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Abstract—Broadcasting information in a network is an im-
portant function in networking applications. In some networks,
as wireless sensor networks or some ad-hoc networks it is so
essential as to dominate the performance of the entire system.
Exploiting some recent results based on the computation of the
eigenvector centrality of nodes in the network graph and classical
dynamic diffusion models on graphs, this paper derives a novel
theoretical framework for efficient information broadcasting in
mesh networks with low duty-cycling without the need to build a
distribution tree. The model provides lower and upper stochastic
bounds with high probability. We show that the lower bound
is very close to the theoretical optimum and that a preliminary
implementation provides results that are very close to the lower
bound on classical graph models.

I. INTRODUCTION

Broadcast, the function of sending a piece of information to
all nodes in a network, is a fundamental and pervasive function
in many protocols, applications, and network architectures
as well. Flooding of Link-State (LS) advertisements in LS
routing protocols or streaming in a multicast group with
Peer-to-Peer (P2P) technologies are examples of broadcast
in application overlays. In wireless ad-hoc networks such as
Wireless Sensor Networks (WSNs) it is normally executed on
the physical topology (as opposed to a logical overlay) and it is
so important that its performance impacts the overall network
efficiency. In these networks, which are often considered the
base of Internet of Things (IoT), broadcasting pertains to
sensor data, queries, or messages about diagnosis, localization,
routing, and configuration: In practice in every domain of
operation [1].

Broadcasting can be often solved satisfactorily in traditional
networks and overlays with techniques that builds a distri-
bution tree [2], [3] or with brute-force approaches such as
limited flooding (as in Open Shortest-Path First (OSPF) LS
advertisements), in WSN there are three additional challenges:
i) Dynamism; ii) Energy consumption; and iii) Duty cycling,
i.e., the ratio between the wake-up time of the node and the
overall time of the cycle [4] that can be as low as 0.01 or even
less [5]. A WSN is dynamic, meaning that even if the nodes
are stationary, the surrounding conditions vary and at every
instant we expect a few links to appear or disappear. Energy
efficiency is hampered by continuous signaling, reduction in
duty cycling, need for overhearing messages. And low duty
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cycle means that any reconfiguration takes a long time as nodes
seldom wake up. For these reason we consider a broadcasting
strategy that does not rely on trees, that are intrinsically fragile
even in presence of minimal modifications of the topology. In
the rest of the paper we concentrate, as reference scenario, on
WSNs, albeit our results are general and apply to any network,
physical or logical. In this context we use the term flooding
to identify the broadcast process, while the term broadcast is
used only to refer to physical layer broadcast, if used.

The contribution of this paper stems from the encounter
of a recent result published in the context of P2P stream-
ing [6], with classical results from epidemic diffusion based
on differential equations [7], [8]. We look at the broadcasting
process as the “infective” propagation of data on a graph, that
models the given topology of the network, hence the title,
and we modify the infective capability of each node in such
a way to optimize the information distribution. The result is
a sound theoretical framework providing bounds either for
the maximum delay and the energy consumption required for
flooding operations. Flooding is performed exploiting all the
resources of the network, without building a distribution tree,
thus resulting in a very robust system that requires minimal
signaling.

The theoretical results we derive are confirmed with simula-
tions on different topologies, while performance comparisons
with other techniques such as the tree-based solution proposed
in [5] are left for future work.

II. SYSTEM MODEL

We consider a connected, multi-hop network described by
an undirected graph G(V,E), where V is the set of nodes and
E ∩ (V × V ) is the set of edges. The network is stationary
or with slow mobility as assumed also in [9], [5], so that in
general the network topology does not change too much from
one wake-up cycle to the next. One node, called source, is the
originator of the packets to be flooded, but we do not make
any further assumption on its location in G; it is likely that
the source changes from one flooding event to another. This
scenario is typical of a WSN used for monitoring, in which at
a certain instant a sensor detects a certain event and alerts the
other nodes of the network. Similarly flooding is needed for
time synchronization of nodes, which can be triggered by any
of the sensors acquiring time from an external source [10].

Notice that in tree-based flooding if the source changes
the flooding tree must be recomputed, e.g., using Djikstra
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Fig. 1. The network model consists of a mesh network whose nodes have
periodic listening periods τi and wake up when necessary in period τj to
transmit to node j; transmissions are unicast as τi are separated; in the picture
node 0 sends a packet (in gray) to nodes 1, 3, and 4.

algorithm, unless a global Minimum Spanning Tree is used,
which however does not minimize the distribution delay.
Moreover the time interval between two flooding events is
orders of magnitude larger than the wake-up cycle, so changes
in the topology are likely between two flooding events. Tree
structures are fragile and must be maintained over time,
requiring a very large signaling overhead for low duty-cycle
networks.

Let T be the wake-up cycle that is divided in fixed lengths
time slots of τ seconds. τ is long enough to synchronize a
transmitter and a receiver and to transmit a packet. For the
sake of simplicity we assume that a transmission is successful,
as our focus is on the assignment of transmission resources
to nodes based on their topological position to minimize the
flooding delay, so re-transmissions are not essential to the
problem, and can be solved with a simple ARQ protocol,
which is left for future work. Each node wakes up for a single
τ slot during a cycle T to listen for incoming packets and
sleeps during the others to reduce energy consumption, or
for any other reason. This assumption is the same adopted,
for instance, in [9]. We assume there is an initialization phase
(how it is done is outside the scope of this paper, see for
instance the solution proposed in [11]) during which nodes
select their listening periods and exchange them with their
neighbors. After the initialization, nodes wake up if they have
to send packets during other nodes listening periods or if they
have a scheduled listening period.

Figure 1 depicts the situation with 5 nodes and a simple
topology. τi identifies the listening slot of duration τ selected
by node i. As the duty-cycle is very low, one can assume that
waking periods are different in the entire network, minimizing
interference, but it is enough that they are different in 2-hop
neighborhoods.

In the following subsections we combine our results on the
optimality of receiver-equal resource allocation [6] together
with an infective model dissemination on graphs to derive
bounds on the performance of information flooding on mesh
networks with minimal signaling.

A receiver-equal strategy guarantees that in a streaming
application, in which a source injects into the network a
sequence of packets, every node receives the same amount
of information at steady state given that the overall resources
are minimal. Minimal resources means that, if Bs bit/s is the
stream bandwidth, then the overall capacity allocated in the
network is |V | × Bs. This resource allocation to every node
is proportional to the eigenvector centrality of the node in
G(V,E)1.

An infective model is, in some sense, the mathematical
formulation of opportunistic (or stochastic) flooding. Each
node that possesses the information pass it to one of its
neighbors following some protocol, until all his neighbors have
received the information. When this is true for all nodes, then
the information has been flooded to the entire network.

The goal of this paper is to show that the steady-state
reception-equal property can be applied to flooding of one
packet and derive time bounds for the average case.

A. Reception-Equal P2P Streaming

In a P2P (Peer-to-Peer) streaming application there is a
source of the stream that injects packets in the network. Every
node (including the source) at every instant has a buffer of
packets that can share with its neighbours, and decides which
packet to share with which neighbour randomically. As stated
above, at steady state, the optimal resource allocation is the
one that guarantees that every node receives the same amount
of information (the same number of packets) per time-interval.
The result presented in [6] can be summarized as follows;
Section III derives delay bounds starting from this result.

Let A′ be a stochastic transition matrix for G so that the
element A′ij ∈ [0, 1], A′ij > 0 ⇐⇒ (i, j) ∈ E represents
the probability for node j to send a packet to node i during a
cycle T and ~1TA′ = ~1T . Let Θj be the throughput (in terms
of packets sent per second) that node j sustains in average
and Θ the resulting column vector. Then, from the Theorem 1
in [6],

Θj = αxj

|V |∑
k=1

A
′

kj

xk
, Aij =

A
′
ij

xi∑|V |
k=1

A
′
kj

xk

(1)

are such that:

α~1 = AΘ (2)

|Θ| = α|~1| = α|V | (3)
~1TA = ~1T (4)

A′ij = 0 ⇐⇒ Aij = 0 (5)

1The definition and properties of the eigenvector centrality are derived
from [12]



where xi ∈ R is the eigenvector centrality of node i and α ∈
R+ is an amplification parameter. The theorem states that the
new stochastic transition matrix A describes the same links as
A′ but with different values (Eqs. (4) and (5)). Θj represents
the number of packets node j sends during T and, overall,
this number is, on average, α per node (Eq. (3)). In this work
we set α = 1 as increasing it means using more resources
(bandwidth and energy), which we are instead interested in
minimizing. Equation (2) grants that every node has the same
probability of receiving the information if we average over all
possible sources s ∈ V .

If A′ is column-uniform, which means that pakets are sent
with uniform probability to the neighbors, these parameters
can be computed by the nodes distributively by simply gos-
siping their neighbourhood set size [6].

B. The Infective Model

The flooding of a packet in a network can be seen as a virus
propagation starting at the source node, and all nodes being
susceptible to the infection while they do not have the packet
and infective when they have it. We are interested in studying
and characterizing the speed of such infection.

Our infection process corresponds to the elementary SI
model: a node can be in either one of the two states, suscepti-
ble (S) or infected (I), there is no recovery from the infection
and nodes remain infectious indefinitely (they do not die or
recover from the infection) [7]. We are aware that there is a
large body of literature on disease spreading, obviously in the
medical literature, but also in networking (see for instance [13],
[8], [14], [15], [16] and references in these works), but indeed
this simple SI model represents exactly what happens flooding
a packet into a network, taking into account the topological
properties of the network graph G.

The initial spread of a virus in a network subject to the
SI model is exponentially fast [7]. The speed depends on
the largest eigenvalue of A′ (1 in our case as it is column
stochastic) and the rate of infection. During this initial phase,
the nodes with large eigenvector centralities are more likely
to be infected [7].

We denote with yi(k) the probability of node i to be infected
at time k (we use discrete time to better map with time cycle
T ), with S(k), I(k) the group of susceptible and infected
nodes at time k, and Ni is the set of neighbour nodes of
i. Hence, the following dynamic equation holds:

yi(k+1) = yi(k)+P{i ∈ S(k), j ∈ I(k), j infects i,∀j ∈ Ni}
(6)

Equation (6) states the probability of node i to be infected at
time k+1 is given by the same probability at the previous time
step plus the probability of transition from the susceptible state
to the infected one, which occurs if at least one neighbour j
is infected (at time k) and pass the infection.

Unfortunately, Eq. (6) cannot be integrated in closed form
conditioned on the graph topology, and it is hence difficult to
handle mathematically. To ease the analysis we take advan-

tage from its first order approximation (see Section V for a
discussion on this approximation):

yi(k + 1) = yi(k)+

(1− yi(k))(1− P{j ∈ I(k),∀j ∈ Ni, j does not infect i})
(7)

In the case of packets flooding using the reception-equal
strategy we have that j infects i (j sends a packet to i)
with probability AijΘj (the throughput of j multiplied by the
probability of sending a packet to neighbor i). Equation (7)
can be expressed in closed form as:

yi(k + 1) = yi(k)+

[1− yi(k)]

1−
|V |∏
j=1

[1− yj(k)AijΘj ]

 (8)

the next section exploits this approximation to derive closed
form upper and lower delay and energy bounds.

III. FLOODING DELAY BOUNDS

In this section we present our stochastic upper and lower
bounds for the distribution delay time. To this end we assume
an initial uniform probability that each node in a network can
be the source, i.e., yi(0) = 1

|V | ∀i.
We first state the bound formulas and we link them with

the SI model in Theorem 1. The upper bound is:{
ω(k + 1) = 2ω(k)− ω2(k)
ω(0) = 1

|V |
(9)

and the lower bound is:{
Ω(k + 1) = 2Ω(k)− 3

2Ω2(k) + Ω3(k)
2

Ω(0) = 1
|V |

(10)

Note that both Eqs. (9) and (10) have two fixed points
{0, 1} the latter of which is attractive. Hence, ω(k),Ω(k)
are monotonically increasing functions and, given their initial
value ω(0) = Ω(0) = 1

|V | their values are in the interval
[ 1
|V | , 1).

We are now ready to state the main finding of this work,

Theorem 1. Let nodes have an equal initial probability
yi(0) = 1

|V | , ∀i and α = 1, than we have:

Ω(k) ≤ yi(k) ≤ ω(k), ∀i, k

Proof. First note that given the reception-equal property
(Eq. (2)) the following identities holds for any i:

ω(z + 1) = 2ω(z)− ω2(z) =

ω(z) + (1− ω(z))

|V |∑
j=1

ω(z)AijΘj =

ω(k) + (1− ω(k))

1−

1−
|V |∑
j=1

ω(k)AijΘj

 (11)



and

Ω(k + 1) = 2Ω(k)− 3

2
Ω2(k) +

Ω3(k)

2
=

Ω(k) + (1− Ω(k))

 |V |∑
j=1

Ω(k)AijΘj+

−1

2

|V |∑
j=1

|V |∑
z=1

Ω(k)AijΘjΩ(k)AizΘz

 =

Ω(k) + [1− Ω(k)]

1−

1−
|V |∑
j=1

Ω(k)AijΘj+

1

2

|V |∑
j=1

|V |∑
z=1

Ω(k)AijΘjΩ(k)AizΘz


The last element can be represented compactly as
1
2

∑|V |
j=1

∑|V |
z=1 bjbz where bj = Ω(k)AijΘj ∈ R+. Since

1
2

∑|V |
j=1

∑|V |
z=1 bjbz =

∑|V |
j=1

∑|V |
z>j bjbz + 1

2

∑|V |
j=1 b

2
j ,

then 1
2

∑|V |
j=1

∑|V |
z=1 bjbz ≥

∑|V |
j=1

∑|V |
z>j bjbz and,

Ω(k + 1) ≤ Ω(k)+

[1− Ω(k)]

1−

1−
|V |∑
j=1

Ω(k)AijΘj+

|V |∑
j=1

|V |∑
z>j

Ω(k)AijΘjΩ(k)AizΘz

 (12)

Let’s first prove yi(k) ≤ ω(k) by induction over k,
k=0) ω(0) ≥ yi(0) ∀i by definition,
k=z+1) Let’s assume ω(k) ≥ yi(k) ∀i, k = 1, . . . , z

ω(z + 1) ≥ ω(z) + (1− ω(z))

1−
|V |∏
j=1

(1− ω(z)AijΘj)


Given Eq. (2) and α = 1 we have that AijΘj ≤ 1 ∀i, j, then

yi(k)AijΘj < 1, ω(k)AijΘj < 1,Ω(k)AijΘj < 1

and thus we can apply Proposition 1 (considering aj =
ω(z)AijΘj). For simplicity we call

Γ = 1−
|V |∏
j=1

(1− ω(z)AijΘj)

then,

yi(z + 1) = yi(z) + (1− yi(z))

1−
|V |∏
j=1

(1− yj(z)AijΘj)


≤ yi(z) + (1− yi(z))Γ

as, because of the inductive step, ω(z) ≥ yi(z) ∀i, z.

ω(z + 1)− yi(z + 1) = ω(z)− yi(z) + (yi(z)− ω(z))Γ =

(ω(z)− yi(z))(1− Γ)

as ω(z) ≥ yi(z) and Γ < 1 then (ω(z) − yi(z))(1 − Γ) ≥ 0
and ω(z + 1) ≥ yi(z + 1).

The proof of yi(k) ≥ Ω(k) is again by induction over k,
k=0) Ω(0) ≤ yi(0) ∀i by definition,
k=z+1) Let’s assume Ω(k) ≤ yi(k) ∀i, k = 1, . . . , z

Ω(z + 1) ≤ Ω(z) + (1− Ω(z))

1−
|V |∏
j=1

(1− Ω(z)AijΘj)


combining Eq. (12) and Proposition 2 (considering aj =
Ω(z)AijΘj). For simplicity we call

γ = 1−
|V |∏
j=1

(1− Ω(z)AijΘj)

yi(z + 1) ≥ yi(z) + (1− yi(z))γ

as, because of the inductive step, Ω(z) ≤ yi(z) ∀i, z.

yi(z + 1)− Ω(z + 1) = (yi(z)− Ω(z))(1− γ)

as Ω(z) ≤ yi(z) and γ < 1 then (yi(z) − Ω(z))(1 − γ) ≥ 0
and Ω(z + 1) ≤ yi(z + 1).

Theorem 1 exploits the first order approximation of the SI
model on a graph G given by Eq. (8), with the reception-equal
property granted by Eq. (2) to derive theoretical stochastic
upper and lower bounds for the probability that node i is
infected, i.e., it has received the information, at time k. To
ensure that these bounds hold with minimal resource use we
set α = 1; proofs of the inequalities used are reported in
Appendix A.

A node-independent bound express the probability that a
generic node has received the packet regardless of its position
in the network averaged on all the possible sources of the
information. These bounds can also be interpreted as bounds
on the information delay expectation for each node when there
is no knowledge on the information source position, or in
the SI terminology, when the initial probability of infection
is yi(0) = 1

|V |∀i.

A. Solving the bounds

Equation (9) is a second order difference equation similar
to the logistic map, but its parameters keep it in the stability
region (it is not chaotic), furthermore we take advantage that
we are only interested in studying its value for ω(k) ∈ [0, 1].
Equation (9) has two fixed points, ω(k) = {0, 1}. The first
one is irrelevant as ω(0) > 0 and the latter is an attractor as
Eq. (9) is non-decreasing.

Let ω(k) = 1− εk be the probability that node i is infected
at time k, with ε0 = 1− 1

|V | , then we have

ω(k + 1) = 1− εk+1 = 2(1− εk)− (1− εk)2 =

2− 2εk − 1 + 2εk − ε2k = 1− ε2k
and consequently εk+1 = ε2k that finally implies

ω(k) = 1− ε2
k

0 = 1−
(

1− 1

|V |

)2k

(13)



and solving for k

k =
⌈
log2

(
log(1− 1

|V | )(1− p)
)⌉
, ∀ p ∈

(
1

|V |
, 1

)
(14)

where k is the average umber of time cycles needed for a node
to have received a packet with probability p.

Equation (13) indicates that the reception-equal condition
grants, regardless of the network topology of G, a double
exponential speed of convergence (much faster than the expo-
nential speed in the SI model) in the early distribution phase
(when yi(k)� 1, ∀i).

Eq. (10) is strictly non-decreasing for Ω(k) ∈ [0, 1) and with
a slower growth than Eq. (9). Unfortunately, Eq. (10) cannot
be stated in closed form but we can numerically integrate the
difference equation.

B. Energy consumption

The time at which each node has received the packet with
probability p is at most k = Ω−1(p) when averaged on all
sources. For Eq. (3) the total number of packets sent during
the flooding up to time k is αk|V |. From a previous result [6],
we also know that each peer j sends kΘj during k cycles.

Note that, it is also granted that Θj ≤ α|Nj | where Nj is
the neighbour set of node j. Such bound grants node energy
consumption to be contained. If a node is low on battery and
does not want to contribute to the flooding, it can simply
reduce its neighbour set (dropping some links, or simply
avoiding to communicate their presence) and let the system
recompute the optimal parameters.

Finally, it is worth noticing we are assuming minimal sig-
nalling among the nodes which may end up sending duplicated
content.

IV. NUMERICAL RESULTS

To further demonstrate the applicability of our theoretical
results we simulate with a simple SI model script the spreading
of the packet in networks. We compare with ω−1(p) and
Ω−1(p) the confidence interval of the value of slot k at which
all the nodes have received the packets for several runs on the
same network using random source node with for p = 0.9999
(assumed as certainty of reception).

We perform tests using Barabási-Albert and Erdős-Rényi
networks for their well-known properties. Test networks target
a constant density for the ease of comparison, |E||V | ∼ 4. For
each network, the flooding is simulated 100 times, picking a
different node as the source.

We indicate with RE the reception-equal optimized system
of Section II-A, with SE the sending-equal standard system
without the optimization and with RE,opt the reception-equal
strategy with trivial distribution optimization.

First, we are interested to verify our bounds are cor-
rectly identifying the reception delay of the flooding. Figs. 2
and 3 report the values of ω−1(p),Ω−1(p) for networks with
|V | ∈ {100, 300, 500, 750, 1000}. As can be seen our bounds
characterize the distribution of the packet reception delay in
the whole network (indicated as Delay (RE)), as the delay
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confidence interval correctly falls in between the bounds. As
we can see varying |V |, such characterization is consistent
varying the network size.

For the sake of comparison, Figs. 2 and 3 also show the
delay distribution on the same networks without the optimiza-
tion described in Section II-A, (indicated as Delay). As it can
be seen, while the reception-equal strategy grants the delay to
grow slowly in between the bounds, the naı̈ve one diverges
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steadily. Also the confidence interval deviation is sensibly
smaller for the optimized case.

Figs. 2 and 3 show also an important reference bound [17],
dictating the lowest possible delay in a full-mesh Peer-to-Peer
(P2P) network with complete knowledge of node packet recep-
tion (no duplicate packet transmission) and single transmission
for time slot (each node can send only one packet per cycle
T ). Such bound is important as we can compare with a full-
knowledge bound for the same flooding process in a mesh
network, though without any distribution optimization. The
reception-equal distribution delay, Delay (RE), is close to this
bound and, with little surprise, does not violate it. In fact, the
P2P lower bound is indeed a lower bound for ω−1(0.9999).

While results shown so far, are related to the simulation
of Eq. (6) for the ease of comparison with the bounds Ω, ω,
we can go a step forward and design a more intelligent
distribution. Toward an actual useful implementation, a simple
and straightforward optimization is to prevent nodes to send
the packet to the same destination twice. We call this strategy
reception-equal optimized (RE,opt) and Figs. 4 and 5 report
its performance in comparison with the previous results. As
can be noted the distribution delay achieves the P2P full-
knowledge bound performance both in the Barabási-Albert and
Erdős-Rényi networks.

To introduce a comparison, although still theoretical, with
the flooding strategies exploiting trees, we report in Figs. 4
and 5 the diameter of networks. The network diameter relates
to the shortest tree height feasible on the network. We can look
at it as the reception delay lower bound for tree distribution-
based systems. In Figs. 4 and 5, the performance or our simple
optimization are very close to the graph diameter. Further
comparison of even more optimized versions of our approach
with real tree-based strategies are not in the scope of this paper
but, as they seem promising, are left to future works.

V. MODEL LIMITATIONS

While Section IV confirms that our model accurately de-
scribes the broadcast function on two widely-used random
network models, we have to note that it is not truly univer-
sal. Consider for instance a linear network, in which every

node has exactly two neighbors (excluding the nodes at the
extremes) and the diameter of the network is |V |. Then at
most two nodes gets infected per time cycle. In this corner
case the delay needed to achieve p = 0.9999% grows linearly
with |V | and breaks the theoretical bounds we formulated.

The reason for this is to be found in the step from Eq. (6)
to Eq. (7) which introduces an implicit approximation. Equa-
tion (7) in fact assumes that P{i ∈ S} is independent of
P{j ∈ I} and multiplies the two probabilities. In a fully
meshed network this assumption is true as all nodes are
neighbours so the probability of j to be infected at time k
depends only on the total number of infected nodes at time
k − 1 and not on their position. In general this is not true,
as P{i ∈ S} strongly depends on P{j ∈ S} if j and i
are neighbours, while the inference between P{j ∈ S} and
P{i ∈ S} decreases with the distance from j to i. In terms of
density and path diversity the linear network is at the opposite
extreme of a full mesh, thus it is not surprising that our model
fails to capture its behaviour.

Comforted by the positive results we obtained in our nu-
meric evaluations on well known topologies, we leave to future
works the sensitivity analysis of our approximation, and the
potential adoption of approximations of higher order than the
first that are available in the literature [18].

VI. RELATED WORKS

Low-duty-cycle WSNs are said synchronous if the node
active state happens at a centrally fixed time or asynchronous if
they are scheduled independently. Literature focuses mostly on
asynchronous low-duty-cycle WSNs, where often tree-based
dissemination of collection overlays are built. This overview
of literature focuses both on recent papers that address the
problem of information flooding (not collection to a sink)
in WSNs, and on papers that analyze or propose epidemic
dissemination techniques, in this case not limited to WSNs, but
ranging also from P2P networks to classical infection models
used in, or derived from, medical literature.

Wang and Liu [4] proposes a reinterpretation of broadcast-
ing for the context of WSNs and they provide a centralized
optimization model from which deriving an approximated
distributed solution. Guo et al. [5] address both the delay
and the energy constraints deriving a tree-based distribution
solution considering lossy links. Cheng et al. [9] propose a
flooding tree construction algorithm optimizing with respect
to the energy consumption but considering delay bounding.
Such algorithm is an approximated distributed version of a
centralized optimal one. The work by Niu et al. [19] follows
the same scheme as they propose an heuristic algorithm
derived from a minimum spanning tree centralized model.

There are also works optimizing existing flooding solutions;
Cheng et al. [20] propose the Dynamic Switching-based Re-
liable Flooding (DSRF) to enhance the reliability of flooding.
The flooding optimization by Guo et al. [21] synchronize
the active state of nodes sharing the same tree parent node.
Physical channel overhearing has been investigated by Xu et
al. [22] as a mean to save delay during message flooding.



Asynchronous Duty-cycle Broadcasting (ADB) is a protocol
implemented directly in the MAC layer of WSN nodes which
allows flooding by exploiting MAC-layer information.

In contrast to recent publications on flooding on WSN, our
approach is fully de-centralized and works with unstructured
mesh networks without the aid of trees. That grants an higher
degree of robustness against node failure, a lower signalling
overhead and promising applications in time-varying networks.
Epidemics, the field about modeling and analysing the dynam-
ics of virus spreading, has been prolific in the past decades,
though, only recently proper insights on how to control it
have been provided [13]. A large part of computer science
literature on epidemics focus on malware spreading [23],
[15], [14]. Chen et al. [15] use the SIR (Susceptible-Infected-
Recovered) model to control dissemination of information in
heterogeneous, time-varying networks. The work by Dadlani
et al. [14] uses a SIS model instead and provide infection
stability results. This work, together with the one by Ganesh
et al. [24] highlight the importance of being dependent on
a specific network topology for studying epidemics. That is
a crucial observation that our approach overcomes exploiting
the reception-equal property obtained with the re-assignment
of resources based on the eigenvector centrality.

Works by Liu and Buss [25] and by Ogura and Preciado [26]
use the SIS model for data dissemination; the former opti-
mizing the node transmission rate while the latter defining
exponential growth conditions for time-varying networks.

Other papers deal with different aspects of data dissemi-
nation through epidemics approaches. The paper by Chen et
al. [16] focuses on delivery dynamics on WSN with cognitive
radios, the work by Ramanathan et al. [27] optimize the loss
rate for Delay Tolerant Network (DTN) and Byun and So [28]
address the context of duty-cycled Wireless Sensor-Actuator
Network (WSAN) and propose a scheme to adjust the node
transmission rates for user-given delay constraint.

None of these papers, in part also because of their applica-
tion fields, give delays bounds on information flooding that are
independent from the network/graph topology. Up to now it
was considered that the optimal strategy to flood information
to all nodes of a network could not be independent from
its topology. The results we present, instead, show that it is
possible to exploit the topological properties of the network to
de-correlate the optimal flooding strategy from the topology
itself. This observation is what enables the general analysis
that in this paper leads to the bounds presented in Section III.

VII. CONCLUSIONS AND FUTURE WORKS

Flooding information to all the nodes of a network remains
an important function in many networks and applications.
Many solutions have been proposed and are working satis-
factorily in networks from P2Ps overlays to WSNs, but in
many cases remains sub-optimal, e.g., because they have a
non-marginal overhead to build a distribution tree, or because
they are fragile to topology changes. This paper has presented
fundamental delay bounds for epidemic flooding in low duty-
cycle networks that exploit the eigenvector centrality of nodes

in the network to allocate resources, i.e., how many copies of
the information per time-cycle a node must send. These bounds
are, thanks to a property of the resource allocation that we have
called reception equal, independent of the network topology,
a results that is, to the best of our knowledge, presented for
the first time. Besides, the lower bound on delay converges
with double exponential speed, while the upper bound is ex-
ponentially fast, thus ensuring that a proper protocol designed
on these properties will converge exponentially fast.

Theoretical bounds on complex graph structures are in
general very difficult to derive, while these bounds are not
only valid for complex networks, but they are even indepen-
dent from the network structure. Furthermore, the results are
constructive, i.e., they indicate a path to realize a protocol
that obtains a performance within the bounds. Indeed, as we
discussed, simple heuristics toward a protocol design indicate
that actual performance can be very close to the lower bound
and in principle even better, because it can exploit additional
knowledge that was not included in the theoretical model for
mathematical tractability.

Future work on this study starts form the design of a proper
protocol that implements the ideas presented in this paper
and its comparison with state-of-the art protocols based on
trees or other dissemination structures and prosecute with
the performance analysis, both theoretical (if possible) and
via simulations, of the protocol on networks with different
characteristics,.
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APPENDIX

For the sake of easy reference we report here some math-
ematical properties of the finite product of real elements,
namely

∏n
i=1(1− ai) in the form of Propositions. We do not

claim to have discovered or proven these properties, which
may be available in some mathematical handbook, however,
they are not trivial and deserve consideration.

A. Product expansion

This section presents some mathematical properties of the
finite product of real elements, namely

∏n
i=1(1− ai).

Proposition 1. Let n ∈ N, ai ∈ [0, 1)∀i = 1, . . . , n, then
n∏

i=1

(1− ai) ≥ 1−
n∑

i=1

ai

Proof. By induction over n:
1) 1− a1 ≥ 1− a1

k+1) Let’s assume the hypothesis is true for n = 2, . . . , k ∈
N;

k+1∏
i=1

(1− ai) ≥ 1−
k+1∑
i=1

ai =⇒

(1− ak+1)

k∏
i=1

(1− ai) ≥ 1−
k∑

i=1

ai − ak+1 =⇒

1− ak+1 ≥

[
1−

∑k
i=1∏k

i=1(1− ai)

]
−

[
ak+1∏k

i=1(1− ai)

]

For the inductive step,
[

1−
∑k

i=1∏k
i=1(1−ai)

]
≤ 1 and, since

ai ∈ [0, 1) ∀i, we have
[

ak+1∏k
i=1(1−ai)

]
≥ ak+1. Hence,

proving the hypothesis.

Proposition 2. Let n ∈ N, ai ∈ [0, 1)∀i = 1, . . . , n, then
n∏

i=1

(1− ai) ≤ 1−
n∑

i=1

ai +

n∑
i=1

∑
j>i

aiaj

Proof. By induction over n:
1) 1− a1 ≤ 1− a1

k+1) Let’s assume the hypothesis is true for n = 2, . . . , k ∈
N;

k+1∏
i=1

(1− ai) ≤ 1−
k+1∑
i=1

ai +

k+1∑
i=1

∑
j>i

aiaj =⇒

(1− ak+1)

k∏
i=1

(1− ai) ≤

1−
k∑

i=1

ai − ak+1 +

k∑
i=1

∑
j>i

aiaj + ak+1

k∑
i=1

ai =⇒

1− ak+1 ≤[
1−

∑k
i=1 +

∑k
i=1

∑
j>i aiaj∏k

i=1(1− ai)

]
+

[
ak+1

∑k
i=1 ai − ak+1∏k

i=1(1− ai)

]

For the inductive step,
[

1−
∑k

i=1 +
∑k

i=1

∑
j>i aiaj∏k

i=1(1−ai)

]
≥ 1.

Hence, we prove the hypothesis by showing that:

−ak+1 ≤

[
ak+1

∑k
i=1 ai − ak+1∏k

i=1(1− ai)

]
=⇒

−1 ≤
∑n

i=1 ai − 1∏n
i=1(1− ai)

=⇒
n∏

i=1

(1− ai) ≥ 1−
n∑

i=1

ai

Which is given by Proposition 1.


