel et al. [20] equations allow us to 
compute TC, VOC, PM parameters’ bounds for (CL = 95%). 

As can be concluded from Figs. 5 to 7, temperature CIFs give relevant 
information and make it possible to calculate PVs’ control parameters 
such as TC, VOC and PM. In the vast majority of cases, and when no 
sudden solar irradiation changes take place, the actual value falls within 
the calculated interval. Future research work will focus on calculating a 
solar irradiation CIF that is able to forecast all relevant control param
eters in PV control strategies. 

Conclusions 

In this study, a parametric ambient temperature confidence interval 
forecaster was developed. The forecaster predicts the interval for the 
next 10 min, with a confidence level chosen by the user, and its reli
ability was checked using the database from Vitoria-Gasteiz, Basque 
Country. These are the conclusions from this study: 

Although all the presented forecasters fulfil the requirement of the 
PICP being larger than the CL and can be used for temperature fore
casting, the final CIF is based on the combination of a FFNNST forecaster 
and mathematical concepts where PDFs are taken into account. 

The CIF’s accuracy was analysed for different CLs: 95%, 90% and 
85%. As expected, the lower the confidence level is, the lower CIF ac
curacy is. However, the sharpness or interval width also decreases, 
which can be convenient depending on the application. Therefore, the 
user should choose whether higher reliability or a narrower interval is 
desirable. 

All the numerical results presented in this study and the sensitivity 
analyses were run with data from Vitoria-Gasteiz, Basque Country. 
Although the proposed methodology for CIF can be easily applied in 
other locations, one of the main disadvantages of the present approach is 
that a database from the target station is needed to fit the parameters of 
the proposed mathematical model. 

Based on the results provided by this study, the ambient temperature 
CIF can be used to predict the control parameters that are involved in PV 
generators, such as TC, VOC, PM. The CIF provides more information 
than DPF, so using CIF to assess PV generators’ reliability is more 
convenient for energy management systems. 
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[32] Caldas M, Alonso-Suárez R. Very short-term solar irradiance forecast using all-sky 
imaging and real time measurements. Renew Energy. 2019;143:1643–58. https:// 
doi.org/10.1016/j.renene.2019.05.069. 

[33] Sivaneasan B, Yu CY, Goh KP. Solar Forecasting uing ANN with Fuzzy Logic Pre- 
processing. Energy Proc. 2017;143:727–32. https://doi.org/10.1016/j. 
egypro.2017.12.753. 

[34] Jiang H, Dong Y. A nonlinear support vector machine model with hard plenty 
function based on glowworm swarm optimization for forecasting daily global solar 
radiation. Energy Conv Manag. 2016;126:991–1002. https://doi.org/10.1016/j. 
enconman.2016.08.069. 

[35] Huang J, Korolkiewicz M, Agrawal M, Boland J. Forecasting solar radiation on an 
hourly time scale using Coupled AutoRegressive and Dynamical System (CARDS) 
model. Sol Energy. 2013;83:342–9. https://doi.org/10.1016/j. 
solener.2012.10.012. 

[36] Kushwaha V, Pindoriya NM. A SARIMA-RVFL hybrid model assisted by wavelet 
decomposition for very-short term solar PV power generation forecast. Renew 
Energy. 2019;140:124–39. https://doi.org/10.1016/j.renene.2019.03.020. 

[37] Li K, Wang R, Lei H, Zhang T, Liu Y, Zheng X. Interval prediction of solar power 
using an improved bootstrap method. Sol Energy. 2018;159:97–112. https://doi. 
org/10.1016/j.solener.2017.10.051. 

[38] Liu L, Zhao Yi, Chang D, Xie J, Ma Z, Sun Q, et al. Prediction of short-term PV 
power output and uncertainty analysis. Appl Energy. 2018;228:700–11. https:// 
doi.org/10.1016/j.apenergy.2018.06.112. 

[39] Yan X, Abbes D, Francios B. Uncertainty analysis for day ahead power reserve 
quantification in an urban microgrid including PV generators. Renew Energy. 
2017;106:288–97. https://doi.org/10.1016/j.renene.2017.01.022. 

[40] Zhang, J., Yan, J., Infield, D., Liu, Y., Lien, F., 2019. Short-term forecasting and 
uncertainty analysis of wind turbine power based on log sort-term memory 

network and Gaussian mixture model. 241. 229-244. 10.1016/j. 
apenergy.2019.03.044. 

[41] Fonseca Junior JGdS, Oozeki T, Ohtake H, Takashima T, Kazuhiko O. On the Use of 
Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for 
Forecasts of Photovoltaic Power Generation. J Electr Eng Technol. 2015;10(3): 
1342–8. https://doi.org/10.5370/JEET.2015.10.3.1342. 

[42] Golestaneh F, Pinson P, Gooi HB. Very short-term nonparametric probabilistic 
forecasting for renewable energy generation – With application to solar energy. 
IEEE Trans Power Syst. 2016;31:3850–63. https://doi.org/10.1109/ 
TPWRS.2015.2502423. 

[43] Gallego-Castillo C, Bessa R, Cavalante L, Lopez-Garcia O. On-line quantile 
regression in the RKHS (Reproducing Kernel Hilbert Space) for operational 
probabilistic forecasting of wind power. Energy. 2016;113:355–65. https://doi. 
org/10.1016/j.energy.2016.07.055. 

[44] Khosravi F, Izbirak G, Shavarani SM. Application of bootstrap re-sampling method 
in statistical measurement of sustainability. Socio-Econ. Plan. Sci. 2021;75: 
100781. https://doi.org/10.1016/j.seps.2020.100781. 

[45] Rodríguez F, Genn M, Fontán L, Galarza A. Very short-term temperature forecaster 
using MLP and N-nearest stations for calculating key control parameters in solar 
photovoltaic generation. Sustainable Energy Technol Assess 2021;45:101085. 
https://doi.org/10.1016/j.seta.2021.101085. 

[46] Marquardt DW. An Algorithm for Least-Squares Estimation of Nonlinear 
Parameters. SIAM J. Appl. Math. 1963;11(2):431–41. https://doi.org/10.1137/ 
0111030. 

[47] Seber, G.A., Wild, C.J., 1989. Nonlinear Regression. John Wiley & Sons, Inc. New 
York. 10.1002/0471725315. 

[48] Golestaneh F, Pinson P, Gooi HB. Very Short-Term Nonparametric Probabilistic 
Forecasting of Renewable Energy Generation – With Application to Solar Energy. 
IEEE Trans. Power Syst. 2016;31(5):3850–63. https://doi.org/10.1109/ 
TPWRS.2015.2502423. 

[49] Winkler RL. A decision-theoretic approach to interval estimation. J Am Stat Assoc. 
1972;67(337):187–91. 

[50] Liu Y, Qin H, Zhang Z, Pei S, Wang C, Yu X, et al. Ensemble spatiotemporal 
forecasting of solar irradiation using variational Bayesian convolutional gate 
recurrent gate recurrent unit network. Appl Energy. 2019;253:113596. https://doi. 
org/10.1016/j.apenergy.2019.113596. 

[51] Pereira S, Canhoto P, Salgado R, Costa MJ. Development of ANN based corrective 
algorithm of the operational ECMWF global horizontal irradiation forecast. Sol 
Energy. 2019;185:387–405. https://doi.org/10.1016/j.solener.2019.04.070. 

[52] Majumder I, Dash PK, Bisoi R. Variational mode decomposition based low rank 
robust kernel extreme learning machine for solar irradiation forecasting. Energy 
Conv Manag. 2018;171:787–806. https://doi.org/10.1016/j. 
enconman.2018.06.021. 

[53] Heydari A, Astiaso Garcia D, Keynia F, Bisegna F, De Santoli L. A novel composite 
neural network based method for wind and solar power forecasting in microgrids. 
Appl Energy. 2019;251:113353. https://doi.org/10.1016/j. 
apenergy.2019.113353. 

[54] Ouyang T, Zha T, Qin L. A combined multivariate model for wind power 
prediction. Energy Conv Manag. 2017;144:361–73. https://doi.org/10.1016/j. 
enconman.2017.04.077. 

[55] Pachal G, Ganatra A, Kosta YP, Panchal D. Behaviour analysis of multilayer 
perceptrons with multiple hidden neurons and hidden layers. Int J Comp T Eng. 
2011;3:332–7. https://doi.org/10.7763/IJCTE.2011.V3.328. 

F. Rodríguez et al.                                                                                                                                                                                                                              

https://doi.org/10.1016/j.energy.2021.120647
https://doi.org/10.1016/j.energy.2021.120647
https://doi.org/10.1016/j.renene.2018.10.096
https://doi.org/10.1016/j.renene.2018.10.096
https://doi.org/10.1016/j.apenergy.2019.114137
https://doi.org/10.1016/j.enconman.2019.111914
https://doi.org/10.1016/j.enbuild.2014.01.006
https://doi.org/10.1016/j.enbuild.2014.01.006
https://doi.org/10.1016/j.enbuild.2015.06.054
https://doi.org/10.1016/j.enbuild.2015.06.054
https://doi.org/10.1016/j.renene.2019.07.067
https://doi.org/10.1016/j.solener.2019.08.044
https://doi.org/10.1016/j.renene.2019.05.069
https://doi.org/10.1016/j.renene.2019.05.069
https://doi.org/10.1016/j.egypro.2017.12.753
https://doi.org/10.1016/j.egypro.2017.12.753
https://doi.org/10.1016/j.enconman.2016.08.069
https://doi.org/10.1016/j.enconman.2016.08.069
https://doi.org/10.1016/j.solener.2012.10.012
https://doi.org/10.1016/j.solener.2012.10.012
https://doi.org/10.1016/j.renene.2019.03.020
https://doi.org/10.1016/j.solener.2017.10.051
https://doi.org/10.1016/j.solener.2017.10.051
https://doi.org/10.1016/j.apenergy.2018.06.112
https://doi.org/10.1016/j.apenergy.2018.06.112
https://doi.org/10.1016/j.renene.2017.01.022
https://doi.org/10.5370/JEET.2015.10.3.1342
https://doi.org/10.1109/TPWRS.2015.2502423
https://doi.org/10.1109/TPWRS.2015.2502423
https://doi.org/10.1016/j.energy.2016.07.055
https://doi.org/10.1016/j.energy.2016.07.055
https://doi.org/10.1016/j.seps.2020.100781
https://doi.org/10.1016/j.seta.2021.101085
https://doi.org/10.1137/0111030
https://doi.org/10.1137/0111030
https://doi.org/10.1109/TPWRS.2015.2502423
https://doi.org/10.1109/TPWRS.2015.2502423
http://refhub.elsevier.com/S2213-1388(21)00945-0/h0245
http://refhub.elsevier.com/S2213-1388(21)00945-0/h0245
https://doi.org/10.1016/j.apenergy.2019.113596
https://doi.org/10.1016/j.apenergy.2019.113596
https://doi.org/10.1016/j.solener.2019.04.070
https://doi.org/10.1016/j.enconman.2018.06.021
https://doi.org/10.1016/j.enconman.2018.06.021
https://doi.org/10.1016/j.apenergy.2019.113353
https://doi.org/10.1016/j.apenergy.2019.113353
https://doi.org/10.1016/j.enconman.2017.04.077
https://doi.org/10.1016/j.enconman.2017.04.077
https://doi.org/10.7763/IJCTE.2011.V3.328

	Very short-term parametric ambient temperature confidence interval forecasting to compute key control parameters for photov ...
	Introduction
	Methodology
	Confidence interval forecast model
	Uncertainty evaluation error metrics

	Results and discussion
	Description of the data used
	Results of CIF for FFNN forecaster
	Results of CIF for FFNNST forecaster
	Optimal CIF choice
	CIF for PV parameters

	Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


