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Abstract
1.	 Statistical models use observations of animals to make inferences about the 

abundance and distribution of species. However, the spatial distribution of 
animals is a complex function of many factors, including landscape and en-
vironmental features, and intra- and interspecific interactions. Modelling 
approaches often have to make significant simplifying assumptions about 
these factors, which can result in poor model performance and inaccurate 
predictions.

2.	 Here, we explore the implications of complex spatial structure for modelling the 
abundance of the Serengeti wildebeest, a gregarious migratory species. The so-
cial behaviour of wildebeest leads to a highly aggregated distribution, and we 
examine the consequences of omitting this spatial complexity when modelling 
species abundance. To account for this distribution, we introduce a multi-latent 
framework that uses two random fields to capture the clustered distribution of 
wildebeest.

3.	 Our results show that simplifying assumptions that are often made in spatial 
models can dramatically impair performance. However, by allowing for mix-
tures of spatial models accurate predictions can be made. Furthermore, there 
can be a non-monotonic relationship between model complexity and model 
performance; complex, flexible models that rely on unfounded assumptions 
can potentially make highly inaccurate predictions, whereas simpler more tra-
ditional approaches involve fewer assumptions and are less sensitive to these 
issues.

4.	 We demonstrate how to develop flexible spatial models that can accommodate 
the complex processes driving animal distributions. Our findings highlight the 
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1  |  INTRODUC TION

Accurately and efficiently estimating the abundance and distribu-
tion of organisms is one of the most fundamental components of 
ecological research. For many species access to resources is be-
coming increasingly constrained either because contiguous habitats 
are becoming fragmented (Fischer & Lindenmayer, 2007; Løvschal 
et al., 2017), or the overall availability of resources is declining due 
to human use (Ogutu, 2016; Tilman, 2017). In addition, populations 
of many commercially harvested species are being exploited to the 
point of extirpation (Barnosky,  2011), and in some cases sudden 
outbreaks of disease cause massive declines (Milner-Gulland, 2015; 
Roelke-Parker et al., 1996). The combination of these pressures raises 
serious concerns about the long-term viability of many species and 
underscores the importance of getting rapid, accurate estimates of 
abundance. In most cases, practitioners and managers want to know 
not only the abundance of animals but also the drivers of long-term 
changes (such as the impacts of climate effects, over-exploitation or 
displacement) and also identify bottlenecks at specific life-history 
stages. This requires repeated estimates of abundance over time.

Ecological surveys are the primary tool for estimating abundance. 
Although the design of a survey differs depending on the species 
(Hedges & O'Brien, 2012), in many cases the abundance is calculated 
by estimating the number of animals per unit area from a series of 
sampling points and inferring the density over the entire survey area 
(Norton-Griffiths,  1973). Samples are generally collected along a 
systematic pre-selected grid or transects that ensure maximal cover-
age and appropriate statistical power. Therefore, sampling requires 
adhering to a strict protocol; however, the practicalities of achiev-
ing this in the field can be very challenging (for example, transient 
obstacles such as low cloud-cover can force breaks in aerial tran-
sects and therefore sampling becomes discontinuous). Furthermore, 
observers may see groups of animals occurring off-transect which 
cannot be included in the enumeration, even if the observations are 
important. In many circumstances, a survey is constrained to a single 
species or a group of species that occur sympatrically resulting in 
multiple surveys required in areas that are rich in biodiversity.

The difficulties of estimating species abundance are compounded 
when organisms are highly aggregated. Many species occur in groups 
either because individuals distribute themselves based on the avail-
ability of resources in a patchy environment or because social inter-
actions attract individuals to conspecifics (Krause & Ruxton, 2002; 
Westley et al.,  2018). In addition, animals whose distributions are 
highly dynamic and subject to rapid fission-fusion processes (such 
as migratory species like wildebeest) pose a particular problem for 

aerial surveys because not only do they form fluid yet highly aggre-
gated groups, the time window for conducting a population estimate 
is often very brief. This restricts the window of opportunity and lim-
its the number of samples that can be feasibly collected to estimate 
the population size (i.e. the number of point observation, photos or 
transect). Furthermore, if the window is missed the survey cannot 
be repeated until the following year because animals have moved 
or dispersed, which places pressure on enumerators to be efficient 
and responsive.

The requirements of statistical models are therefore several-
fold. Primarily, statistical methods must accurately infer population 
abundance from incomplete observations even when spatial distri-
butions are highly hetereogeneous and subject to high degrees of 
autocorrelation. Where possible models must be sufficiently flexible 
to account for irregular survey design and the realities of the data 
collection procedure, thereby taking pressure off ecologists and 
wildlife managers in the field. Models must also be complex enough 
to make full use of the available data and maximize the accuracy of 
estimates while minimizing their uncertainty. Finally, models must be 
practical; fitting models to relatively large datasets should be achiev-
able within reasonable time-scales and ideally implemented within 
well-supported open source software libraries and packages.

Surveys of animal aggregations often have strong spatial auto-
correlation between observations. One approach to reduce the ef-
fect of spatial autocorrelation is to use the samples to calculate the 
mean density per transect or stratum and use this summary to cal-
culate abundance, as in the Jolly II method (Jolly, 1969). In this case, 
all observations within a transect are assumed to be dependent (i.e. 
autocorrelated), but transects are assumed to be independent. The 
sample size is defined by number of transects (not the total number 
of observations across all transects), which can reduce the statistical 
power.

Recent developments in this area have focused on the use of 
latent Gaussian random fields (GRFs; Hristopulos,  2020; Rue & 
Held, 2005). Random fields are a major component of spatial statisti-
cal analysis and can be used to represent spatial and spatiotemporal 
correlation structures which remain unexplained by environmental 
variables. In this context, a likelihood is specified for an observed 
response variable and the random field defines the mean, or other 
parameter, of the likelihood function. A GRF is defined by a mean 
and a covariance function and has the property that any finite col-
lection of points follows a multivariate Gaussian distribution with 
the specified mean and covariance. Hence, the covariance function 
determines the similarity between two locations of the field and is 
often assumed to be stationary and isotropic, meaning the similarity 

importance of robust model checking protocols, and we illustrate how realistic 
assumptions can be incorporated into models using random fields.

K E Y W O R D S
aerial surveys, animal abundance, multi-latent fields, spatial modelling
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between two locations depends only on their distance, and not their 
relative direction or absolute position.

Latent Gaussian fields are explicitly or implicitly used in many 
spatial analysis methods, including INLA (Rue et al.,  2009), krig-
ing (Cressie,  1990), Gaussian process (GP) regression (Rasmussen 
& Williams,  2006), and spatial GAMs with smoothing splines 
(Wood,  2020). In all these implementations a key challenge is ap-
propriately specifying the smoothness properties of the spatial field 
in a manner that accurately captures the autocorrelation of the data 
without overfitting to the noise.

In abundance modelling, latent GRFs have previously been used 
to account for highly spatially correlated data, as well as irregularly 
spaced sampling frameworks (Cavieres et al.,  2021; Cavieres & 
Nicolis, 2018; Drexler & Ainsworth, 2013; Ver Hoef & Jansen, 2015). 
Accounting for spatial structuring due to social behaviour, density 
dependence, or other effects unexplained by environmental vari-
ables has been found to improve certainty of abundance estimation. 
This is of particular importance in management and conservation 
of keystone species, and in estimating quotas for stock sustain-
ability in fisheries (Calderon-Aguilera et al., 2019). GRFs have also 
been shown to be effective in dealing with data containing excess 
zeros when incorporated with zero-inflated or hurdle models (Welsh 
et al., 1996). This approach can be implemented using multiple ran-
dom fields where one field defines the probability of the presence 
or absence, and the second field determines abundance conditional 
on the species being present (Barry & Welsh,  2002; Sadykova 
et al., 2017; Smith et al., 2019).

In this work, we explore a scenario in which spatial models are 
used to improve the accuracy of abundance estimates for an aggre-
gated species. Our approach uses multiple random fields to estimate 
the abundance of wildebeest in the Serengeti National Park from ae-
rial survey data. We specifically investigate the importance of model 
complexity and how it interacts with the spatial patterns that arise 
due to the ecological and behavioural dynamics of the wildebeest 
(Torney et al., 2018).

Wildebeest are a keystone species in the Serengeti. Each year, 
approximately 1.3 million wildebeest move through the range of the 
Greater Serengeti Ecosystem, a round-trip of >1,500 km (Hopcraft 
et al.,  2015; Thirgood et al.,  2004) that covers almost the entire 
25,000 km2 extent of the ecosystem. During the migration, herds 
move constantly and vary in size, from a few individuals to hundreds 
of thousands of animals (Hopcraft et al.,  2014). Without the an-
nual migratory cycle, much of the region's biodiversity would likely 
change (Dobson et al., 2010; Hopcraft et al., 2015), as the passage 
of the migrants affects virtually every other ecological interaction 
in the ecosystem from below ground nutrient cycling, to insects and 
avifauna abundance, to predator–prey interactions, to disease regu-
lation (Sinclair et al., 2015).

Despite their large numbers, wildebeest operate at or close to 
their physiological limits. Historically, drastic population declines 
have been observed due to drought, access to forage and disease 
(Mduma et al., 1999). In adult females, the energetic demands of re-
production are continual and acute as the cycle of pregnancy and 

lactation encompasses a full calendar year; calving is highly syn-
chronous and coincides with the period of peak primary production 
in February (Hopcraft et al., 2014). Approximately 400,000 calves 
are born each year of which about 50% survive to reproductive age 
(Hopcraft et al., 2015). The spatial diversity of the ecosystem means 
that at each point in the migration the quality and abundance of 
forage changes, as does the exposure to predators, as well as the 
animals' proximity to human infrastructure and poaching. As many 
as 100,000 wildebeest are illegally harvested every year (Rentsch & 
Packer, 2014), and there are upwards of 3,500 tourists per day enter-
ing the Serengeti. These anthropogenic inputs create additional haz-
ards for animals to navigate as they strive to gain sufficient energy 
to survive and reproduce whilst avoiding predation. Any changes to 
the mass migration are likely to have severe environmental conse-
quences as the wildebeest play a vital role in the ecosystem.

Estimating the abundance of wildebeest in the ecosystem is 
vital for the effective management of the park and is perhaps the 
most important metric of the ecosystem's health (Estes,  2014). 
To estimate the abundance of the wildebeest population, tran-
sects are flown over the herds in March, April or May (Campbell & 
Borner, 1995; Norton-Griffiths, 1973) while the majority of the wil-
debeest are on the short grass plains in the south-east of Serengeti 
and the Ngorongoro conservation area, before the migration moves 
into the woodland areas of the western Serengeti. Transects are 
flown East to West at 2.5  km intervals with the start and end of 
each transect determined by the presence of wildebeest. During the 
transects nadir georeferenced aerial photographs are taken of the 
survey area at fixed 10-s intervals with the aircraft travelling at close 
to constant speed at about 1,000 feet above the ground. Once the 
images are collected the next stage of the process is to identify and 
count all wildebeest within each image (Torney et al., 2019).

To estimate population abundance from image counts, Jolly's 
method II (Jolly, 1969) is used. This provides an expected abundance 
calculated by multiplying the average within image density by the 
total survey area and a standard error calculated based on the stan-
dard deviation of the densities across each transect (the area of each 
image is calculated using the field of view of the lens and the altitude 
above-ground). It should be noted that the photographed area is typ-
ically less than 3% of the total survey area and typically between 
5,000 and 10,000 wildebeest are manually identified out of a popu-
lation total of around 1.3 million.

Here we compare the Jolly II method used to infer total wilde-
beest abundance with two hierarchical models that incorporate ran-
dom spatial fields. We implement two spatial models; the first uses 
a single field to model the log intensity of a Poisson distribution for 
wildebeest abundance, while the second introduces a multi-latent 
model that makes use of a spatial mixture model with multiple ran-
dom fields to account for the large regions of the survey area that 
contain zeros in the image counts. To evaluate the performance of 
these models we generate synthetic wildebeest distributions and 
vary the fraction of the landscape (denoted p) where wildebeest 
are present. Through our analysis of inferred wildebeest abundance 
we show that there is a non-monotonic relationship between model 
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complexity and accuracy, as large errors are observed using a com-
plex model when model assumptions are not met.

2  |  MATERIAL S AND METHODS

2.1  |  Single-field model

Our first approach to incorporating a spatial field uses a log Cox GP. 
The distribution of wildebeest is therefore, modelled as an inhomo-
geneous Poisson process with spatially varying intensity �(x). A GP 
is used to model the log of the spatially varying intensity so that the 
full model for wildebeest density Dw is defined as

where GP defines a GP prior, � is the mean of the log intensity field  
and K

(

x, x′
)

 is a stationary covariance function that determines the 
similarity of two locations based on their distance.

Several methods are available for parameter inference and 
model fitting, including MCMC, variational inference and Integrated 
Nested Laplace Approximation (INLA; Rue et al.,  2009). The ap-
propriateness of different approaches will depend on the choice of 
covariance function and dataset size. Here we assume a Matérn co-
variance function that allows us to take advantage of the stochastic 
partial differential equation (SPDE) approach (Lindgren et al., 2011). 
The solution to a given GRF with Matérn covariance is an SPDE, 
which in this approach is used to estimate a corresponding Gaussian 
Markov random field (GMRF). The GMRF can then be used to repre-
sent the GRF in computation, which due to its Markov property, con-
siderably reduces computational cost, enabling complex spatial and 
spatiotemporal modelling within an efficient timeframe. Inference is 
implemented within inlabru (Bachl et al., 2019).

2.2  |  Multi-latent model

A notable characteristic of the wildebeest distribution is that they 
are highly aggregated in certain regions of the survey area. Due to 
the survey design and the constraints of flying transects, this leads 
to large regions that contain no wildebeest. Counts of wildebeest 
with aerial photos, therefore, contain large numbers of zeros, which 
are well known to cause problems when fitting to Poisson distribu-
tions (Harrison, 2014).

A standard approach to dealing with zero-inflated data is to 
use a mixture model that combines a Bernoulli distribution with a 
Poisson or negative binomial distribution; in this approach the count 
is zero with a fixed probability, otherwise it is drawn from the dis-
crete probability distribution that may be truncated to exclude zero 
(Wenger & Freeman, 2008). Although models of this type are better 
able to cope with zero inflated data, they do not account for the 

spatial autocorrelation in the presence of zeros. In the context of the 
wildebeest distribution, zero counts are highly correlated with one 
another and there are large clusters of dense and empty regions. It is 
unlikely these clusters are driven by environmental factors, instead 
they are driven by the social behaviour of the wildebeest and their 
aggregation into herds of various sizes.

To account for the spatial clustering of wildebeest we use a multi-
latent random field model (Saul et al., 2016). The model consists of  
two spatial fields, both modelled as latent GPs. The first field deter-
mines whether wildebeest are present in the local area or not, whereas 
the second field is used to model the log intensity of the wildebeest 
distribution, as in the single-field approach. Hence, the spatial distri-
bution of wildebeest is determined by two independent random fields 
acting as a mixture as in a hurdle or zero-inflated model; one that de-
termines presence or absence, and one that determines density given 
wildebeest are present. The model is then defined as follows:

where, as in the single-field model, x is the spatial location, Dw (x) is the 
density of wildebeest, which is modelled as an inhomogeneous Poisson 
process with intensity �(x), and F(x) is a GP that is used to model the log 
of the spatially varying intensity. G(x) is a second, independent GP that 
is used to model the binary variable �(x) which determines whether 
wildebeest are present. This variable is drawn from a Binomial distribu-
tion where G(x) determines the logit of the presence probability.

Given the additional complexity of the model, computational in-
ference is more challenging. We again use an approximate method, 
this time using variational inference (Blei et al., 2017) to estimate the 
posterior distribution of the latent spatial fields. Variational infer-
ence follows a similar approach to the Laplace approximation used 
by INLA; however, it proceeds by firstly assuming a specific form 
for the posterior density and then minimizing the Kullback–Leibler 
divergence between the posited density and the target density. 
Variational inference is a popular method within the machine learn-
ing community for fitting GP models (Hensman et al., 2013; Opper 
& Archambeau, 2009; Titsias, 2009) and has recently been applied 
to multi-latent GPs such as the model defined by Equation 2 (Saul 
et al., 2016). We follow this method (Torney, 2022) and use an imple-
mentation provided by the package GPFlow (Matthews et al., 2017).

2.3  |  Synthetic data

To test the various inference schemes we generate synthetic wil-
debeest distributions and then simulate the survey by making 

(1)

Dw (x): Poisson(�(x))

�(x)=exp(F(x))

F(x): GP
(

�,K
(

x, x�
))

,

(2)

Dw (x):

⎧

⎪

⎨

⎪

⎩

Poisson(�(x)), if �(x)=1

0, if �(x)=0

�(x)=exp(F(x))

�(x): Binomial(sigmoid(G(x)))

F(x): GP
�

�f ,Kf

�

x, x�
��

G(x): GP
�

�g ,Kg

�

x, x�
��

,
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observations of the generated distribution within small areas along a 
sequence of transects. This process generates a set of counts corre-
sponding to the aerial photographs collected during the real survey.

To generate the synthetic distributions that match the clustering 
of the real wildebeest, we generate two random fields. The first field 
is used to define a region where wildebeest are potentially pres-
ent. We define this field to have a correlation length of 5 km and 
specify a fraction p of the survey area that may contain wildebeest. 
This fraction is varied from p = 0.1 (i.e. 10% of the area may con-
tain wildebeest) to p = 1 (i.e. the entire area may contain wildebeest) 
in steps of 0.1. For areas that may contain wildebeest, the second 
field defines the intensity parameter of a Poisson distribution with a 
mean function specified so that there are approximately 1.3 million 
wildebeest in total in the region. Random samples are then gener-
ated to create a distribution of wildebeest. The process is repeated 
10 times for each value of the presence fraction p. See Figure 1 for 
example distributions and image counts generated for two different 
values of p.

2.4  |  Empirical data

We further assess the multi-latent field approach using survey data 
from the 2015 wildebeest count. The 2015 count was conducted 
between 23 April and 2 May over the eastern and southern plains of 
Serengeti National Park, Ngorongoro Conservation Area, Loliondo 

Game Controlled Area, and Maswa Game Reserve. The 2015 aerial 
survey of the Serengeti National Park and Ngorongoro Conservation 
Area was undertaken by the Frankfurt Zoological Society (FZS) in 
conjunction with TAWIRI (Tanzania Wildlife Research Institute).

A Cessna C182 aircraft was used to conduct 10.3 hr of photo-
graphic sampling flights along east–west transects that covered a 
straight-line distance of 2,040 km. Photographs were taken using 
a NIKON D800 through a 35-mm Nikor Lens. The camera was 
mounted in a port in the floor of the aircraft and an automatic trig-
ger was used to collect images at 10-s intervals during each transect. 
In total 1,584 georeferenced images were taken with a resolution 
of 7,360 × 4,912 pixels, which were later viewed and the number of 
wildebeest in each image was recorded.

3  |  RESULTS

3.1  |  Synthetic data

To investigate the accuracy and precision of the different inference 
procedures we apply the three methods, Jolly II, the single field 
Poisson likelihood model, and the multi-latent field model, to simu-
lated data. For each dataset, we use each method to calculate the 
estimate of abundance and the uncertainty associated with the esti-
mate. We then compare the estimate of abundance with the ground 
truth value.

F I G U R E  1  Simulated data generation. (a) Generated spatial log-intensity field used to create counts of wildebeest if present. (b) Random 
presence-absence field for p = 0.2. (c) Wildebeest counts generated by flying in silico transects and collecting aerial survey images at 10 s 
intervals. (d–f) as first row with p = 0.6.

(a) (b) (c)

(d) (e) (f)
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Figure 2 shows the results from each approach. Examining these 
results reveals a non-monotonic relationship between model com-
plexity and accuracy. Although both the Jolly II approach and the 
single latent field assume a homogeneous distribution of wilde-
beest, the consequences for the more complex model are far more 
severe. The single field model provides accurate predictions only 
when model assumptions are met (i.e. p = 1.0). When wildebeest 
are clustered and the survey region contains large numbers of zero 
image counts, the model overfits the data and results in abundance 
estimates that are several orders of magnitude greater than the 
true total. This issue could in principle be overcome through more 
stringent model regularization techniques, stronger priors on the 
hyperparameters, or preprocessing of the survey data; however, it is 
notable that the traditional method of Jolly II provides a robust and 
reliable estimate.

The multi-latent approach displays a similar accuracy to the Jolly 
II method; however, it is less biased than Jolly II, which systemati-
cally appears to result in an undercount, and it is better able to quan-
tify the uncertainty in the abundance. For all values of the fraction 
of the landscape potentially occupied by wildebeest, the true value 
was more likely to fall within the 95% credible intervals when com-
pared to the 95% confidence interval of the Jolly method. The model 
was also able to accurately capture the latent presence-absence 
field used to generate the data as shown in Figure S4. It is likely 
that the uncertainty quantification of the multi-latent model could 
be further improved by careful selection of the covariance function 
used to encode spatial autocorrelation in each field. For the simu-
lation study a Matérn 3/2 kernel was used for both fields but other 
functions that better approximate observed spatial patterns would 
likely result in greater accuracy.

3.2  |  Empirical data

We next apply the multi-latent model to the 2015 wildebeest 
image counts. The spatial distribution of image counts is shown in 
Figure 3a. In this year, wildebeest were distributed across the land-
scape into several clusters with large regions of zero counts. After 
optimizing the model, the learned spatial fields define the probabil-
ity of wildebeest being present, and their log-density given wilde-
beest are present. Figure 3b shows the presence probability for the 
2015 data, whereas Figure 3c displays the log-intensity.

The optimized model parameters for the lengthscale of the 
presence-absence field and the log-intensity field are shown in 
Table 1 along with the population estimates for the year obtained 
using the multi-latent model and, for comparison, Jolly II. The pos-
terior distribution of total wildebeest abundance is show in Figure 4 
with lines indicating the posterior median and the upper and lower 
95% credible intervals. Again, the Jolly II outputs are shown for com-
parison. Based on the results from the simulation study, we expect 
that the true abundance is underestimated by Jolly II and the credi-
ble intervals obtained from the multi-latent model are a more accu-
rate reflection of the uncertainty in the estimates.

4  |  DISCUSSION

Our results show that an increase in model complexity does not nec-
essarily lead to improved model performance when the assumptions 
of the analysis are violated. Often the simplest models (such as Jolly 
II) rely on fewer assumptions and are less flexible but are robust, 
as long as data are collected systematically and methodically. The 
inclusion of more complexity into models such as the single field 
model in which the observations can be spatially autocorrelated 
introduces assumptions about stationarity of the covariance struc-
ture. When these assumptions were violated, the single-field model 
performed poorly in comparison to the more traditional Jolly II ap-
proach; this was especially pronounced under conditions of strong 
clustering of wildebeest herds where abundance estimates were se-
verely over-inflated. However, the inclusion of further complexity in 
the multi-latent model reconciles this issue by allowing two random 
fields that determine presence-absence separately from density (i.e. 
a hierarchical approach to spatial autocorrelation in which concen-
trated aggregations can occur within groups that are distinct from 
each other). This results in a comparable level of accuracy in abun-
dance estimates with the Jolly II method. Furthermore, the multi-
latent model suffers from less bias than Jolly II and provides a more 
accurate quantification of uncertainty. Therefore, the inclusion of 
complexity in a model does not necessarily equate to improved per-
formance, but increasingly complex models that make reasonable 
assumptions can provide advantages over simpler, more traditional 
approaches.

An extension to multi-latent field framework is to incorporate 
the effects of environmental features (see Figure  S1). The use 
of environmental information allows the model to infer the rela-
tionship between known covariates and the species distribution 
and then use this relationship to make more informed predictions 
about density in unsampled regions. This approach is straightfor-
ward to implement via a modification to the GRF but could not 
be introduced into Jolly II due to its use of transect as the unit of 
observation.

The objective of species abundance models is to maximize both 
accuracy and flexibility while minimizing the computational time, 
which allows for fast, repeatable and precise measures of distri-
bution and abundance. There is an inherent trade-off within these 
aims, which means the choice of model should depend on the scale 
of improvement and the advances it makes in terms of conservation 
impact. Here, we discuss three advances offered by increased model 
complexity when estimating abundance that would be relevant to 
other group living or migratory animals.

Although the results of the most complex (multi-latent) 
model and the simplest approach (Jolly II) were comparable, in-
creased model complexity can allow for practical on-the-ground 
advantages. For instance, Jolly II constrains enumerators to fly 
transects along straight lines with systematic sampling (i.e. 
photographs are taken every 10 s). The multi-latent approach 
allows for greater flexibility in sampling, as it uses the coor-
dinate locations of photographs, rather than overall transects, 

 2041210x, 2023, 1, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.13941 by U
niversity O

f G
lasgow

, W
iley O

nline L
ibrary on [20/01/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



    |  83Methods in Ecology and Evolu
onTORNEY et al.

to account for observation effort. Using this approach to esti-
mate abundance means that enumerators are not constrained 
to transects or systematic sampling. We show how the multi-
latent model is unaffected by changes in the sampling strategy 
by performing random sampling of the area and a spiral survey 
path in place of the traditional transect pattern (see Figures S2 
and S3). This provides flexibility for enumerators to tackle ob-
stacles in data collection such as navigating the aircraft around 
transient barriers (e.g. thunder-heads). If the sampling does not 
strictly follow transects, then enumerators need to pay atten-
tion to the GPS tracklog to avoid resampling areas and double 
counting animals.

Greater sampling flexibility would also allow enumerators to re-
spond to the current distribution of animals encountered during a 
survey. This enables a more stratified sampling approach in which 
effort can be focused based on the density of animals (e.g. greater 
sampling effort in high-density areas, and lower in low-density 
areas). Concentrating the sampling in this way could potentially 

improve abundance estimation, as more information is required to 
extract accurate counts in high-density areas, whereas relatively lit-
tle information (i.e. fewer photographs at larger intervals) is needed 
to determine the absence of the species. This flexibility could create 
a more efficient approach to data collection, allowing enumerators 
to make sampling decisions in response to the current distribution 
of animals.

Flexible sampling could also allow for more efficient data collec-
tion by enabling multiple species to be counted in a single survey. In 
the traditional approach using Jolly II, transects are predetermined 
according to the distribution of the wildebeest herds. However, 
zebra Equus quagga, Thomson's gazelle Eudorcas thomsonii, Grant's 
gazelle Nanger granti and eland Taurotragus oryx also migrate to the 
same area. Herds of different species tend to overlap but their distri-
butions are not identical, thus traditionally enumerators could only 
count wildebeest during the survey (seperate surveys focused on 
other species). However, the greater sampling flexibility introduced 
by the multi-latent approach is geographically unconstrained and, 

F I G U R E  2  Comparison of methods on 
simulated data. (a) Population abundance 
estimate and 95% upper and lower 
credible interval using the multi-latent 
field approach. Results show model 
accuracy for 10 independent simulated 
datasets with wildebeest occupying 
various fractions of the synthetic 
survey area. Estimates are rescaled to 
be a fraction of the true population 
size so that a value of 1.0 means the 
estimate matches the true abundance. (b) 
Population abundance estimate for the 
same simulated data using Jolly's method 
II. (c) Population estimate using a single 
field when the data is generated with a 
multi-latent field. Note the accuracy is 
now showing the log of the ratio between 
the true and estimated value. Diamond 
markers show outliers that lie beyond 1.5 
times the interquartile range. (d) Number 
of simulation runs where the true value 
was between the model's 95% uncertainty 
interval. For the single field approach the 
true value was outside of the credible 
interval in all simulations except when 
p = 1.0.

(a)

(b)

(c)

(d)
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therefore, enables sampling over a wider area. There is no need 
to predetermine sampling transects according to a single species' 
distribution, enabling the collection of data on multiple species in 
a single survey. In combination with deep-learning approaches to 
object recognition in images (Torney et al., 2019), this could be an 
extremely powerful approach, and potentially represents a signifi-
cant advance in improving the efficiency of resource-use in counting 
animals for abundance estimation.

Our results demonstrate the traditional method for inferring 
wildebeest abundance, Jolly II, is a reliable approach that is rela-
tively straightforward to implement. Given a fixed survey design 
that adheres to the requirements of the Jolly II method there is no 
clear advantage to implementing the more complex multi-latent 
field approach. However, the more complex model is both flexible 
and extensible. Potential extensions include the use of environ-
mental covariates as described above, as well as explicitly mod-
elling the temporal dynamics of the wildebeest herds (Blangiardo 

et al.,  2013). The greater flexibility of the model translates to 
greater flexibility in the field when conducting the survey, as well 
as the prospect of including multiple species in the analysis and 
incorporating data from multiple sources (Graves et al.,  2022; 
Robinson et al., 2021).
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