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Abstract—In this paper, a new 2D transform named Discrete
Mirror Transform (DMT) is presented. The DMT is computed
by decomposing a signal into its even and odd parts around an
optimal location in a given direction so that the signal energy is
maximally split between the two components. After minimizing
the information required to regenerate the original signal by
removing redundant structures, the process is iterated leading
the signal energy to distribute into a continuously smaller set of
coefficients. The DMT can be displayed as a binary tree, where
each node represents the single (even or odd) signal derived
from the decomposition in the previous level. An optimized
version of the DMT (ODMT) is also introduced, by exploiting the
possibility to choose different directions at which performing the
decomposition. Experimental simulations have been carried out
in order to test the sparsity properties of the DMT and ODMT
when applied on images: referring to both transforms, the results
show a superior performance with respect to the popular Discrete
Cosine Transform (DCT) and Discrete Wavelet Transform (DWT)
in terms of non-linear approximation.

I. INTRODUCTION

Linear transformations are largely used in many signal pro-
cessing applications, such as signal approximation, data com-
pression, denoising, and so on [1]. In general, an efficient
transform should be able to closely approximate the signal
by using a small number of transform coefficients, that is,
efficiently-performing transforms should generate a sparse
representation of a signal. The search for a universal optimal
transform is a very arduous problem, since typically it has to
satisfy very different task constraints and fit in with distinct
classes of signals [2].

Two families of transforms can be categorized in terms
of design techniques. The first category assumes an a priori
knowledge of a good statistical model. Typically, this family of
transforms is well suited when regular behaviors are present
within the data samples, e.g., piece-wise smoothness. Then,
these model-based approaches attempt to describe signal vari-
ations with a few transform coefficients. Popular transforms
belonging to this category are the Fourier transform, the
cosine transform, wavelets, and the more recent Curvelets [3],
Contourlets [4], Bandelets [5] or Directionlets [6], in addition
to the graph Fourier transforms [7][8] that exploit the structure
of some graphs in order to model the signal, e.g., [9] (actually,
in some works the graph is constructed by learning graph
Laplacians so that a particular class of input data forms graph
signals with smooth variations on the resulting topology [10];
this case belongs to the second category).

The second class of design techniques tries to capture more
general forms of regularity that may be hard to describe
with concise analytical models. Some data-driven algorithms
can be used to seek transforms exhibiting good linear or
non-linear approximation capabilities. For example, principal
component analysis (PCA) and the Karhunen-Loeve transform
(KLT), that exploit the correlation of the data, are proved to
be optimal in terms of linear approximation. However, when
compression and signal representation have shifted from PCA
and linear approximation to non-linear approximation, other
methods caught on. Typically, these new techniques impose
some algebraic restrictions on the transform coefficients, in
order to achieve a prefixed level of sparsity. Emblematic
examples are the KSVD (and, in general, algorithms that cre-
ate over-complete dictionaries) [11], the Sparse Orthonormal
Transform (that tries to generalize the KLT) [2], in addition
to design techniques using various optimization methods.

In this paper, we present a new multidimensional transform,
named Discrete Mirror Transform (DMT). The framework is
inspired by what was proposed in [12], evolving the ideas
expressed therein, and in [13], of which this work provides a
natural extension into the 2D domain. Such a transform can
be associated to the aforementioned second category, even if
with an important difference. Indeed, the representation of the
signal does not derive from a projection on the space spanned
by a predefined set of vectors. On the contrary, each signal is
expressed through an iterative optimal even/odd decomposition
with respect to a given direction that distributes the energy
of the signal into a smaller number of coefficients at each
iteration. The discrete mirror transform can be visualized as a
binary tree, where a node in a certain level represents a single
decomposition (even or odd) referred to the parent node at the
previous level, and the leaf nodes determine the final transform
coefficients. The process is invertible, that is, the original
signal can be reconstructed given the transform coefficients
and the location of the leaf nodes in the binary tree.

Since the mirroring location is calculated so as to provide
maximal energy concentration into the even or odd part, the
coefficients will be characterized by a strong sparsity that
allows to well approximate the original signal by keeping just
a limited set of them. In other words, the architecture of the
algorithm that builds the DMT naturally defines a transform
that compacts the signal energy into a few of its components.
As a matter of fact, in this work the efficiency of the DMT
is tested on images: the results show performance higher



with respect to other popular transforms when a non-linear
approximation is applied in the transform domain.

An important property of the DMT is that it preserves
the energy of the signal, differently from some recent works
providing non-orthogonal and overcomplete transforms. Non-
orthogonality leads to involved search techniques even for
simple operations, e.g., scalar quantization. Our transform, by
preserving the validity of the Parseval’s theorem beyond the
linear expansion context, is exempt from such issues. More-
over, as it will be described in detail in the next sections, the
energy preservation holds not only in the transform domain,
but even for each level of the binary tree. It means that
zeroing (or quantizing) an intermediate node of the tree has
the same effect of a non-linear approximation (or quantization)
of the transform coefficients, even leading to a more compact
information to locate the non-zero coefficients. Also in this
case, the DMT preserves its invertibility, as long as the
interruption of the iteration at that specific node is signalled
within the binary tree.

The rest of the paper is organized as follows. In Sec. II,
how to find the optimal symmetry point/plane in a 2D signal is
described. Sec. III defines the analysis and synthesis operations
of the discrete mirror transform and its representation as a
decomposition binary tree. In Sec. IV some experiments are
carried out to show the sparsity property of the DMT and to
compare its non-linear approximation ability with respect to
typical linear expansions. Finally, some conclusions are drawn
in Sec. V.

II. 2D OPTIMAL SYMMETRY DECOMPOSITION

Given a [?-norm signal x[m] : Z — R, it can be always
expressed as the sum of its even and odd part, say z.[m] and
x,|m], respectively. Generally, when inspecting the evenness
and oddness of a signal, the line m =0 is implicitly considered
as the symmetry axis. However, it is possible to define an
extended notion of symmetry by decomposing x[m| around
an arbitrary point mg as follows.

z[m] + z[2mg — m)|

Te[m;mo] = 5
ey
x[m] — z[2mg — m]
xo[m; mO] = D) .

In [14] the authors showed how to detect the global optimal
symmetry point my, i.e., the point around which the even/odd
decomposition maximally splits the energies of the even
and odd components. It turns out that the optimal location
is strictly related to the self-convolution of the signal, in
particular:

2myg, = argmax |(z * z)[k]| . )
k

The same study can be clearly extended in multidimensional
spaces. Focusing on the 2D case, i.e., considering the [2-norm

signal z[m, n] : Z? — R2, the even/odd decomposition around
a generic point [mg, ng| is defined as follows:

x[m,n] + z[2mg — m, 2ng — nj

2 3)
x[m,n] — z[2mg — m, 2ny — n|
Zo[m, n;mg, ngl = 5 :
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Specifically, Eq. (3) refers to a so-called point reflection.

In order to find the global optimal symmetry point [mg, ng],
the procedure described in [14] for the 1D domain can be
properly adjusted for the 2D domain. Let E.[mg,no] and
E,[mg,ng] be the functions of the energies associated to
x. and z,, respectively, as the point [mg,ng] varies. The
expression of the even energy function can be written as:
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where, for the sake of conciseness, z and Z,, n, are used in
place of z[m,n] and z[2mq — m, 2ny — n], respectively. The
first two terms in the last summation return the energy of the
signal, say E, since the reversing and shifting operations do
not affect the energy value of a signal (note that £ = F.+ Ey,
since x. L x,). Then:

1

5 Zx[m, n] - x[2mgy — m, 2ng — n]
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where the last term is exactly the 2D discrete linear convolu-
tion denoted by *x. By repeating the same process for F, as
well, we obtain:

1 1
E.[mq, no] :§E + E(x * x ) [2mo, 2no)
(6)
1 1
E,[mg, ng] :§E - 5(:1: * % ) [2mo, 2ng).
It turns out that the energy functions F. and E, depend on
the behavior of the 2D self-convolution of the signal. Then,
determining the optimal [mg, ng] point that maximally splits
the energy values is computed by:

[2mg), 2ng] = arirzl)ax [(z % *xx)[k, h]|. (7

Note that n{, and m(, can exclusively be integers or half-
integers. Instead of dealing with both cases we simply choose
the coordinates to be just half-integers without affecting the
general flow of the presentation, i.e., whenever n{, and my
turn out to be integers, then +0.5 is added based on the
corresponding largest convolution values.

Generally, symmetries with respect to a plane in 2D are
also of interest. For example, by considering n = ng as the
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Fig. 1: Illustration of (even) symmetries with respect to the
[0, 0] point, the plane n=0 and the plane m =0. The function
values are represented in pseudocolor. The symmetry point
and planes are drawn in red.

vertical reflection plane, the even/odd components of x[m, n]
with respect to it are expressed as:

x[m,n] + z[m, 2ng — n]

2
x[m,n] — z[m, 2ng — n] ®
2
Thus, repeating the steps previously reported for the point
reflection, the new energy function E.[ng] is equal to:

ze[m,m;no] =

To[m,n;ng| =

E.[ng] = %E + %Zm[m,n] - z[m, 2ng — n] )
72
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where the last term is exactly the 1D discrete linear convolu-
tion applied to a 2D signal. In this case, Eq. (7) becomes:

2ny, :arg}rlnax |(z * x)[R]|. (10)
Obviously, when considering the reflection with respect to m=
my, the same result is obtained by just applying the mirroring
in the orthogonal direction, namely using an horizontal plane.

As an illustrative example, a point reflection and two
symmetries with respect to the plane n = 0 and the plane
m =0 are shown in Fig. 1a, Fig. 1b and Fig. lc, respectively.
For the sake of clarity, let us consider the first case: following
the definition reported in Eq. 7, the global optimal symmetry
point of the function z[m,n| depicted in Fig. la is clearly
[0, o] = [0, 0]. Considering the symmetry around this point,
xe[m,n] = x[m,n] and z,[m,n] = 0 (Eq. 3), that is, in the
even/odd decomposition the energy of the signal is completely
distributed in its even part (this, of course, represents the ideal
case where the examined function is purely even (odd) and
thus its energy is maximally split).

ITII. 2D DISCRETE MIRROR TRANSFORM

A. One-step iteration

In this section, we introduce the connection between optimal
even/odd decomposition and sparsity, by concentrating the
analysis on images data. Note that the types of symmetry
as defined in Sec. II for a generic 2D discrete signal can
be thought as symmetries with respect to a single pixel or a
row/column. For the sake of conciseness, this section will treat

(a) Reference image.
108

(b) Even part — Eq. (8).
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(d) Conv. — Eq. (10). (e) Causal (f) Causal
even  part odd  part
(with tail). (no tail).

Fig. 2: Even/odd decomposition (2b and 2c) of the image
(2a) with respect to the optimal symmetry column found by
identifying the maximum of the convolution (2d). The minimal
information required to reconstruct the original signal are
depicted in 2e and 2f.

just symmetry with respect to a column (the same approach
can be applied exactly in the same way for symmetry around
a pixel or with respect to a row).

Let I[m,n] be an image defined in [0, A/ —1]x[0, N —1]. In
order to find the global optimal symmetry column, we need to
compute the maximum of the corresponding self-convolution
modulus as described in Eq. (10). As an example, Fig. 2d
depicts the self-convolution modulus associated to the image
shown in Fig. 2a: the location of the maximum, say ¢z,
is indicated with a red dashed line as well as the matching
optimal symmetry column nj = ZTM in the image. In order to
compute I.[m,n] and I,[m,n], the even/odd decomposition
around ng = ny, is applied to I[m,n| as in Eq. (8): Figs. 2b
and 2c show the even and odd part, respectively. The number
of columns of the two images increases to N + 2t, where ¢t is
the absolute value of the distance between ny, and the middle
column % However, note that both include a 2¢ long support
that represents the “tail” of the original image: such regions
are identified by the blue dashed lines in Figs. 2b and 2c.

At this point, it may be wondered how to regenerate the
original image by minimizing as much as possible the informa-
tion contained into the even and odd components. To answer
this question, the first observation is that both I.[m,n] and
I,[m, n] are completely defined by the last (first) half of the
columns, since the other half can be obtained by an even/odd
mirroring operation (let us call I.. and I,. the “causal” parts
of I, and I,). A second consideration is that the tail can be
removed either in I.. or I,. without losing any information,
since it is shared between both the signals. Then, by removing
the tail, for example, in I,., the minimal information of the
even/odd decomposition necessary to reconstruct the original
image is finally achieved (Figs. 2e and 2f). Note that the sum
of the columns of the two final images is exactly equal to V.
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Fig. 3: Evaluation of the sparsity of the resulting signal when
iterating the optimal symmetry decomposition.

The operations to regenerate the original signal are straight-
forward: first, the causal even part without the tail and the
causal odd part are extended by the appropriate mirroring
operation. Then, the resulting signals are added and, lastly,
the tail is concatenated.

B. Binary Tree: Signal Decomposition

Let us denote with I¢ and I the signals shown in Figs. 2e and
2f, respectively. As mentioned before, these two signals allow
to reconstruct the original image. The improvement of this
representation is that a certain quantity of energy is moved
from the image pixels to a smaller set of samples. In our
example, we have F.[ng]/E = 0.86.

Fig. 3a reports two curves: the blue one represents the
ratio between the energy of I when keeping just a certain
percentage of the largest pixel values (in modulus) and the
total energy of I. The red curve evaluates the same ratio, but
considering the “concatenation” of I¢ and [ instead of the
original image. Interestingly, the second curve overcomes the
first one, meaning that the energy of the concatenation of I¢
and [ is more concentrated in a few samples with respect to
how much it is in [.

Starting from this preliminary observation, we propose
to iterate the even/odd decomposition up to when single
coefficients are achieved. In this way, a binary tree, whose
nodes represent the even or the odd part obtained from a
previous decomposition, is generated. We call this procedure
the discrete mirror transform (DMT) of a signal. Basically,
the two signals Ig and I constitute the first-level nodes of

the tree. For the sake of clarity, let us rename them I S) and

I((Q1 ), Then, the even/odd decomposition is distinctly applied
to 1, él) and Ig ) again, generating the four nodes I (525), 1, 220’

I(?% and I((92c)9 In general, a node at level [ is referred to as
1

Iss, . s,» Where S; represents the symbol £ or O, depending
on from which part of the decomposition it derives (even or
odd).

Two final considerations have to be stated at this point.
The first one is that each branch ends with a leaf node
containing a single coefficient. Indeed, when a node contains
a single coefficient the iteration for that node clearly stops,
since computing a further even/odd decomposition is useless

2 2
o 1os

Fig. 4: A part of the binary tree corresponding to the Lena
image decomposition. The first two levels are entirely shown,
while some other nodes are depicted for deeper levels when
zooming in a small region of the tree. Here, the squares
indicate generic nodes from which the decomposition keeps
on, while the circles represent the leaves, namely the transform
coefficients. Note that the coefficients are generally located at
different levels of the tree.

(note that when a node is composed by just a column, the
analysis simply move in the 1D domain without varying the
decomposition process). The important fact is that the single
coefficients can be located at different levels, since the size of
the nodes tends to unequally decrease while descending the
tree. This evidence leads to the conclusion that the binary tree
is not balanced, i.e., the leaf nodes are located at different
levels. As an example, some portions of the binary tree
associated to the Lena image decomposition are illustrated in



Fig. 4.

The second observation is that by taking all the nodes
belonging to a specific level, the energy of the original signal
is preserved. What it changes is the distribution of the energy
over the samples. Fig. 3b presents the curves related to the
energy functions when varying the number of the kept largest
coefficients (in modulus) for each level (note that the curve
labeled as last level refers to the final coefficients of the
transform). What emerges is that the higher is the level, i.e.,
the deeper is the decomposition, the sparser is the signal
representation at that corresponding level, proving the strong
sparsity property of the discrete mirror transform.

C. Binary Tree: Signal Reconstruction

In Sec. III-A, we mentioned the fact that given two nodes,
the parent node of the previous level can be obtained by
1) removing the tail from the even node, 2) extending the
causal even and odd parts with respect to the corresponding
mirroring operation, 3) summing the obtained signals, and 4)
concatenating the tail with the resulting signal.

However, we have assumed to know the point that sepa-
rates the causal even part and the tail. Therefore, one may
wonder if the optimal symmetry position ng is needed for the
reconstruction process. Actually, the number of columns of the
two nodes identify the unique two allowable locations around
which the even/odd decomposition may have been applied. Let
us call L, and L, the number of columns of the even and odd
node, respectively, with L, > L, since the even node contains
the tail as well. The parent node will have L. + L, columns,
and the optimal symmetry column could be both ny = L,,
when ny(, is in the first half of the columns, and njy = L.,
otherwise (since a signal and its flipped version would return
the same decomposition).

In order to overcome this potential ambiguity, it is sufficient
to save the tail of the even part when ny is to the left of
the support mid-column, otherwise saving the tail of the odd
part. Note that in this way L, consistently returns the optimal
symmetry position.

One last observation is that the single coefficients are suffi-
cient to regenerate the original signal, that is, the signals in the
intermediate nodes are not necessary. Indeed, by computing
the reconstruction process from the leaf nodes, the rest of
the tree is automatically generated. Actually, what the inverse
algorithm needs is the position of the leaf nodes. It means that
the structure of the tree has to be known, i.e., each node of
the tree has to indicate if the iteration has continued or if a
single coefficient has been reached.

IV. EXPERIMENTAL RESULTS

In this section, some experiments aimed to highlight the spar-
sity properties of the discrete mirror transform are presented.
They have been tested on various databases including different
types of image, such as miscellaneous (41 images), aerial
(30 images) and fextures (64 images) for standard definition
images taken from [15], and 15 high definition images taken
from [16].
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Fig. 5: Performance comparison between DCT, DWT, DMT
and ODMT when applied to some images of the considered
datasets (left column). The average performance is also shown
in the right column.

To measure the ability of the discrete mirror transform to
compact the energy to a small set of coefficients, it has been
compared with other two popular transforms: the Discrete
Cosine Transform (DCT) and the Discrete Wavelet Transform
(DWT) implemented using the ’db4” wavelet with 4 decompo-
sition levels. The comparison has been performed by applying
a non-linear approximation to each transform. Specifically, for
the discrete mirror transform the whole decomposition tree
is generated and then the original signal is approximated by
computing the inverse transform while using just a certain



percentage of the most significant leaf nodes (in terms of
energy). Finally, the PSNR of the reconstructed signal is
determined. The same process is performed for the DCT and
the DWT, by retaining the most significant coefficients in the
frequency or time-frequency domain based on their magnitude.

Fig. 5 depicts the curves of the performance comparison, by
emphasizing the result on a single image for each dataset and
the average performance with the associated standard deviation
as well. Note that a fourth component has been added in
addition to the DCT, DWT and DMT. Indeed, an optimized
version of the DMT has been implemented as well, and we
refer to it as ODMT. The ODMT differs with respect to the
DMT based on the fact that for each symmetry decompo-
sition the system decides in which direction to perform the
decomposition itself. Specifically, the choice is made between
two potential signal decompositions: the first corresponds to
the optimal symmetry column (as done for the DMT), while
the second considers the orthogonal direction, i.e., the optimal
symmetry row. In other words, for each node the optimal
decomposition is computed in both directions, and then just
the one that returns the maximal separation of the energies is
kept.

The experiments show that the DCT and DWT performance
are consistently worse than those given by both DMT and
ODMT, independently the image class. As expected, the
ODMT outperforms the DMT, even if in the optimized version
the tree nodes (leaf nodes excepted) also need to include
an indication of which direction the decomposition has been
performed during the analysis phase.

V. CONCLUSIONS

In this paper, the 2D Discrete Mirror Transform (DMT) has
been presented, with the objective of finding an efficient
transform able to non-linearly approximate images data. The
DMT provides for an iterative optimal even/odd decomposition
that moves the energy signal into a smaller set of components
step by step. A binary tree can be suitably used to represent the
DMT: for each iteration a new level of the tree is generated,
whose nodes are the (even or odd) decomposition derived from
the previous iteration/level. The process ends when a single co-
efficient is reached. An optimized version of the DMT, named
ODMT, has also been presented: it allows to select the optimal
symmetry plane between two different orthogonal directions.
The experiments have shown high performance by inspecting
the sparsity in the transform domain: the reported results
have indicated that both the DMT and ODMT outperform the
popular DCT and DWT, proving superior capability in terms of
images non-linear approximation. Future works will focus on
finding an efficient representation of the decomposition binary
tree.
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