
ARTICLE

Improving polygenic prediction
with genetically inferred ancestry

Olivier Naret,1,2,* Zoltan Kutalik,2,3,6 Flavia Hodel,1,2 Zhi Ming Xu,1,2 Pedro Marques-Vidal,5

and Jacques Fellay1,2,4
Summary
Genome-wide association studies (GWASs) have demonstrated thatmost common diseases have a strong genetic component frommany

genetic variants each with a small effect size. GWAS summary statistics have allowed the construction of polygenic scores (PGSs) esti-

mating part of the individual risk for common diseases. Here, we propose to improve PGS-based risk estimation by incorporating genetic

ancestry derived from genome-wide genotyping data. Our method involves three cohorts: a base (or discovery) for association studies, a

target for phenotype/risk prediction, and a map for ancestry mapping; successively, (1) it generates for each individual in the base and

target cohorts a set of principal components based on themap cohort—calledmapped PCs, (2) it associates in the base cohort the pheno-

type with the mapped-PCs, and (3) it uses the mapped PCs in the target cohort to generate a phenotypic predictor called the ancestry

score. We evaluated the ancestry score by comparing a predictive model using a PGS with one combining a PGS and an ancestry score.

First, we performed simulations and found that the ancestry score has a greater impact on traits that correlate with ancestry-specific var-

iants. Second, we showed, using UK Biobank data, that the ancestry score improves genetic prediction for our nine phenotypes to very

different degrees. Third, we performed simulations and found that the more heterogeneous the base and target cohorts, the more bene-

ficial the ancestry score is. Finally, we validated our approach under realistic conditions with UK Biobank as the base cohort and Swiss

individuals from the CoLaus|PsyCoLaus study as the target cohort.
Introduction

Most common diseases of major public-health importance

have a complex genetic architecture.1–8 A polygenic score

(PGS) (sometimes called polygenic risk score) is the

weighted sum of risk alleles carried by an individual. By

predicting a fraction of the risk of developing a disease,

the PGS allows individuals to be stratified into different

risk categories, with potential clinical value. For example,

people who have a PGS in the upper 0.5% range have a

5-fold increased risk of developing coronary heart disease

compared with the remainder of the population.9 Such in-

formation could help reduce the risk of developing diseases

by encouraging a healthier lifestyle or through preventive

pharmacological interventions.10 PGSs alone are already

equal to or better than clinical risk models for predicting

prostate cancer, breast cancer, and type 1 diabetes in the

general population.6,11,12 If their clinical utility is demon-

strated, PGSs could be integrated into clinical practice in

the coming years. Therefore, the practical limitations of

their application must be urgently addressed.13,14

The phenotypic variance of a trait, VP, is defined as

VP ¼ VG þ VE, with VG representing the genetic variance,

and VE representing the environmental variance. In a

multi-ancestry cohort, it is important to differentiate

VG;Individual, the fraction of VG coming from variants shared

between ancestries, and VG;Ancestry, the fraction of VG com-
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ing from variants that are ancestry specific. A fraction of VE

is also likely to be associated with ancestry VE;ancestry. Thus,

the phenotypic variance can be decomposed as follows:

VP ¼ VG;individual þ VG;ancestry|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Geneticfactor

þ VE;ancestry þ VE;other|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Environmentalfactor

:

(Equation 1)

Genetic ancestry can be operationally defined as the sys-

tematic difference in allelic frequencies between subpopu-

lations. It can be useful for biomedical applications15 and is

preferred to the concept of ethnicity.16 For example, the

current best integrative-risk model for coronary heart dis-

ease, ‘‘QRISK2,’’ includes a ‘‘self-reported ethnicity’’ risk

parameter. Replacing it with genetic ancestry would (1)

make the medical investigation more reliable by trans-

forming it into a measurable biological variable detached

from the notion of ethnicity, (2) improve the quality of

the risk parameter by moving from a categorical to a

continuous measure, and (3) allow the inclusion of indi-

viduals who do not know their ancestry or whose ancestry

composition is uncertain.

Genetically, ancestry can be estimated via principal-

component analysis (PCA) of genome-wide genotyping

data to obtain the genetically inferred ancestry. The PCA

produces a series of ordered axes, the first ones of which

empirically correspond to the genetic ancestry.17 By
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Figure 1. Overview of the method
Diagram of the components and steps of the method. The cohort map is used to define the PC space for the base and target cohorts.
Summary statistics from the two types of association studies conducted in the base cohort (GWAS-ss and PCAS-ss) are used to calculate
the PGS and AS on the target cohort. Finally, these two scores are used jointly as parameters of the predictive model. (A) Summary sta-
tistics. (B) Ancestry score.
definition, because PCA is an unsupervised machine-

learning method, it does not require labels, which avoids

confusion with ethnicity. Because it produces continuous

variables, it allows a precise definition of the different com-

ponents of an individual’s ancestry.

In genome-wide association studies (GWASs), such

genetically inferred ancestry can be used to correct for pop-

ulation stratification. Specifically, the coordinates of the

relevant principal-component axes can be included as co-

variates in the association models together with other de-

mographic or clinical risk parameters, such as age or sex.

Subpopulation-specific variants will be responsible for

the VG;Ancestry component and will covary strongly with

the covariate carrying ancestry. Therefore, the PGS calcu-

lated from the resulting GWAS summary statistics only ac-

counts for the VG;Individual component.

We here propose amethod that improves PGS-based pre-

diction of complex diseases using additional information

about genetic ancestry derived from PCA. Through both

simulation and real-life testing in large cohorts, we show

that the addition of an ancestry score (AS) based on prin-

cipal components, which takes into account the VG;ancestry

component of the phenotypic variance, improves the re-

sults of predictive models.
Materials and methods

Workflow for improving phenotypic prediction with

genetic ancestry
Association studies, such as a GWASs, are performed in what we

call a base cohort. The ‘‘individual risk scores’’ or ‘‘phenotypic pre-
2 Human Genetics and Genomics Advances 3, 100109, July 14, 2022
dictions’’ are calculated on what we call a target cohort. When we

run a PCA on the base cohort, the populations separated with each

principal component (PC) is cohort specific. Therefore, if in the

base cohort we run an associations study between a set of PCs

and a phenotype, it is necessary to have a similar set of PC vari-

ables in the target cohort if we want to use it for phenotypic pre-

dictions. Unfortunately, the genetic information of the base

cohort is often not accessible due to privacy issues, and thus direct

transformation between the two PC spaces can be impractical.

Here, we propose amethod to circumvent this problemwith an in-

termediate map cohort that must be accessible to all stakeholders

and have sufficient diversity to separate the populations present in

the base and target cohorts.

The different steps of the method can be visualized in Figure 1.

The separation between the two investigating entities is repre-

sented by the dotted line, only the map-cohort in the middle is

accessible to both. We describe the generic workflow in the

following section and specify in parentheses the specific tools

and parameters we decided to use.

(1) Mapping the base cohort to the map cohort. First, the base

cohort must be mapped to the PC space of the map cohort.

To do this, the PC space of the map cohort is based on an

optimal set of SNPs selected with respect to the base- and

map-cohorts such that (1) only SNPs present in both are re-

tained; (2) on the base-cohort side, a first filtering of SNPs

to be kept in the analysis can be done, but we suggest not

to discriminate on the basis of minor allele frequency

(MAF) and linkage disequilibrium (LD) at this level (we

filtered SNPs for imputation quality with INFO >0.9); on

the map-cohort side, SNPs are filtered for MAF (we use

MAF >0.01) and pruned (we use an LD threshold based

on an R coefficient of r2 ¼ 0.5 and a maximum base pair

in the sliding window of kb ¼ 250);18 (3) the intersection



of these two subsets produces a set S1 of s1 reference SNPs.

In the following section, we will refer in the mathematical

notations to the base, target, map, and calibration cohorts

with superscript b/t/m/c. A PCA is run onGm, the genotype

data matrix of the map cohort with s1 columns corre-

sponding to the SNP subset S1, to produce the map-PC

SNP-loadings L, a p times s1 matrix with p representing

the number of PCs retained (we decided to retain 40

PCs). These map-PC SNP-loadings are used to produce set

of PCs that we call mapped PCs for the base cohort such

that

Pb ¼ Gb 3LT ; (Equation 2)

where Pb is the matrix of size mb times p and Gb here is the corre-

sponding subset S1 of reference SNPs from the genotype data

matrix of size mb times s1.

(2) Associations analyses on the base cohort. Second, we

perform two association studies for the phenotype of inter-

est on the base cohort: a GWAS (Equation 3) and what we

call a principal-component association study (PCAS; as

Equation 4).

Let GWAS estimating the bbi effect size for each SNP i on the

phenotype be a linear model such that

Yb � bb
i G

b
i þ gCb; (Equation 3)

where within the base cohort, Yb is the vector of phenotypes, Gb

is the full genotype data matrix of size mb times s, Gb
i is the

column vector for the variant i, bbi is the corresponding effect

size, Cb is the matrix of covariates of size mb times c, with c as

the number of covariates, and g is the corresponding column vec-

tor of effect sizes. The outcome of the GWAS is the ‘‘GWAS sum-

mary statistics.’’

In our case, after quality control for imputation and MAFs (such

that MAF >1e-4 and INFO >0.8), we run the GWAS with BOLT-

LMM.19 It is worth noting that the GWAS method implemented

in BOLT-LMM corrects for the population structure by using a

mixed-effect model.19

For the PCAS, we fitted a multiple linear regression model to es-

timate for each mapped PC i in p the effect size bbi on the pheno-

type. Specifically, the model takes the form

Yb � bb1P
b
1 þ bb

2P
b
2 þ.þ bb

pP
b
p þ gCb; (Equation 4)

where Pb;i is the column vector for the mapped PC i of sizemb, and

bbi is the corresponding effect size.

For convenience, we call the resulting trained model ‘‘PCAS

summary statistics.’’

In our case, for both association studies, the covariate C includes

age at recruitment, sex, and genotyping array. In the GWASmodel,

as many as the 40 PCs computed by the UK Biobank are used to

adjust for population structure. We chose to include 40 PCs, as it

was shown in earlier studies that a deep subpopulation structure

was found in UKB.20
(3) Defining PGS design. Third, to design the best PGS for-

mula, a calibration cohort is needed to determine the

SNPs to include in the PGS formula. Practically, it would

be a small hold-out subset of the base cohort. We define
Hu
the calibration cohort with the genotype data Gc, mapped

PC Pc, and phenotype Yc.

In our case, the PGS formula is estimated with PRSice on the cali-

bration cohort by a strategy based on variant clumping and

p value thresholding to determine the optimal set of SNP S2 to

construct the PGS.21 In short, the clumping step takes advantage

of the LD properties of the genome to construct groups of SNPs

(or clusters) below a given maximum p value threshold. These

LD properties must either be computed from the target cohort or

drawn from an external reference panel. We chose to use 1KG as

the reference panel, with a maximum window for each clump of

250 kb and an r2 cutoff of 0.01. From each clump, one SNP is

selected for inclusion in the final set used to construct the PGS.

PRSice then determines the optimal p value threshold used to

retain the set of SNPs to calculate the PGS. The summary of the

PGS is described in Table S2.

(4) Calibration of the predictive model. Fourth, the calculation

of phenotypic predictions involves a calibrated predictive

model in which the coefficients of different parameters

such as age, sexm and other relevant covariates, but also

here the PGS (bPGS) and the AS (bAS), have been estimated.

To calibrate the predictive model, we use for a second time

the calibration cohort.

The PGS is computed, such that for individual j

PGScj ¼
Xs2
i

bbb

i 3Gc
i;j; (Equation 5)

where bbb
is the vector of the estimated SNP effect sizes and where

Gc is the mc times s2 matrix of genotype values.

The AS is computed, such that for individual j

AScj ¼
Xp

i

bbb

i 3Pc
i;j; (Equation 6)

where cbb is the vector of the estimated mapped-PC effect sizes and

where Pc is the mc times p matrix of mapped-PC values.

Finally, we calibrate our predictive model, a multiple linear

regression model

Yc �bc
PGSPGS

c þ bc
ASAS

c þ gCc; (Equation 7)

where bPGSPGS
c and bASAS

c are the PGS and AS predictors, respec-

tively, with their corresponding effect sizes that we want to

estimate.

(5) Computation of ASs and PGSs on the target. Fifth, simi-

larly, PGSt and ASt are computed for each of the mt target

samples with Equations 5 and 4 with Pt and Gt , the matrix

of size mt times p, and mt times s2, respectively.

But for AS to get the mapped PC of the target cohort, Equation 2

is used beforehand onGt to produce Pt . In that case, it is likely that

some SNPs will be missing. A strategy based on the LD properties

of themap cohort can be used to replace themissing SNPs with the

best tagging SNPs (we take the SNP with the maximum INFO3 r2).

(6) Phenotypic predictions. Finally, the calibrated predictive

model can be used to calculate the phenotypic predictions
man Genetics and Genomics Advances 3, 100109, July 14, 2022 3



on the target samples, such that the phenotypic prediction

for individual j is

cYt
j ¼ bbc

PGS 3 PGStj þ bbc

AS 3 AStj þ þ bgCt : (Equation 8)

Evaluation of AS
PGSs and ASs are two composite variables derived from the same

genome-wide genotyping data. Therefore, in order to estimate

the predictive value of the AS, it is necessary to evaluate it together

with the PGS. Two predictive models are calibrated, one with PGS

alone and the other with both the PGS and AS (Equation 7). The

two predictive models are used on the target cohort to each

generate a set of phenotypic predictions, bYPGS and bYPGSþAS (Equa-

tion 8). The resulting phenotypic-variance explained (PVE) is

calculated by taking the R2 regression score (coefficient of determi-

nation) between the prediction and the actual phenotypes.

Simulations
We generated genotyping and phenotypic data for a base cohort, a

calibration cohort, and a target cohort, each based on a mixture of

individuals from three genetically equidistant populations A, B,

and C. The SNPs present in the simulated dataset can be non-spe-

cific (evenly distributed in the three populations), population spe-

cific (exclusive to one population), or stratified (present at

different frequencies between populations). The alternative allele

frequency for each population APA
F , APB

F , and APC
F was generated

for each SNP with respect to its category. For population-specific

SNPs, an allelic frequency is, with equal probability, either drawn

from a uniform distribution Rf � Uð0:4;1Þ or set to 1. The other

two populations are attributed for the corresponding allele a fre-

quency of 0. For stratified SNPs, we followed the model of Balding

and Nichols22 where a reference allele frequency ðRf ) is first drawn

from a uniform distribution Rf � Uð0;1Þ and is used to derive the

alternate allele frequencies from a b distribution for each popula-

tion according to their Fst
23,24 such that

Af � Beta

�
Rf

ð1-FstÞ
Fst

;
�
1-Rf

� ð1-FstÞ
Fst

�
;

with Fst varying between 0.02 for two populations and 0.2 for the

third. Finally, for a non-specific SNP, an allelic frequency is drawn

from a uniform distribution Uð0;1Þ and is used by all samples.

Genotype data were generated based on Af such thatG, a matrix

of sizem times swithm as the number of samples, and s, the num-

ber of SNPs, respectively, with genotypes 0 (homozygous for the

reference allele), 1 (heterozygous), or 2 (homozygous for the alter-

native allele) were assigned for a given population Pwith probabil-

ities ð1-AP
f Þ

2
, 2AP

f ð1-AP
f Þ, and ðAP

f Þ
2
respectively.

Phenotypes Y were generated based on heritability h2 ¼ 0:6 by

adding two vector components of size m, the genetic basis Yg and

the environmental basis Ye, such that, Y ¼ Yg þ Ye. Firstly, Yg was

generated from a total of s SNPs selected randomly as 10% of SNPs

per category and associated with an effect size bGi drawn from a

Gaussian distribution bi � Nðm ¼ 0; s2 ¼ 1Þ, such that Yg ¼
G3bG with bG as the vector of the effect size. Secondly, based on

the generated genetic component, mYg
and s2Yg

, its corresponding

mean and variance, are calculated to generate Ye. Finally, Ye was

drawn from a normal distribution such as Ye � N
�
0; s2Yg

1-h2

h2

�
.

We computed a PCA on the base-cohort-generated genotyping

data (Gb) to produce the corresponding PC Pb and PC loadings
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that we use to project the calibration and target cohorts into the

same PC space and produce the mapped PCs Pc=t . We performed

a GWAS as given by Equation 3 with PC1 and PC2 as covariates

C and bbG

i as the estimate of the SNP i effect size. On the calibration

cohort, we determined the best set of SNP S0 to build the PGS with

a simple implementation of the p value thresholding method of

PRSice. Based on this set of SNP S0, we constructed the PGS of

the calibration and target cohorts as given by Equation 5.

We performed a PCAS on the base cohort for the first two PCs—

sufficient to differentiate 3 populations—following Equation 4 to

estimate the effect sizes of themapped PC bbP
. We calculated the AS

based on the top 2 associated PCs in the calibration and target co-

horts following Equation 6.

Finally, we used the data from the calibration cohort to calibrate

the risk model, following Equation 7. With the calibrated risk

model, we performed a phenotypic prediction on the target

cohort, so that the prediction for a sample j is given by Equation 8.

The code to reproduce the simulations is available on Github

(see Web resources).
Cohorts
Map cohort: 1000 Genome Project

We used 1000 Genome Phase 3 dataset (1KG) publicly available

online.25,26 It contains 2,404 ethnically diverse samples classified

into 5 superpopulations: European (EUR, n ¼ 503), African (AFR,

n ¼ 661), Admixed America (AMR, n ¼ 347), East Asian (EAS,

n ¼ 504), and South Asian (SAS, n ¼ 489).

Base and target cohort: UK Biobank

Weconstructedbase and target cohorts from theUKBiobank (UKB)

based on all individuals (488,000) or white Britons only (407,000).

The recruitment process was described previously.27 Briefly, partic-

ipants visited one of theUKBassessment centers between2006 and

2010. The age range of participants at recruitment was 40–69 years

(mean age 56.5 years, 8.1 years), with 54.2% female.

Genotyping and imputation of participants in the UKB study

were fully described by Bycroft et al.28,29 Briefly, samples were gen-

otyped using the UK BiLEVE Axiom array (Affymetrix) (10.2%) or

the UKB Axiom array (Applied Biosystems). Genotypes were

phased using SHAPEIT3 with the 1KG phase 3 dataset as a refer-

ence and then imputed using the Haplotype Reference Con-

sortium, 1KG phase 3, and UK10K data as reference panels. Partic-

ipants were removed if their genetic sex did not match their

reported sex, if they had a non-XX/XY sex-chromosome karyo-

type, or if they had excessive (>5%) missing genotyping.

Phenotypes were selected based on their high degree of differen-

tiation between populations as characterized by the Global

Distribution of Genetic Traits (GADGET).30 Where necessary, phe-

notypes were normalized by rank-based inverse normal transfor-

mation and/or residualization by sex. The categorical phenotypes

were turned into discrete variables. The details of the phenotypes

are given in the Table 1. Summary statistics for the set of GWASs

are available in the supplementary materials in Table S1.

External target cohort: CoLaus|PsyCoLaus

As external target cohort, we used theCohorte lausannoise (CoLaus|

PsyCoLaus), a population-based research study launched in 2003 in

Lausanne, Switzerland, as an additional independent target cohort.

It includes a total of 4,781 unrelated individuals of European

ancestry after filtering out participants whose genetic sex did not

match the reported sex or whose missing genotype rate was exces-

sive (>5%). Participants ranged in age from 35 to 75 years at enroll-

ment (mean5 SD: 51.15 10.9), with 52.5% being female.31



Table 1. Phenotype details

Phenotype FSTAT Type Transformation Sample size White only

Skin color 774 Cat(6) Cont 478,929 403,189

Menopause age 499 Cont INV 149,435 127,370

HBMD* 404 Cont INV/Sex Res 274,000 237,166

Diastolic blood pressure 319 Cont INV/Sex Res 455,457 381,383

Menarche age 172 Cont INV 255,616 149,435

Baldness 162 Cat(4) Cont 220,192 186,127

BMI 64 Cont INV/Sex Res 484,587 406,956

Height 55 Cont INV/Sex Res 485,043 407,318

Educational attainment NA Cont INV 418,573 350,305

Distribution of the different phenotypes including the samples size, the ancestry (all samples versus White only), the type (continuous or categorical), the trans-
formation procedure (INV, inverse normal transformation; Sex Res, residualised on sex; Cont, transformed from categorical phenotype to continuous), and FSTAT
(degree of the phenotype difference between super populations). *Heel bone mineral density.
Genotype imputation was performed using two independent

reference panels: the HRC reference panel and the merged 1000

Genomes phase 3 and UK10K reference panel.32–34 Phasing and

imputation were performed on the Sanger imputation service

(https://imputation.sanger.ac.uk).

We used standing height, body mass index (BMI), and diastolic

blood pressure as phenotypic outcomes. Phenotypes were normal-

ized on the basis of the parameters used in the UKB phenotype

normalization.
Results

Mapped-PC characterization

As a first step, we mapped individuals from both the base

and target cohorts to the PC space of the map cohort. We

characterized the resulting mapped PCs by assessing the

correspondence between the position of the mapped PCs

from UKB or CoLaus|PsyCoLaus and the PCs from the

1KG samples and, second, by testing whether the mapped

PCs and the ‘‘regular’’ PCs explain the phenotypic variance

with similar magnitude.

Visualization of the mapped PCs

We first jointly plot the mapped PCs of UKB/CoLaus|

PsyCoLaus and the corresponding PCs of the map cohort

(1KG). InFigure2A,PC1andPC2fromUKB-alland1KGover-

lap widely, showing the diversity present in both cohorts.

Figure 2B shows the PC5 and PC7 for UKB-WBO and the Eu-

ropean 1KG samples. PC5 and PC7 are the axes discrimi-

nating the most samples of different European ancestry. As

expected, there is a significant overlap of UKB-WBO with

the British cluster (Great Britain [GBR]). Similar to CoLaus|

PsyCoLaus, in Figure 2C, PC1 and PC2 validate that Co-

Laus|PsyCoLaus is exclusively composedof individuals of Eu-

ropeanancestry. Specifically, inFigure2D,PC5andPC7show

that CoLaus|PsyCoLaus is broadly consistent with a Central

European population, as expected for a Swiss cohort.

PVE by mapped PCs versus PCs

We then compared the PVE by the mapped PCs and by the

regular PCs, which comes from a PCA done directly on the
Hu
cohort (in CoLaus|PsyCoLaus) or provided (in UKB).28,35

The regular PCs derived directly from the cohort can be

considered as the upper bound when predicting a trait.

We estimate the PVE by a multiple linear model based

on the top 40 PCs of UKB (target-UKB-all) and CoLaus|

PsyCoLaus with a 10-fold cross-validation. The results in

Figures 3A and 3B show similar levels of PVE by the two ap-

proaches for the different phenotypes.
Evaluation of the AS

We evaluated the performance of the AS, the composite

variable we created from mapped PCs that captures the as-

sociation between phenotype and ancestry.
Simulations

For different trans-ancestry genetic architectures

To characterize scenarios where the use of ASs would lead

to a gain in predictive power, we simulated the scenarios

based on the different genetic architectures as shown in

Figure 4A. The equilateral triangle represents a map with

one of the populations A, B, or C at each vertex. The circles

represent the number of SNPs per category, which can be

non-specific (green in themiddle, evenly distributed), pop-

ulation specific (red on the vertices, population exclusive),

or stratified (blue in between). For all scenarios, the total

number of SNPs is kept at a constant total of 500. Based

on a scenario, data are generated for three sample sets—

the base, calibration, and target cohorts—with 20,000,

7,000, and 3,000 samples from populations A, B, and C,

respectively, for a total sample size of 30,000. We repeat

the simulations 50 times per scenario.

The results of the different scenarios are shown in

Figure 4B. We see in Figure 4B that adding the AS increases

the PVE and decreases the mean square error (MSE) exclu-

sively when there are population-specific causal variants

(scenarios 1 and 3) but not when the causal SNPs are

just stratified (scenario 2). This is due to the fact that

because population-specific SNPs are co-linear to PCs, the
man Genetics and Genomics Advances 3, 100109, July 14, 2022 5
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A B

C D

Figure 2. Projection of the cohorts in the 1KG PC space
(A) Projection of UKB: PC1-PC2.
(B) Projection of UKB: PC5-PC7.
(C) Projection of the CoLaus|PsyCoLaus: PC1–PC2.
(D) Projection of the CoLaus|PsyCoLaus: PC5–PC7.
PC plots of the UKB and CoLaus|PsyCoLaus mapped PCs (projected) with 1KG map PCs (projector). (A) shows the PC1 and PC2 of the
entire UKB cohort with the 1KG cohort. (B) shows the PC5 and PC7 of the UKB-WBO cohort with the 1KG samples of European ancestry.
(C) shows the PC1 and PC2 from CoLaus|PsyCoLaus with the 1KG cohort. (D) shows the PC5 and PC7 from CoLaus|PsyCoLaus with the
1KG samples of European ancestry only.
estimated SNP effect size is nullified. In contrast, causal

stratified SNPs have their effect size corrected but are not

discarded and end up included in the PGS. We conclude

that, in real-world data, the increase in PVS due to the AS

use could arise, along with covariant environmental fac-

tors, from similar population-specific SNPs.

For generalization. To evaluate the transferability of AS,

we simulated scenarios based on the different cohort

composition as shown in Figure 5A. We run simulations

with different population structures for, on the one

hand, the base and calibration cohorts and, on the other

hand, the target cohort. The simulated genetic data corre-

spond to scenario 3 of the previous simulation section

(Figure 4A).

The results of the different scenarios are presented in

Figure 5B. We generated scenarios 1 to 5 with increasing

heterogeneity between the base/calibration cohorts and

the target cohort. From scenarios 1 to 3, we go from a ho-

mogeneous situation in scenario 1 to proportions that are

reversed in scenario 3. In all three scenarios, the models

with PGSs alone see their mean PVE decrease and their
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variance as well as their MSE increase. Here, incorporating

ASs to the model almost completely restores the mean EVP

to its theoretical maximum of 0.6 and drastically reduces

the variance. In scenario 4, the heterogeneity becomes

extreme with a population C that corresponds to 3% of

the base/calibration cohort and 97% of the target cohort.

Here, the model with PGSs alone sees the variance of

PVE explode while its mean continues to decrease. Even

in this case, adding an AS to the model corrects for these

effects strongly by decreasing the variance by a factor of

3 and bringing back the mean PVE above 0.4. In scenario

5, population A present in the base/calibration cohort is

absent in the target cohort. In this case, the addition of

an AS to the model almost completely corrects for cohort

heterogeneity. Here, the model with only a PGS will esti-

mate a shifted intercept on the calibration cohort relative

to the optimal intercept for the target. This offset will be

corrected by adding an AS to discriminate each population.

We conclude that our method is effective to correct for

cohort heterogeneity between the base/calibration cohorts

and the target cohort.
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Figure 3. Comparison between mapped PCs and PCs of the association with phenotypes
(A) Within UK Biobank.
(B) Within CoLaus|PsyCoLaus.
Comparison of phenotypic variance explained betweenmapped PCs and PCs fromUK Biobank (A) and CoLaus|PsyCoLaus (B). Error bars
correspond to 95% of folds in the cross-validation process.
Application to real data

On UKB. We then evaluated our method on UKB. Two

sets of base and target cohorts were generated: one with

samples of White British ancestry only—base/target-UKB-

WBO—and the other with samples of all ancestries—

base/target-UKB-all. The split between the base and target

cohorts was 90/10. The calibration cohort was generated

multiple times based on a 10-times cross-validation from

the target cohort.

Heritability is estimated by genome-based restricted

maximum likelihood (GREML) method on the target

cohort.36,37

The results based on base/target-UKB-all are shown in

Figure 6A. The addition of the AS parameter increases
A

Figure 4. Simulations for different trans-ancestry genetic architec
(A) Scenarios of trans-ancestry genetic architectures.
(B) Gain in phenotypic variance explained by the addition of the AS
(A) shows the different scenarios with either non-specific SNPs (scen
(scenario 2), or all SNPs (scenario 3). (B) shows the portion of PVE wit
bars corresponding to 95% of all simulations.

Hu
the PVE for all phenotypes, with a variable magnitude.

There is a small increase for diastolic blood pressure

from 0.027 to 0.028, BMI from 0.075 to 0.079, and

baldness from 0.120 to 0.128 and a larger increase for

age of first menarche from 0.031 to 0.037, height from

0.219 to 0.271, and age at menopause from 0.024

to 0.039; it more than doubles for heel bone mineral

density from 0.040 to 0.090 and education attainment

from 0.012 to 0.054; and it is exacerbated for skin color

from 0.023 to 0.654, where most of the PVE comes from

the AS.

Results based on base/target-UKB-WBO in Figure 6B were

used as a control to show that even when there is a popu-

lation with narrow ancestry, the AS does not affect
B

tures

to the PGS.
ario control), population-specific SNPs (scenario 1), stratified SNPs
h PGS alone (light blue) or PGS combined with AS (dark blue), with
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A

Figure 5. Simulations in case of cohort heterogeneity
(A) Cohort composition scenarios.
(B) Gain in phenotypic variance explained by the addition of AS to the PGS.
(A) shows the number of individuals within each population under different scenarios combining base and calibration cohorts on one
side and target cohorts on the other side. The simulated genetic data correspond to scenario 3 of Figure 4A. (B) shows the portion of PVE
with PGS only (light blue) or PGS combined with AS (dark blue), with bars corresponding to 95% of all simulations.
predictions. It was not significantly associated except for

skin color, where it showed a slight gain.

Note that our exploration on the UKB data does not

exploit the gain due to heterogeneity between cohorts

as seen in the simulations (we are in a similar case to

scenario 1).

On CoLaus|PsyCoLaus. We also evaluated our method

using CoLaus|PsyCoLaus as an external target cohort.

From UKB, two sets of base and calibration cohorts were

generated, base/calibration-UKB-WBO and base/calibration-

UKB-all, based on a 90/10 split.

Results based on base/target-UKB-all are shown in

Figure 6C. For height, we observe a gain in PVE by adding

the AS into the model of 15.6% (from 0.212 to 0.245).

For BMI and diastolic blood pressure, as discussed in the

previous sections (see Figures 3B and 6A), PCs and thus

the AS do not explain the phenotypic variance. As a con-

trol, results based on base/target-UKB-WBO are shown in

Figure 6B. As expected due to the homogeneous ancestry,

we observe no gain or loss when adding the AS.

Note that with base/target-UKB-WBO, the PGS alone for

height remains suboptimal, with a PVE of 0.223 compared
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with the model with the PGS and AS based on base/target-

UKB-all.

These results show the generalizability of our method to

an independent cohort. Of note, the best results were ob-

tained by including all UKB individuals in the base cohort,

even if the CoLaus|PsyCoLaus cohort consists exclusively

of individuals of European ancestry.
Discussion

Here, we propose amethod allowing for the inclusion of an

ancestry parameter derived from genetic data into pheno-

type prediction scores without having to manually catego-

rize individuals. We show that the inclusion of an AS im-

proves prediction, especially for admixed populations. In

addition, because our approach emphasizes the inclusion

of all individuals, it tends to increase the statistical power

and the production of summary statistics that generalize

better to diverse populations. Our method could therefore

promote a much-needed increase in population diversity

for human genomic research.
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C D

Figure 6. Evaluation with UK Biobank and CoLaus|PsyCoLaus
(A) Results on target-UKB-WBO with base-UKB-all.
(B) Results on target-UKB-WBO with base-UKB-WBO.
(C) Results on CoLaus|PsyCoLaus with base-UKB-all.
(D) Results on CoLaus|PsyCoLaus with base-UKB-WBO.
Portion of PVE with PGS only (light blue) or PGS combinedwith the AS (dark blue) for base and target UKB-all (A), UKB-WBO (B), or with
base UKB-all and CoLaus|PsyCoLaus as a target (C) or UKB-WBO (D). *AS is significantly associated at calibration with p < 0.05.
So far, human genomic research has been disproportion-

ately performed in populations of European ancestry,

which might cause genomic-based medicine to exacerbate

health disparities.38 According to the GWAS catalog,

although people of European descent make up only 16%

of the world’s population, they represent 79% of GWAS

participants.38,39 As a consequence, the predictive power

of currently developed PGSs is lower in most underrepre-

sented populations than in Europeans.40 In addition, it

has been reported that multi-ethnic GWASs or meta-

GWASs increase statistical power for variants widely shared

across populations,41,42 which should lead to greater inclu-

sion in future GWASs. As multi-ethnic GWASs become

more common, the need to report the ancestry effect for

the development of pan-ASs will increase.43

As a result of our simulations, we can hypothesize that

the traits that show a higher gain in prediction upon inclu-

sion of an AS are the ones that are influenced bymore pop-

ulation-specific alleles with a phenotype that is also differ-

entiated between populations. These population-specific

alleles—fixed in one ancestry, absent in others—will only
Hu
be detected as variables in a multi-ethnic GWAS and are

perfectly correlated with ancestry. In such a context, they

can be thought of as perfectly correlated variants that are

distributed across the genome independently of their

physical distances. In a GWAS, such variants are usually

discarded because of their collinearity with a covariate con-

trolling for ancestry. As a result, the corresponding GWAS

summary statistics miss them entirely, which precludes

their inclusion in downstream polygenic risk prediction.

Here, we correct this bias by adding a separate ancestry

term in the predictive risk model.

There are still limitations when doing predictions in a

multi-ethnic setting. The PGS-based prediction will remain

limited for trans-ethnic cases due to (1) variants in the

target that are absent in the base GWAS, (2) different effect

sizes for the same causal variant between two populations

due to pleiotropic effect, and (3) unmatched tagging SNPs

due to different LD structures between populations.

Non-genetic factors influence phenotypes in complex

ways and must be carefully considered in genetic studies

to avoid confounding and false genetic associations. In
man Genetics and Genomics Advances 3, 100109, July 14, 2022 9



particular, behavioral phenotypes are correlated with so-

cio-economic and cultural factors, including racial and

ethnic categories44,45 that may be associated with ancestry.

Consequently, the common GWAS assumption that envi-

ronmental factors affect samples randomly does not

hold, and the AS will be influenced by non-genetic factors.

When studying such phenotypes, the investigator should

not draw conclusions based solely on statistical associa-

tions between PCs and phenotype, as the socioeconomic

factors that are captured could bemisinterpreted as genetic

or ancestry-related factors. Furthermore, because the

magnitude and direction of associations between socioeco-

nomic determinants and cultural background are society

specific, the environmental effect embedded in the AS is

less likely to be portable to a distant cohort.

Since genetic ancestry and ethnicity are closely related, it

is necessary to draw the line between these two concepts.

Ethnicity or race is a social construct that classifies people

independently of the genetic component. Its meaning

changes over time and between societies. Genetic

ancestry—or genetically inferred ancestry—can be opera-

tionally defined as the systematic difference in allelic fre-

quencies between subpopulations. Until now, reporting

of ancestry has been mostly based on the Self-Identifica-

tion of Race and Ethnicity (SIRE) method, which has

important limitations,46 such as its categorical rather

than continuous nature; its overlap with the notion of

race, whose definition fluctuates over time and depends

on societies; it does not offer a simple solution for people

of mixed ancestry, who are expected to become a larger

share of the population in globalized societies;47 and it

does not allow for the classification of people who are un-

aware of their ancestry. To finely characterize genetic

ancestry, we propose the use of mapped PCs, which can

be easily derived from a reference map cohort such as the

publicly available 1KG, to project any individual on a

shared PC space. In addition to association studies, map-

ped PCs can also be shared to characterize ancestry in a

discovery cohort as a new type of shareable metadata.

Such data could, for example, be useful for assessing the

compatibility between available GWAS summary statistics

and a targeted individual for whom one wishes to calculate

a PGS.

Here, we have shown that clinical risk models can

benefit from a risk parameter, the AS, derived frommapped

PCs, which allows each individual to be fitted to its pheno-

typic baseline value based on ancestry. The use of this

fitting parameter makes it possible to directly apply the

predictive models to individuals from underrepresented

populations and of mixed ancestry.

The ClinGen Complex Disease Working Group has

defined a standard method for reporting risk models based

on PGSs48 in collaboration with the Polygenic Score Cata-

log. The Polygenic Score Catalog is a rapidly growing

repository for GWAS summary statistics.49 This repository

could host additional data useful for calculating risk pa-

rameters, such as PCAS summary statistics with the corre-
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sponding mapped-PC loadings. Today, researchers are

strongly encouraged to share GWAS summary statistics to

enable meta-analyses and speed up research. Similarly,

we encourage researchers to share data to enable AS

calculations.

We are at a pivotal moment for genomic-based medi-

cine: large-scale personal data can begin to be used effec-

tively to develop more individualized approaches to dis-

ease prevention and treatment. Ensuring equitable access

to new approaches and technology is a major responsibil-

ity for the biomedical research community. We have intro-

duced amethod that aims to foster predictivemodels based

on PGS and promotes the inclusion of more diverse popu-

lations in GWAS.
Data and code availability
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pository due to their sensitive nature.
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