
Defining Atomicity (and Integrity) for Snapshots of Storage in Forensic
Computing
Jenny Ottmanna,∗, Frank Breitingerb and Felix Freilinga,∗

aDepartment of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
bSchool of Criminal Justice, University of Lausanne, 1015 Lausanne, Switzerland

A R T I C L E I N F O

Keywords:
storage acquisition
instantaneous snapshot
correctness
integrity

A B S T R A C T

The acquisition of data from main memory or from hard disk storage is usually one of the first steps in a
forensic investigation. We revisit the discussion on quality criteria for “forensically sound” acquisition
of such storage and propose a new way to capture the intent to acquire an instantaneous snapshot from
a single target system. The idea of our definition is to allow a certain flexibility into when individual
portions of memory are acquired, but at the same time require being consistent with causality (i.e.,
cause/effect relations). Our concept is much stronger than the original notion of atomicity defined by
Vömel and Freiling (2012) but still attainable using copy-on-write mechanisms. As a minor result, we
also fix a conceptual problem within the original definition of integrity.

1. Introduction
Data from storage devices or main memory are crucial

pieces of evidence today. The acquisition of such data usu-
ally means to copy the data from storage to another storage
(controlled by the analyst) in a way that preserves as much
of its evidential value as possible. A common way to define
a “good” copy is to formulate a set of quality metrics that
capture the intention of forensic soundness.

Attaining good quality copies appears seemingly simple
if storage can be “frozen”. As an example, there has been
little debate about the classical way to produce a foren-
sic copy of a hard disk using dd as described by Carrier
(2005). This is in contrast to the acquisition of main memory
which — apart from approaches that literally “freeze” RAM
(Halderman, Schoen, Heninger, Clarkson, Paul, Calandrino,
Feldman, Appelbaum and Felten, 2009) —- has received
considerable attention if the acquisition target is not a vir-
tual machine (Vömel and Freiling, 2012; Pagani, Fedorov
and Balzarotti, 2019; Inoue, Adelstein and Joyce, 2011;
Campbell, 2013; Lempereur, Merabti and Shi, 2012; Gruhn
and Freiling, 2016). In the form of solid state drives, hard
disks have turned into increasingly active devices which
has made forensic data acquisition in the classical sense
impossible (Nisbet, Lawrence and Ruff, 2013). In practice,
circumstances may prohibit freezing altogether even though
it may be technically feasible. Examples are production
servers that cannot be paused for operational reasons. On
such systems, acquisition is often improvised and part of a
live analysis.

Copyright remains with the authors.
∗Corresponding authors.
Email addresses: jenny.ottmann@fau.de (J. Ottmann);

frank.breitinger@unil.ch (F. Breitinger); felix.freiling@fau.de (F.
Freiling)

URL: https://FBreitinger.de (F. Breitinger)
ORCID(s): 0000-0003-1090-0566 (J. Ottmann); 0000-0001-5261-4600 (F.

Breitinger); 0000-0002-8279-8401 (F. Freiling)

1.1. Inconsistencies in RAM acquisition
As mentioned, quality criteria for data acquisition have

most often been discussed in the context of volatile memory
because of the common problems that occur if RAM is
acquired inconsistently.

Page smearing, for example, is a common problem on
systems under heavy load or with more than 8 GB of RAM
according to Case and Richard III (2017). When page smear-
ing occurs, the page tables in the memory snapshot are not
consistent with the contents of the physical pages because
changes were made to the referenced physical pages after the
page tables were acquired. This can result, for example, in
pages being attributed to wrong processes or inconsistencies
in kernel data structures. Some of these inconsistencies can
lead to problems during the memory analysis or hinder an
analysis completely if it uses kernel data structures. But not
all inconsistencies have to be apparent during an analysis.
Therefore, precise measurement criteria, to define the quality
of a memory imaging method, can help to evaluate tools
without having to rely on visible problems.

1.2. The quest for suitable quality criteria
To be able to qualify the effects of RAM acquisition,

Vömel and Freiling (2012) introduced three criteria to evalu-
ate the quality of a memory snapshot: correctness, integrity,
and atomicity. A correct snapshot contains all memory re-
gions of the main memory and for each region exactly the
value it had in main memory at the time of the acquisition.
Thus, to achieve correctness not only a correct implemen-
tation is necessary but the used system components must
return the correct values as well. The integrity criterion
focuses on memory content changes between the start of
the acquisition process and the acquisition of each memory
region. Integrity is violated for memory content that changed
after the acquisition was started and before it could be
copied by the acquisition process. The atomicity criterion in
contrast allows changes of memory contents if the acquired
memory regions are causally consistent. This means that no

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 1 of 11

https://FBreitinger.de


Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

memory region content in the snapshot was influenced by
changes to a memory region that are not part of the snapshot.

Recently, Pagani et al. (2019) criticized the atomicity
definition by Vömel and Freiling (2012) for being “ex-
tremely difficult to measure in practice”. Instead, they sug-
gested a criterion called time consistency. A snapshot is time
consistent if there “exists a hypothetical atomic acquisition
process that could have returned the same result”. However,
they do not provide a precise formalization of this concept.

1.3. Related work
There exists a large body of work that investigates the

creation of snapshots in distributed concurrent systems often
with the aim to detect predicates on the state of a distributed
computation (Chase and Garg, 1998). In this work, focus
has been on asynchronous distributed systems where the
best available notion of time is causality (Mattern, 1989;
Schwarz and Mattern, 1994). In such systems, concurrent
execution of events makes the global state “relativistic”, i.e.,
it is often not possible to exactly say in which state the system
is or has been (Cooper and Marzullo, 1991; Gärtner and
Kloppenburg, 2000; Chu and Brockmeyer, 2008).

In forensic computing, data acquisition is (currently)
usually performed in a synchronous environment. While
concurrency arises even in such systems from different
threads that operate on shared memory, such systems pro-
vide a common centralized clock that can be used to or-
der events. If events can potentially be totally ordered,
the sequence of global states through which the system
progresses is well defined. In contrast to the assumptions
made in previous theoretical work that describes algorithms
for predicate detection in synchronizable systems (Stoller,
2000), real systems usually do not keep track of timestamps
of individual events. The application of complex snapshot
algorithms in forensics appears not advisable anyway since
taking forensic snapshots should minimize interference with
the observed system. So, while the literature on distributed
systems gives many insights into the problem area, we are
not aware of work that is of direct help.

Other related work is concerned with measurement of
the quality of snapshots. Early work avoided the need to
define quality criteria by simply comparing the output of a
tool with the memory content of the machine from which
the snapshot was taken (Inoue et al., 2011; Campbell, 2013;
Lempereur et al., 2012). Vömel and Stüttgen (2013) were the
first to perform a practical evaluation of memory acquisition
tools against the abstract quality criteria of Vömel and
Freiling (2012). They implemented the evaluation platform
using Bochs and took a white-box testing approach. With
the help of inserted hypercalls, three tools were evaluated.
Correctness could be measured exactly by comparing the
memory image created by the acquisition process to an
image created in parallel by the host. Atomicity could not
be measured exactly as this would have required to keep
track of all causal dependencies in the guest, a task deemed
nearly infeasible by the authors. Instead, possible atomicity
violations were measured by keeping track of which threads

accessed already acquired pages and then modified a page
that was not already acquired. Therefore, the results present
an upper bound of atomicity violations. Integrity was es-
timated by comparing a memory image taken by the host
shortly before the acquisition process was loaded into the
guest memory with one taken by the host shortly after the
acquisition process finished.

Building on the results by Vömel and Stüttgen (2013),
Gruhn and Freiling (2016) took correctness for granted and
followed a black-box approach to measure atomicity and
integrity. Because their method does not rely on modifying
the source code of tools, more tools could be evaluated,
including direct memory access (DMA) and cold boot. For
the tests they wrote a program which allocates sequentially
numbered memory regions and one to extract the numbered
regions from a memory snapshot. The numbers serve as a
counter that allows to estimate the level of atomicity and
integrity.

1.4. Contributions
In this paper, we revisit Vömel and Freiling (2012) and

follow the demand formulated by Pagani et al. (2019) for
more “permissive” quality metrics for the acquisition of stor-
age: We formalize two new definitions of atomicity which
we call instantaneous and quasi-instantaneous consistency.
Both can be seen as possible formalizations of the notion of
“time consistent” by Pagani et al. (2019).

Instantaneous consistency resembles the quality of an
“ideal” snapshot taken from a frozen system and implies
quasi-instantaneous consistency. But although being slightly
weaker in guarantees, a quasi-instantaneous snapshot is
indistinguishable from an instantaneous snapshot. We show
that quasi-instantaneous snapshots can be achieved (by per-
forming memory snapshots using the idea of copy-on-write).
Moreover, under certain assumptions quasi-instantaneous
consistency implies the (classic) causal consistency of Vömel
and Freiling (2012) so quasi-instantaneous snapshots do not
violate cause-effect relations. Since the common memory
snapshot techniques based on software generally do not even
guarantee causal consistency, we also raise the question of
how to assess a memory snapshot regarding its level of
atomicity.

As a minor contribution, we propose a new definition of
integrity that is refined from Vömel and Freiling (2012) and
removes some of its theoretical weaknesses. We formulate
all concepts independent from concrete storage technologies
so that they can be applied to any block-based digital storage,
be it volatile or persistent.

1.5. Outline
The following section introduces the model used to

formalize our concepts. Section 3 continues with a formal
definition of the two new forms of atomicity. Section 4 pro-
vides an overview of methods with which these consistency
criteria can be achieved, while Section 5 discusses some
ideas on how to evaluate snapshots of storage with respect
to the new metrics. Section 6 briefly presents our result on
the notion of integrity. Old and new concepts are compared

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 2 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

r1

r2

e1

e2 e3

Past Future

C0
p1

p1p2

simplecut.png https://app.diagrams.net/

1 of 1 12/13/21, 16:18

Figure 1: Space/time diagram of a computation and one
possible cut C0. The events to the left of the cut are part
of the past, those to the right part of the future.

in Section 7. Section 8 discusses legal implications of our
concepts for concrete investigations. Finally, Section 9 con-
cludes the paper.

2. Model
We now define the notation to describe computations

on memory regions and the timing relations of the events
that happen therein (the definitions are adapted from Zheng
and Garg (2019) using the timing notation of Chu and
Brockmeyer (2008)).

2.1. Processes, memory regions and events
We consider a finite set 𝑃 = {𝑝1,…} of processes

(or threads) that perform operations on a set of 𝑛 memory
regions 𝑅 = {𝑟1,… , 𝑟𝑛}. Performing an operation results
in an event 𝑒 = (𝑝, 𝑟), where 𝑒.𝑝 denotes the process that
performed 𝑒 and 𝑒.𝑟 denotes the memory region on which
the process performed the operation. The set of all events is
denoted 𝐸. We assume that operations on a single memory
region are performed sequentially (e.g., by using hardware
arbitration or locks).

2.2. Space/time diagrams and cuts
We use space/time diagrams, commonly used in dis-

tributed computing (Mattern, 1989), to depict computations.
The sequence of events within the memory regions serves
as timeline from left to right, and the sequential activities
of processes are depicted as arrows that connect events. An
example is shown in Fig. 1 with two memory regions 𝑟1 and
𝑟2, a process 𝑝1 executing events 𝑒1 and 𝑒3 and a process 𝑝2
executing event 𝑒2.

A cut through the space/time diagram is indicated by
a line that intersects each memory region exactly once.
Formally, a cut is a subset of events of the computation and
can be regarded as separating the events into a “past” (to the
left of the cut) and a “future” (to the right of the cut). Fig. 1
shows an example of a cut through a computation.

2.3. Causal order on events
A computation is modeled as a tuple (𝐸,→) where 𝐸 is

the set of events and → is the causal order on 𝐸, i.e., the
smallest transitive relation such that

1. if 𝑒.𝑝 = 𝑓.𝑝 and 𝑒 immediately precedes 𝑓 in the
sequential order of that process, then 𝑒 → 𝑓 , and

2. if 𝑒.𝑟 = 𝑓.𝑟 and 𝑒 immediately precedes 𝑓 in that
memory region, then 𝑒 → 𝑓 .

The order → corresponds to Lamport’s happened-before
relation (Lamport, 1978).

The order → merely encodes which events might have
influenced which other events, i.e., if 𝑒 → 𝑓 or 𝑓 → 𝑒
then either 𝑒 may have influenced 𝑓 or vice versa. However,
if neither 𝑒 → 𝑓 nor 𝑓 → 𝑒 we say that 𝑒 and 𝑓 are
concurrent, i.e., it is not possible to order the two events
regarding causality.

2.4. Observability of causal relations
The causal order relation between events is by definition

independent of the concrete values that processes read from
or write to memory regions. For example, in the computation
depicted in Fig. 1 all events 𝑒1, 𝑒2 and 𝑒3 could be read
events that do not modify the content of the memory regions.
Causal dependencies, therefore, may not be observable un-
less they are somehow reflected by the stored values. A
minimum requirement for events to be observable is that they
perform a state change of the memory region, e.g., to change
the stored value from 0 to 1. Events that always update the
state of a memory region to a different state as before are
called modifying events.

Merely requiring that events modify the state of a mem-
ory region does not imply that state changes can always be
observed. The reason for this is that subsequent state changes
can annihilate effects of previous state changes. For example,
event 𝑒2 in Fig. 1 could change the value of memory region
𝑟2 from 0 to 1, and event 𝑒3 could change it back from 1
to 0. The fact that an event has occurred is not observable
if the starting and ending state of 𝑟2 is inspected. This can
be avoided by demanding that every event assigns a “fresh”
value to the memory region. This is the case, for example, if
the stored value is a counter that is incremented with every
event. Events that change the value of the memory region to
a new unique value are called uniquely modifying events.

Techniques to observe causal relationships in distributed
systems (like vector clocks (Mattern, 1989)) are commonly
based on the assumption of uniquely modifying events. We
will revisit these concepts later when exploring the compati-
bility between our new consistency notions and causal order.

2.5. Consistent global states
Cuts are often considered as representations of global

states of the computation. Fig. 2 depicts multiple possible
cuts through the computation shown in Fig. 1. For example,
cut 𝑐0 is the initial cut (no event has happened yet), 𝑐1 is
the cut where 𝑒1 is the only event that has happened, and 𝑐4
is the cut where 𝑒2 and 𝑒3 have happened but not 𝑒1. The
causal order → on events induces a partial order on these
states that form a lattice. The lattice of all such global states
of the computation shown in Fig. 2 is depicted in Fig. 3.

Note, in the absence of any notion of real-time, it cannot
be determined whether event 𝑒1 happened before 𝑒2 or not

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 3 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

r1

r2

P1

P2

e1

e2

C0

C1

C2 C3

P1
e3

C4 C5

lattice3.png https://app.diagrams.net/

1 of 1 12/13/21, 13:10

Figure 2: Space/time diagram and possible cuts of a compu-
tation.

C3

C1 C2

C0
e1

e1

e2

e2

C4

C5

e3

e3

e1
Inconsistency

lattice4.png https://app.diagrams.net/

1 of 1 12/13/21, 13:10

Figure 3: Lattice of global states of the computation depicted
in Fig. 2.

(with respect to → they are not ordered). Hence, it cannot be
determined which sequence of global states occurred in the
computation, as long as the cut respects the causality relation
→. Cut 𝑐4 is one that violates → in that events 𝑒2 and 𝑒3 are
contained in the global state while 𝑒1 is not. This cannot have
happened since 𝑒3 is the effect of 𝑒1, i.e., if 𝑒3 is contained in
the cut, then 𝑒1 also must be. This is the basis of the definition
of a consistent cut.

2.6. Realtime
In systems where real-time clocks are available, it may be

possible to order two events 𝑒1 and 𝑒2 in Fig. 2 by comparing
the real-time readings of when they occurred. For an event
𝑒 we denote by rt(𝑒) the real-time clock reading when 𝑒
occurred. Formally, rt is a function mapping the set of events
to the time domain 𝑇 . For simplicity and without loss of
generality, we equate 𝑇 with the set of natural numbers.
Using rt, it is possible to transform the partial order → into
a total order by ordering every event 𝑒 ∈ 𝐸 using rt(𝑒).

2.7. Snapshots
The effects of events are possible value changes in the

memory regions. Following the notation of Vömel and Freil-
ing (2012), we define the set of all possible values of a
memory region as 𝑉 . The contents of the memory regions
can then be formalized as a function 𝑚 ∶ 𝑅 × 𝑇 → 𝑉 that
returns the value of a specific memory region at a specific
point in time. Function 𝑚 encodes a form of ground truth of
what values the memory contained at any specific time.

Informally, a snapshot is a copy of all memory regions.
Since individual memory regions might be copied at differ-
ent points in time, we formalize a snapshot as a function 𝑠 ∶
𝑅 → 𝑉 ×𝑇 , i.e., for every memory region we store the value
and the time this value was copied from memory. We denote

r1

r2

e1

e2

causincons.png https://app.diagrams.net/

1 of 1 12/13/21, 13:12

Figure 4: Causally inconsistent snapshot.

by 𝑠(𝑟).𝑣 the value stored for region 𝑟 in snapshot 𝑠 and by
𝑠(𝑟).𝑡 the corresponding time. For example, if 𝑠(𝑟1) = (15, 3)
then memory region 𝑟1 was copied at time 𝑠(𝑟𝑖).𝑡 = 3 with a
value of 𝑠(𝑟𝑖).𝑣 = 15. Snapshots correspond to cuts through
the space-time diagram of a computation.

Taking a snapshot of a computation means to copy the
current values from memory regions into the snapshot, but
a snapshot does not contain any references to events that
have happened. To be able to formally connect events in
and snapshots of a computation, we introduce one additional
notation: For a real-time value 𝑡 and a memory region 𝑟 we
denote by event(𝑟, 𝑡) the most recent event that happened on
memory region 𝑟 at a time before or equal to 𝑡. Formally,
event is a function event ∶ 𝑅×𝑇 → 𝐸. If event(𝑟, 𝑡) = 𝑒 then
rt(𝑒) ≤ 𝑡 and there exists no other event on 𝑟 that happened
between rt(𝑒) and 𝑡.

Technically, the set of events contained in the cut corre-
sponding to a snapshot 𝑠 consists of all events that lie to the
left of event(𝑟, 𝑠(𝑟).𝑡) (including the event itself).

3. Defining Atomicity
Intuitively, atomicity is a notion to characterize the de-

gree of freedom of signs of concurrent activity. High atom-
icity therefore attempts to bound the effects that arise from
an observation taking place concurrently to a computation.

3.1. Causal consistency
The original definition of atomicity introduced by Vömel

and Freiling (2012) is based on the causal dependency
relation → between events. It states that the set of events
derived from a snapshot corresponds to a consistent cut. The
rationale behind this definition was that snapshots should
respect causality, i.e., for each effect the snapshot contains
its cause. The definition rules out any inconsistent cuts as
allowed snapshots. Such an example is depicted in Fig. 4
where two events 𝑒1 and 𝑒2 occurred on region 𝑟1 and 𝑟2
respectively and 𝑒1 → 𝑒2. A snapshot that contains the
contents of 𝑟1 before 𝑒1 happened and the contents of 𝑟2
after 𝑒2 happened is causally inconsistent because the change
introduced by 𝑒1 that caused 𝑒2 is missing.

Vömel and Freiling (2012) argued that snapshots should
at least be consistent with causality because causally in-
consistent snapshots clearly cannot have happened. Unfortu-
nately, many software-based snapshot approaches for RAM
do not produce even causally consistent snapshots.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 4 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

r1

r2

instantaneous.png https://app.diagrams.net/

1 of 1 12/13/21, 13:13

Figure 5:When an instantaneous snapshot is taken, all memory
regions are copied at the same time.

3.2. Instantaneous consistency
Causally consistent snapshots guarantee that snapshots

respect causal relationships. However, causal consistency
is a notion defined for asynchronous distributed system,
i.e., systems where no notion of real-time exists and time
is reduced to causality. In such systems, events can be re-
ordered along the sequential timeline if causal relationships
are respected. Therefore, every consistent global state is
a state that the computation potentially could have passed
through. In practice, and in particular in those systems that
we focus on here (smartphones, PCs, servers), often a notion
of real-time exists that allows to narrow down the set of
consistent global states that actually have happened (Stoller,
2000).

Based on these insights, we now define an idealistic
(and much stricter) consistency criterion based on the time
at which the memory regions are copied. The notion of
instantaneous consistency formalizes the idealistic intent of
snapshots in which all memory regions are copied at exactly
the same time.

Definition 1 (instantaneous consistency). A snapshot 𝑠 sat-
isfies instantaneous consistency iff all memory regions in 𝑠
were acquired at the same point in time. Formally:

∀𝑟, 𝑟′ ∈ 𝑅 ∶ 𝑠(𝑟).𝑡 = 𝑠(𝑟′).𝑡

If a snapshot satisfies instantaneous consistency, we say
that the snapshot is instantaneous. Obtaining instantaneous
snapshots is possible if the system of which the memory
contents are extracted can be paused, for example when the
main memory of a virtual machine is dumped. An example
of an instantaneous snapshot is depicted in Fig. 5.

From a forensic point of view, it is desirable that a snap-
shot is instantaneous because it resembles something that is
easy to understand and “obviously” free of any problems of
concurrency. This aspect is important for legal proceedings
in which doubts on the way evidence was gathered can
severely degrade its evidential value.

3.3. Quasi-instantaneous consistency
Taking instantaneous snapshots usually requires freezing

the system from which memory is copied, at least this is the
case for systems where no inherent (hardware) mechanism
exists to copy all memory regions at the same time. So taking
instantaneous snapshots in practice is hard, if not impossible.

We therefore define a slightly weaker criterion that cap-
tures the main ideas of instantaneous consistency while
allowing to take snapshots without freezing the system. We
call this quasi-instantaneous consistency.

r1

r2

t

quasiinstantaneous.png https://app.diagrams.net/

1 of 1 12/13/21, 13:13

Figure 6: When a snapshot satis�es quasi-instantaneous con-
sistency, a point in time can be found at which the contents
of the memory regions in the snapshot coexisted in the copied
main memory. The same result would have been achieved with
an instantaneous snapshot at time 𝑡.

r1

r2
e1

e2

notok.png https://app.diagrams.net/

1 of 1 12/13/21, 13:12

Figure 7: A snapshot that is not quasi-instantaneously consis-
tent if 𝑒1 and 𝑒2 modify the values of 𝑟1 and 𝑟2, respectively.

Definition 2 (quasi-instantaneous consistency). A snapshot
𝑠 satisfies quasi-instantaneous consistency iff the values in
the snapshot could have also been acquired with an instan-
taneous snapshot 𝑠′. Formally:

∃𝑠′ ∶ (∀𝑟, 𝑟′ ∈ 𝑅 ∶ 𝑠′(𝑟).𝑡 = 𝑠′(𝑟′).𝑡) ∧
∀𝑟 ∈ 𝑅 ∶ 𝑠′(𝑟).𝑣 = 𝑠(𝑟).𝑣

The above definition does not require that the snapshot
is taken instantaneously but that it could have been taken
instantaneously, i.e., that the values of all memory regions
in the snapshot were coexistent in memory at (at least) one
point in time during the acquisition.

Fig. 6 shows an example of a snapshot which is quasi-
instantaneous. In this example a point in time can be found
at which the contents of the two memory regions in the snap-
shot were coexistent in memory. When such a point in time
cannot be found, the snapshot is not quasi-instantaneous.
Assuming modifying events, Fig. 7 shows an example for
this case. Because of the order of the events 𝑒1 and 𝑒2 and
the time points at which the memory regions were added to
the snapshot, the snapshot contains values that were never
coexistent in main memory. In this case it is impossible to
find a time at which a snapshot containing the same values
could have been taken instantaneously.

3.4. Relations between the consistency definitions
Instantaneous consistency is the strongest concept of the

presented consistency definitions. If all memory regions can
be copied at the same time, no inconsistencies can arise due
to concurrent activity. Therefore, instantaneous consistency
implies quasi-instantaneous consistency.

The relation between quasi-instantaneous and causal
consistency is slightly less apparent. We first argue that

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 5 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

r1

r2

e2

e1

t

quasiatomic.png https://app.diagrams.net/

1 of 1 12/13/21, 13:07

Figure 8: If 𝑒1 is an event that does not change the memory
contents, then the snapshot is quasi-instantaneously consistent
but not causally consistent. If 𝑒1 and 𝑒2 are modifying events,
then the snapshot is neither quasi-instantaneously nor causally
consistent.

a causally consistent snapshot is not necessarily quasi-
instantaneously consistent. To see this, consider the com-
putation in Fig. 7 and note that the events 𝑒1 and 𝑒2 are
independent of each other. Therefore, any snapshot of this
computation is causally consistent. However, if 𝑒1 and 𝑒2 are
modifying events, the snapshot is not quasi-instantaneously
consistent. So causal consistency does not generally imply
quasi-instantaneous consistency.

But what about the inverse question, i.e., is every quasi-
instantaneous snapshot also causally consistent? Interest-
ingly, the answer to this question depends on the nature
of events that determine causal consistency. To see this,
consider the computation in Fig. 8 which is similar to the
one depicted in Fig. 7 but where events 𝑒1 and 𝑒2 have a
causal relationship. If neither 𝑒1 nor 𝑒2 are modifying events
then the values stored in memory do not change and so
any snapshot would be quasi-instantaneous, also the one
depicted in Fig. 8. So in this case, a snapshot might be quasi-
instantaneously consistent but still causally inconsistent. But
even if we only have modifying events, the changes of 𝑒1 or
𝑒2 could be reverted and the resulting quasi-instantaneously
consistent snapshot might again not be causally consistent.
But if we assume that we only have uniquely modifying
events, this cannot happen anymore.

Proposition 1. If all events are uniquely modifying, then any
quasi-instantaneously consistent snapshot is also causally
consistent.

Proof. Let 𝑠 be a snapshot satisfying quasi-instantaneous
consistency. From the definition of quasi-instantaneous con-
sistency follows that there exists an instantaneous snapshot
𝑠′ that contains the same values as 𝑠 for every memory re-
gion. Since 𝑠′ is instantaneous, it is also causally consistent.
But since all events are uniquely modifying, no events can
have happened between 𝑠′ and 𝑠. Therefore, 𝑠 is also causally
consistent.

As observed by Pagani et al. (2019), causal consistency
is very permissive but appears to be the smallest common
denominator of any acceptable quality measure of atomicity.
However, it is too permissive to be easily attainable. Instan-
taneous consistency, the ideal notion of atomicity, is too
strong. Quasi-instantaneous consistency is an intermediate

r1

r2

t

e1 e3

e2 e2

cow.png https://app.diagrams.net/

1 of 1 12/13/21, 13:09

Figure 9: After the acquisition has been started at time t, no
changes to memory regions that have not been copied yet are
allowed. Once a region has been copied its content may be
changed by events.

definition that does not need to halt the system but still can
express a similar level of instantaneousness. It is close in
spirit to Pagani et al.’s concept of time consistency, which is
satisfied “if there was a point in time during the acquisition
process in which the content of those pages co-existed in the
memory of the system” (Pagani et al., 2019).

4. Achieving Consistency
One possibility to achieve quasi-instantaneous consis-

tency of snapshots created on a running system is to en-
sure that, after the acquisition process has been started,
no memory content will be modified before it has been
copied. This method is known as copy-on-write in the area
of systems software. It is rather easy to see that a snapshot
created using this technique satisfies quasi-instantaneous
consistency, because any state changes occurring after the
start of the acquisition are not included into the memory
snapshot. Therefore, the contents in the snapshot are equal
to those the memory regions contained at the start of the
acquisition.

An example can be seen in Fig. 9: Because 𝑒2 would
have been executed on memory region 𝑟2 after the start of
the acquisition process but before it was copied, the event
is interrupted and the region is copied first. Afterwards the
event can be executed.

Manipulating the page table entries is a convenient
method to do this. By taking away the write permission
of all page tables entries, trying to change the page will
result in a page fault that can be handled accordingly.
But the system of which the memory snapshot is created
should not be manipulated to such a great extent. Therefore,
instead of manipulating the page tables of the operating
system, a hypervisor can be used. By taking away the write
permissions of the guest pages on the hypervisor level, write
accesses will cause an exit to the hypervisor. Then the page
can be copied and the write permission for the page can
be turned on again. Over the last years the technical means
to implement the technique changed, as can be seen in the
works of Martignoni, Fattori, Paleari and Cavallaro (2010);
Yu, Qi, Lin, Zhong, Li and Guan (2012) and Kiperberg,
Leon, Resh, Algawi and Zaidenberg (2019). As it cannot
always be expected that a system is already virtualized,
methods for the “on the fly” virtualization of a system have

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 6 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

r1

r2

r3

1
0
0

0
1
0

0
1
1

2
0
0

1
2
0

0
1
2

1
3
2

P1

P1P3

P3 P3

P3

P2Index = 0

Index = 1

Index = 2

Figure 10: Each memory region has an assigned vector clock
and an index for the local counter. Three processes, 𝑝1, 𝑝2,
and 𝑝3, interact with the memory regions. Whenever a process
accesses a memory region the vector clock the process saw last
and the local vector clock are combined and the counter at the
index of the region is increased.

also been proposed (Palutke, Ruderich, Wild and Freiling,
2020).

5. Measuring Consistency
While theoretical quality criteria are an important step

towards understanding which factors influence the useful-
ness of a memory snapshot, the question remains how these
criteria can be measured. Because of the limitations of
previous measurement approaches, we describe an alterna-
tive method to evaluate a snapshot with regard to causal
consistency.

Since it is difficult to trace all causal relationships in a
system, we suggest to only keep track of causal relation-
ships in a part of the system. Tracking causal relationships
within one process is a manageable task. It also allows
to perform the evaluation for closed source tools and on
different operating systems. The idea is to use a simple
test program in which memory regions are allocated, and
causally dependent changes on the regions, observed using
vector clocks. If quasi-instantaneous consistency should be
measured instead, realtime timestamps can be used in place
of vector clocks.

5.1. Using vector clocks
Vector clocks are a concept from distributed computing

that allows to track logical time by ordering events (Mat-
tern, 1989). Usually, vector clocks are assigned to different
processes in a distributed system. When events are executed
by a process or messages between different processes are
exchanged, the clocks need to be updated. As we want to
observe changes on memory regions, all subsequent exam-
ples assign vector clocks to memory regions not processes,
the original definitions by Mattern (1989) are adapted ac-
cordingly.

The idea is to assign a counter to each memory region
that increases every time an event (i.e., an access by a
process) is executed on the region. Such counters allow to
track causal relationships between events in the following

r1

r2

r3

1
0
0

0
1
0

0
1
1

2
0
0

1
2
0

0
1
2

1
3
2

P1

P1P3

P3 P3

P3

P2

2
2
1

Tx =

memvectorcons.png https://app.diagrams.net/

1 of 1 12/13/21, 13:11

Figure 11: In a consistent snapshot the values of the global
time at each region's index and that region's vector at the
index are equal.

way: Additionally, to the local counter, each memory re-
gion’s vector clock has fields for all other memory regions’
counters. If we assume a system with 𝑛 memory regions,
each region has a vector clock (a vector of counters) 𝐶 of
size 𝑛. Each region is assigned a unique index to this vector
at which its local counter is found. Whenever a process
accesses a memory region it saves the region’s vector clock.
When it accesses the next region the two vector clocks are
compared and for each index the higher value is chosen.
Then the local counter is incremented.

Causal relationships can be detected with vector clocks
by ordering them using the happened-before relation (Mat-
tern, 1989): For two vector clocks, 𝐶𝑖 and 𝐶𝑗 , 𝐶𝑖 < 𝐶𝑗 holds
iff

∀𝑥 ∈ {1,… , 𝑛} ∶ 𝐶𝑖[𝑥] ≤ 𝐶𝑗[𝑥])
∧ (∃𝑥 ∶ 𝐶𝑖[𝑥] < 𝐶𝑗[𝑥])

Whenever this does not hold for two vector clocks, the
causing events are concurrent to each other. Fig. 10 shows an
example for three memory regions and their assigned vector
clocks. Each time a process accesses a memory region the
vector clocks are updated. Using the definition we can, for
example, see that the event caused by process 𝑝2 on region
𝑟1 is only causally dependent on the event caused by 𝑝1 on
the same memory region and concurrent to all other events.

With the help of the vector clocks, inconsistencies in a
snapshot (or cut) can be found. First, the global time vector
𝑡𝑠 of the snapshot 𝑠 needs to be calculated. This vector
consists of the highest value for each index in all vector
clocks (Mattern, 1989) as

𝑡𝑠 = 𝑠𝑢𝑝(𝐶1, ..., 𝐶𝑛).

Next, each region’s vector clock is compared to the global
time. More precisely, the value of the region’s vector clock
at its index is compared to 𝑡𝑠 at the same index. Snapshot 𝑠 is
consistent iff 𝑡𝑠 = (𝐶1[1], ..., 𝐶𝑛[𝑛]) (Mattern, 1989). Fig. 11
shows an example for a consistent snapshot. Comparing the
global time to the regions’ vector clocks shows that for all
memory regions the value at the respective index is equal
to the global time vector at the same index. This means that

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 7 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

r1

r2

r3

1
0
0

0
1
0

0
1
1

2
0
0

1
2
0

0
1
2

1
3
2

P1

P1P3

P3 P3

P3

P2

2
3
2

Tx =

memvectorincons.png https://app.diagrams.net/

1 of 1 12/13/21, 13:11

Figure 12: This snapshot is inconsistent because the event on
region 𝑟3 on which the last event included in the snapshot on
region 𝑟2 is causally dependent is not included as well. This
becomes evident when comparing the vector clock of 𝑟3 with
the global time.

for all regions the causing event of the latest access on them
is included in the snapshot. Fig. 12 shows an example for
an inconsistent snapshot. In this case the last event on 𝑟3
is missing from the snapshot. This is a problem as the last
event on 𝑟2 which is included in the snapshot is causally
dependent on the event. Therefore, the vector clock has not
been updated yet and the inconsistency can be identified by
comparing the vector clock to the global time vector.

5.2. Using realtime clocks
While they allow to capture any programmable cause-

effect relationship, vector clocks are rather expensive in
terms of memory. A cheap replacement of vector clocks
is to simply take the measurement of a realtime clock as
timestamp (if such a clock exists). With this idea, the same
approach as described above can be used to track the se-
quence in which events occurred: Each memory region is
assigned a single realtime timestamp which corresponds
to the time that the most recent event happened in that
memory region. The vector of all such timestamps is called
the current time.

A snapshot algorithm now has to keep track of these most
recent timestamps during the acquisition of memory regions.
In analogy to the definitions for vector clocks, the global
time 𝑡𝑠 of a snapshot 𝑠 is the vector of these timestamps, one
for each memory region. A snapshot 𝑠 is consistent if the
current time is equal to the global time 𝑡𝑠. This is a sufficient
criterion for quasi-instantaneous consistency not a necessary
one. Finding a necessary criterion is an open question.

Obviously, this method is much more space efficient than
using vector clocks, but it can only be used to check for
quasi-instantaneous consistency and not for causal consis-
tency.

6. Defining Integrity
We briefly revisit the concept of integrity. Integrity

wishes to capture the degree to which a snapshot was
influenced by the measurement method itself. To do this, it

is necessary to distinguish changes on storage that are due to
the snapshot mechanism and those that are not. Vömel and
Freiling (2012) do this by defining a specific point in time
𝜏 which indicates the “start” of the measurement. Changes
before 𝜏 are not due to the measurement mechanism and
changes after 𝜏 affect integrity.

In the definition of Vömel and Freiling (2012), a snap-
shot satisfies integrity with respect to 𝜏 if the memory
contents did not change between this point in time and the
time of the acquisition of the region, formally:

∀𝑟 ∈ 𝑅 ∶ 𝜏 ≤ 𝑠(𝑟).𝑡 ⟹ ∀𝑡′ ∈ 𝑇 ∶
𝜏 ≤ 𝑡′ ≤ 𝑠(𝑟).𝑡 ∶ 𝑠(𝑟).𝑣 = 𝑚(𝑟, 𝑡′)

With this definition, whenever a memory region’s content
changes after 𝜏, integrity is not satisfied anymore. We there-
fore call it restrictive integrity. However, if the original
value is restored before the memory region is added to the
snapshot, then the result is the same as if the change never
happened. We therefore propose a slightly weaker definition
of integrity, called permissive integrity, that allows changes
in memory after 𝜏 as long as the value that is written to the
snapshot is the same as the value that existed in memory at
time 𝜏.

Definition 3 (permissive integrity). A snapshot 𝑠 satisfies
integrity with respect to time 𝜏 iff

∀𝑟 ∈ 𝑅 ∶ 𝜏 ≤ 𝑠(𝑟).𝑡 ⟹ 𝑠(𝑟).𝑣 = 𝑚(𝑟, 𝜏)

This definition is more permissive and enables new
acquisition techniques that selectively overwrite memory
regions if the snapshot contains the original data. Obviously,
a snapshot the satisfies restrictive integrity with respect to 𝜏
also satisfies permissive integrity with respect to 𝜏.

7. Relations between the Quality Criteria
In the original definitions of Vömel and Freiling (2012),

the three notions of correctness, atomicity and integrity
were not fully independent. In fact, integrity appeared to be
unnecessarily strong and complex: A snapshot that satisfied
integrity also satisfied atomicity and correctness. From a
conceptual point of view, it is better to have definitions that
do not imply each other to separate concerns.

Fig. 13 shows an overview of the quality criteria and
their relations with respect to implication. The implications
between the different consistency definitions (see section 3)
and between the two integrity definitions (see section 6) are
already integrated. As might be expected, instantaneous con-
sistency and restrictive integrity are the strongest notions and
do not imply each other in any way. Weaker consistency and
integrity definitions are, however, not so easily separable.
As already observed above, their relations also depend on
further assumptions about the observability of events.

We first note that restrictive integrity implies causal con-
sistency under the assumption that only modifying events
are observed. This is because restrictive integrity, for every

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 8 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

Instantaneous
consistency

Quasi-
instantaneous
consistency

Causal
consistency

Restrictive
integrity

Permissive
integrity

Correctness

bigpicture.png https://app.diagrams.net/

1 of 1 12/13/21, 13:08

Figure 13: The relationships between the di�erent quality criteria. Black arrows indicate implications without further assumptions.
The gray arrow stands for an implication that only exists if we assume that we only observe causal relationships between modifying
events. The implication shown by the white arrow assume that all events are uniquely modifying.

r1

r2
e1

e2𝜏 t

quasinotinteger.png https://app.diagrams.net/

1 of 1 12/13/21, 13:08

Figure 14: While this snapshot does not satisfy integrity with
respect to 𝜏 it still satis�es quasi-instantaneous consistency
because an instantaneous snapshot at time t would have
contained the same values.

memory region, disallows any state changes between 𝜏 and
the time the snapshot is taken. Therefore, if all events are
modifying, no event can happen between 𝜏 and the snapshot,
and therefore the snapshot must be causally consistent.

The relation between permissive integrity and quasi-
instantaneous consistency is particularly delicate. Fig. 14
shows a quasi-instantaneous snapshot that does not satisfy
permissive integrity: The snapshot does not satisfy (permis-
sive) integrity with regard to 𝜏 but a point in time 𝑡 can be
found at which an instantaneous snapshot would have con-
tained the same values. So quasi-instantaneous consistency
does not imply permissive integrity. The inverse, however,
is true.

Proposition 2. Every snapshot that satisfies permissive
integrity with respect to 𝜏 also satisfies quasi-instantaneous
consistency.

Proof. Let 𝑠 be a snapshot that satisfies permissive integrity
with respect to 𝜏. From the definition this implies that

∀𝑟 ∈ 𝑅 ∶ 𝜏 ≤ 𝑠(𝑟).𝑡 ⇒ 𝑠(𝑟).𝑣 = 𝑚(𝑟, 𝜏).

Now consider the instantaneous snapshot 𝑠′ taken at time
𝜏. Since 𝑠′ was taken at time 𝜏, for all memory regions 𝑟
holds that 𝑠′(𝑟).𝑡 = 𝜏 and 𝑠′(𝑟).𝑣 = 𝑚(𝑟, 𝜏). This means that
𝑠 and 𝑠′ were taken at different times but contain the same
values, namely the values stored in memory at time 𝜏. So
overall there exists an instantaneous snapshot that has the
same values as 𝑠. Therefore, 𝑠 is quasi-instantaneous.

Note that Proposition 2 holds without any further as-
sumptions about the observability of events. Therefore,
restrictive integrity also implies quasi-instantaneous con-
sistency without any further assumptions. If we assume

that we have only uniquely modifying events, both quasi-
instantaneous consistency and permissive integrity imply
causal consistency. Integrity and consistency therefore seem
hard to disentangle completely from each other. If events do
not necessarily change the values of memory regions, then
permissive integrity and causal consistency are independent
of each other.

Both integrity definitions imply correctness because they
compare the contents of the snapshot with the contents of
memory. If the acquisition method were functioning incor-
rectly this comparison would be likely to fail. This fact shows
that correctness is not really necessary as an independent
concept. Integrity and consistency suffice to determine the
quality of snapshots.

8. Legal Implications
Knowing about the quality of the memory snapshots

produced by different tools under certain circumstances can
help investigators to choose the tool best suited for a concrete
investigation. But does it also oblige them to use the best
available tool?

When we try to answer this question, we have to think
about the evidential value of the memory snapshot. Because
the quality of the memory snapshot influences the reliability
and completeness of the subsequent analysis results, their
evidential value is also influenced by the memory snap-
shot’s evidential value. The value a piece of evidence has
is equal to the probability that deductions based on it will
be true (Heinson, 2016). As the evidence a court grounds
its decision in has to be of the highest possible quality
to justify a conviction (Hannich, 2019)[§261 recital 5 ff.]
investigators should strive for gathering evidence with an
as high as possible evidential value. The evidential value
of data is determined by the forensic process with which it
was gathered. Among others its authenticity, and integrity
as well as the reliability of used methods should be ensured
(Fröwis, Gottschalk, Haslhofer, Rückert and Pesch, 2020).
Tools that are known to produce incorrect memory snapshots
must be excluded from usage in an investigation because this
would also cast doubt on any analysis results and conclusions
derived from them, their evidential value would be too low
to justify a conviction.

In the case of integrity and atomicity a closer look is
needed. A tool that produces a snapshot with low integrity

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 9 of 11



Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

overwrites more parts of the memory than a tool that pro-
duces a snapshot with a higher degree of integrity. Therefore,
loss of information in the memory snapshot is more likely
if less integrity can be achieved. As the presented evidence
should also be as authentic as possible (Fröwis et al., 2020)
the method that extracts memory snapshots with higher
integrity should be chosen if it also produces correct ones.

Because less atomic snapshots are also more likely to
have inconsistencies than more atomic snapshots, the relia-
bility and completeness of the results of an analysis of such a
snapshot can be questioned. Therefore, in trying to adhere to
the quality requirements of evidence used in court decisions,
the more atomic method should be chosen if possible. It
should also fulfill the requirements regarding correctness
and integrity. Another influencing factor on the evidential
value of results based on less atomic memory snapshots
would be how likely it is that inconsistencies in memory
snapshots lead to analysis results that suggest the presence
of incriminating evidence even though it never existed in
memory. To the best of the authors’ knowledge no research
has been published about this topic.

Tools with atomicity guarantees, be they instantaneous,
quasi-instantaneous or causal consistency, can often not be
used due to the technical circumstances of the investigation
and time constraints. If a tool without atomicity guarantees
is used, many inconsistencies might occur. The information
how likely their occurrence is for a specific snapshot is help-
ful because investigators or expert witnesses who present the
results of a technical analysis need to explain the likeliness of
errors or missing information to the court. The court should
also be enabled to evaluate how likely different hypotheses
based on the presented evidence are and if the evidence is
reliable (Fröwis et al., 2020). While it is possible to find
some inconsistencies by examining the data structures of the
operating system, thereby enabling analysts to report them
exactly, others might not be visible. Therefore indicators for
the likeliness of the occurrence of inconsistencies, like for
example suggested by Pagani et al. (2019), should be made
available by the memory snapshoting tool to the analyst. This
would enable analysts to provide founded estimates about
the likeliness of the analysis results being incomplete or the
possibility of wrong results due to inconsistencies.

9. Conclusions and Future Work
The new notions of atomicity and integrity wish to clar-

ify the conditions under which snapshots of storage can be
considered as “good”. The definitions assume a synchronous
system but cover any form of storage which cannot be
“frozen” and where individual memory regions have to be
acquired sequentially.

The measurement approach described in Section 5 needs
to be evaluated in future work. The question remains how the
results for a subset of memory regions can be transferred to
the quality of the complete memory snapshot. Therefore, it
will be necessary to perform an evaluation of the method
itself before testing different memory dumping tools. To

evaluate the method, the same steps as for a tool evaluation
can be performed. Memory snapshots are created while the
test program is running and, with the help of vector clocks,
atomicity violations are identified. Then, other indicators for
inconsistencies, like those described by Pagani et al. (2019),
need to be examined. A ground truth of the memory state
might be helpful to identify further inconsistencies. The
ground truth could be created in a virtualized environment
by taking atomic snapshots from the hypervisor. Identify-
ing as many indicators for inconsistencies as possible and
creating a big data set of analyzed memory snapshots is
another challenge. Indicators can be identified from the
related literature.

The creation of a big data set requires the automation
of memory snapshot creation and the analysis of memory
snapshots, and the organization of the analysis results. A big
data set enables statistical analysis with which it can be eval-
uated, e.g., if the number of atomicity violations in a subset
of memory can be used to extrapolate the occurrence of other
inconsistency indicators in other memory areas. Another
question that seems worth examining is if scenarios can be
observed in which inconsistencies lead to false conclusions
that create incriminating evidence where none is present.

Acknowledgments
We thank Nicole Scheler and Ralph Palutke for helpful

comments on previous versions of this paper. Work was sup-
ported by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) as part of the Research and Training
Group 2475 “Cybercrime and Forensic Computing” (grant
number 393541319/GRK2475/1-2019).

References
Campbell, W., 2013. Volatile memory acquisition tools – A comparison

across taint and correctness, in: Proc. 11th Australian Digital Forensics
Conference.

Carrier, B., 2005. File System Forensic Analysis. Addison-Wesley.
Case, A., Richard III, G.G., 2017. Memory forensics: The path forward.

Digital Investigation 20, 23–33.
Chase, C.M., Garg, V.K., 1998. Detection of global predicates: Techniques

and their limitations. Distributed Comput. 11, 191–201. URL: https:
//doi.org/10.1007/s004460050049, doi:10.1007/s004460050049.

Chu, C., Brockmeyer, M., 2008. Predicate detection modality and se-
mantics in three partially synchronous models, in: Lee, R.Y. (Ed.),
7th IEEE/ACIS International Conference on Computer and Information
Science, IEEE/ACIS ICIS 2008, 14-16 May 2008, Portland, Oregon,
USA, IEEE Computer Society. pp. 444–450. URL: https://doi.org/

10.1109/ICIS.2008.95, doi:10.1109/ICIS.2008.95.
Cooper, R., Marzullo, K., 1991. Consistent detection of global predicates,

in: Miller, B.P., McDowell, C.E. (Eds.), Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging, Santa Cruz, Califor-
nia, USA, May 20-21, 1991, ACM. pp. 167–174. URL: https://doi.

org/10.1145/122759.122774, doi:10.1145/122759.122774.
Fröwis, M., Gottschalk, T., Haslhofer, B., Rückert, C., Pesch, P., 2020. Safe-

guarding the evidential value of forensic cryptocurrency investigations.
Forensic Science International: Digital Investigation 33, 200902.

Gärtner, F.C., Kloppenburg, S., 2000. Consistent detection of global
predicates under a weak fault assumption, in: 19th IEEE Symposium
on Reliable Distributed Systems, SRDS’00, Nürnberg, Germany, Oc-
tober 16-18, 2000, Proceedings, IEEE Computer Society. pp. 94–103.
URL: https://doi.org/10.1109/RELDI.2000.885397, doi:10.1109/RELDI.
2000.885397.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 10 of 11

https://doi.org/10.1007/s004460050049
https://doi.org/10.1007/s004460050049
http://dx.doi.org/10.1007/s004460050049
https://doi.org/10.1109/ICIS.2008.95
https://doi.org/10.1109/ICIS.2008.95
http://dx.doi.org/10.1109/ICIS.2008.95
https://doi.org/10.1145/122759.122774
https://doi.org/10.1145/122759.122774
http://dx.doi.org/10.1145/122759.122774
https://doi.org/10.1109/RELDI.2000.885397
http://dx.doi.org/10.1109/RELDI.2000.885397
http://dx.doi.org/10.1109/RELDI.2000.885397


Ottmann et al. /De�ning Atomicity (and Integrity) for Storage Snapshots

Gruhn, M., Freiling, F.C., 2016. Evaluating atomicity, and integrity of
correct memory acquisition methods. Digital Investigation 16, S1–S10.

Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W.,
Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W., 2009. Lest
we remember: cold-boot attacks on encryption keys. Commun. ACM 52,
91–98. URL: https://doi.org/10.1145/1506409.1506429, doi:10.1145/
1506409.1506429.

Hannich, R. (Ed.), 2019. Karlsruher Kommentar zur Strafprozessordnung:
StPO - mit GVG, EGGVG und EMRK. 8. ed.

Heinson, D., 2016. IT-Forensik und Beweisrecht, in: DGRI Jahrbuch 2015.
Verlag Dr. Otto Schmidt, pp. 109–130.

Inoue, H., Adelstein, F., Joyce, R.A., 2011. Visualization in testing a volatile
memory forensic tool. Digital Investigation 8, S42–S51.

Kiperberg, M., Leon, R., Resh, A., Algawi, A., Zaidenberg, N., 2019.
Hypervisor-assisted atomic memory acquisition in modern systems, in:
International Conference on Information Systems Security and Privacy,
SCITEPRESS Science And Technology Publications.

Lamport, L., 1978. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM 21, 558–565. URL: https://doi.org/10.1145/
359545.359563, doi:10.1145/359545.359563.

Lempereur, B., Merabti, M., Shi, Q., 2012. Pypette: A platform for the
evaluation of live digital forensics. Int. Journal of Digital Crime and
Forensics 4, 31–46.

Martignoni, L., Fattori, A., Paleari, R., Cavallaro, L., 2010. Live and
trustworthy forensic analysis of commodity production systems, in:
International Workshop on Recent Advances in Intrusion Detection,
Springer. pp. 297–316.

Mattern, F., 1989. Virtual time and global states of distributed systems, in:
Proceedings of the International Workshop on Parallel and Distributed
Algorithms, pp. 215–226.

Nisbet, A., Lawrence, S., Ruff, M., 2013. A forensic analysis and compari-
son of solid state drive data retention with trim enabled file systems, in:
Proc. 11th Australian Digital Forensics Conference, pp. 103–111.

Pagani, F., Fedorov, O., Balzarotti, D., 2019. Introducing the temporal
dimension to memory forensics. ACM Transactions on Privacy and
Security (TOPS) 22, 1–21.

Palutke, R., Ruderich, S., Wild, M., Freiling, F., 2020. Hyperleech: Stealthy
system virtualization with minimal target impact through dma-based
hypervisor injection, in: 23rd International Symposium on Research in
Attacks, Intrusions and Defenses (RAID 2020), pp. 165–179.

Schwarz, R., Mattern, F., 1994. Detecting causal relationships in dis-
tributed computations: In search of the holy grail. Distributed Comput.
7, 149–174. URL: https://doi.org/10.1007/BF02277859, doi:10.1007/
BF02277859.

Stoller, S.D., 2000. Detecting global predicates in distributed systems with
clocks. Distributed Comput. 13, 85–98. URL: https://doi.org/10.1007/
s004460050069, doi:10.1007/s004460050069.

Vömel, S., Freiling, F.C., 2012. Correctness, atomicity, and integrity:
defining criteria for forensically-sound memory acquisition. Digital
Investigation 9, 125–137.

Vömel, S., Stüttgen, J., 2013. An evaluation platform for forensic memory
acquisition software. Digital Investigation 10, S30–S40.

Yu, M., Qi, Z., Lin, Q., Zhong, X., Li, B., Guan, H., 2012. Vis: Virtu-
alization enhanced live forensics acquisition for native system. Digital
Investigation 9, 22–33.

Zheng, X., Garg, V.K., 2019. An optimal vector clock algorithm for
multithreaded systems, in: 39th IEEE International Conference on Dis-
tributed Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7-
10, 2019, IEEE. pp. 2188–2194. URL: https://doi.org/10.1109/ICDCS.
2019.00215, doi:10.1109/ICDCS.2019.00215.

CRediT authorship contribution statement
Jenny Ottmann: Conceptualization, Methodology, In-

vestigation, Writing - Original Draft, Writing - Review and
Editing. Frank Breitinger: Conceptualization, Writing -

Review and Editing, Supervision. Felix Freiling: Concep-
tualization, Methodology, Investigation, Writing - Original
Draft, Writing - Review and Editing, Supervision.

Proceedings of the Digital Forensics Research Conference Europe (DFRWS EU), March 29�April 1, 2022 Page 11 of 11

https://doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/1506409.1506429
http://dx.doi.org/10.1145/1506409.1506429
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/359545.359563
https://doi.org/10.1007/BF02277859
http://dx.doi.org/10.1007/BF02277859
http://dx.doi.org/10.1007/BF02277859
https://doi.org/10.1007/s004460050069
https://doi.org/10.1007/s004460050069
http://dx.doi.org/10.1007/s004460050069
https://doi.org/10.1109/ICDCS.2019.00215
https://doi.org/10.1109/ICDCS.2019.00215
http://dx.doi.org/10.1109/ICDCS.2019.00215

	Introduction
	Inconsistencies in RAM acquisition
	The quest for suitable quality criteria
	Related work
	Contributions
	Outline

	Model
	Processes, memory regions and events
	Space/time diagrams and cuts
	Causal order on events
	Observability of causal relations
	Consistent global states
	Realtime
	Snapshots

	Defining Atomicity
	Causal consistency
	Instantaneous consistency
	Quasi-instantaneous consistency
	Relations between the consistency definitions

	Achieving Consistency
	Measuring Consistency
	Using vector clocks
	Using realtime clocks

	Defining Integrity
	Relations between the Quality Criteria
	Legal Implications
	Conclusions and Future Work

