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Abstract: We propose an adaptive time-delayed photonic reservoir computing (RC) structure
by utilizing the Kalman filter (KF) algorithm as training approach. Two benchmark tasks,
namely the Santa Fe time-series prediction and the nonlinear channel equalization, are adopted
to evaluate the performance of the proposed RC structure. The simulation results indicate that
with the contribution of adaptive KF training, the prediction and equalization performance
for the benchmark tasks can be significantly enhanced, with respect to the conventional RC
using a training approach based on the least-squares (LS). Moreover, by introducing a complex
mask derived from a bandwidth and complexity enhanced chaotic signal into the proposed
RC, the performance of prediction and equalization can be further improved. In addition, it is
demonstrated that the proposed RC system can provide a better equalization performance for the
parameter-variant wireless channel equalization task, compared with the conventional RC based
on LS training. The work presents a potential way to realize adaptive photonic computing.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Reservoir computing (RC) which is originated from the recurrent neural networks (RNN), is a
novel biologically inspired computing method for processing time-dependent information [1].
While different from the conventional neural networks, the connection weights between the
input and the internal network in RC are fixed at a set of random values, and only the readout
weights deserve training, which greatly simplifies the training process and reduces the power
consumption [2–4]. The RC has been extensively applied in many areas, such as financial
time-series prediction, nonlinear channel equalization [3,4], human action recognition [5], and
reconstruction of complex dynamic system [6], etc. However, due to the energy loss and the
noise interference among different devices, it is difficult to construct a fully-connected RC system
with a large number (e.g. 102-103) of physical nodes.

In recent years, a new RC architecture based on a time-delayed feedback system has been
proposed, in which a time-delayed nonlinear component is used to construct a virtual network,
replacing the real network used in the original RC [7]. Under such a scenario, fully-connected
RC can be easily implemented without the requirements of complex physical equipment. For
this reason, the time-delayed RC has been a hotspot which attracted plenty of attention. Up to
present, several classic time-delayed RC structures on the basis of the Mackey-Glass electronic
[7], optoelectronic [8–10], and all-optical [11–20] delay feedback systems have been proposed.
Brunner and coworkers realized a time-delayed RC scheme by utilizing the transient response of a
semiconductor laser (SL) with optical feedback [12]. Romain et al. demonstrated a time-delayed
RC structure supporting parallel processing, in virtue of two modes of semiconductor ring laser
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(SRL) [13]. S. Xiang and colleagues proposed to use a semiconductor nanolaser (SNL) with
double phase conjugate feedbacks (PCF) to construct a time-delayed RC system [14]. G. Q. Xia
et al. investigated a time-delayed RC system under electrical information injection and further
optimized its performance [15].

In general, performance of time-delayed RC greatly relies on the training technique that is
adopted to obtain readout weights. In the previously-reported literatures, two typical training
methods based on the least squares (LS) and the ridge regression, are commonly adopted, to obtain
the readout weights. With these two training methods, the RC structure can achieve satisfactory
performance without complex calculations [21–26]. Nevertheless, since the readout weights
remain invariable once the training using these two methods is completed, these RC structures
are usually adopted to process the parameter-invariant tasks. While for the parameter-variant
tasks, even though a satisfactory initial performance can be achieved by the RC structure with a
proper training, the long-term performance would deteriorate if the RC cannot update the readout
weights according to the variation of task states. Therefore, it is valuable to explore novel RC
structures that are capable of processing parameter-variant tasks.

In this paper, we propose an adaptive time-delayed photonic RC structure in which Kalman
filter (KF) algorithm is adopted as the training approach. A chaotic mask signal with enhanced
complexity and bandwidth is used as the mask signal of input signal. The performance of the
proposed RC structure is evaluated by two benchmark tasks, namely the Santa Fe time-series
prediction task and the nonlinear channel equalization task. Moreover, the feasibility of the
proposed adaptive RC structure to process the parameter-variant wireless channel equalization is
demonstrated.

2. Principles and system model

Figure 1 shows the schematic of the proposed adaptive time-delay RC structure. Similar to typical
SL-based RC structures, the reservoir consists of a semiconductor laser (referred to as response
laser) subject to a time-delayed optical feedback and an external optical injection from a driver
laser (DL). With the transient response of the response laser (RL), the reservoir can map the
input information into a high-dimensional state space, and simultaneously, the fading-memory
feature can be implemented in the feedback loop.

Fig. 1. Schematic of the time-delayed RC based on a response laser (RL) under optical
feedback and optical injection from a drive laser (DL). PM: phase modulator.

The proposed adaptive RC structure is composed of three parts: the input layer, the reservoir,
and the output layer. In the input layer, the input signal is firstly sampled and each sample
is expanded for time duration T, the expanded samples are denoted as u(n), where n is the
discrete time index. Then, a temporal masking signal m(t) with the length of T is multiplied
with u(n), to obtain a masked input signal s(t) (i.e., s(t)=u(n)×m(t)×γ, here γ is a scaling factor).
After that, the masked input signal is sent into the reservoir by modulating the output of DL
with an opt-electronic phase modulator (PM), as those in [16,17,22–24]. This process can be
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mathematically described as:
Ed(t) =

√︁
Id exp(iπs(t)). (1)

where Id represents the output optical intensity of DL and Ed(t) is the optical field injected into
the reservoir. To fully make use of the dynamics of the phase of optical field of response laser,
here the masked input signal is not normalized. In the reservoir, the transient response of RL
with an interval θ is taken as a state of a virtual node. Within a period of feedback time τ, N
virtual nodes xi(n) (i= 1, 2, 3. . . , N) for the n-th input data can be implemented, on the basis
of a de-synchronization scheme, in which the feedback time τ of RL is chosen as τ =T+θ, and
T =N×θ is satisfied [8,11,16,18]. In the output layer, the reservoir output y(n) for the n-th input
data is calculated by a linear combination of virtual nodes xi(n) with readout weights wi for each
time duration T as follows:

y(n) =
N∑︂

i=1
wixi(n). (2)

It is the read-out estimator, and the readout weights can be optimized by minimizing the mean
square error between the target value ȳ(n) that is defined in Eq. (6) and the RC output y(n).
The nonlinear dynamics of RL in the reservoir are simultaneously affected by the time-delayed
optical feedback and the phased-modulated masked input signal, which can be illustrated by the
following Lang-Kobayashi rate equations [27,28]:

dE(t)
dt
=

1
2
(1 + iα)[

g(N(t) − N0)

1 + ε |E(t)|2
−

1
τp
]E(t) + kinjEd(t) exp(i2π∆vt)

+ kf E(t − τ) exp(−i2πvτ) +
√︁

2βN(t)χ(t)
(3)

dN(t)
dt
= J −

N(t)
τs

−
g(N(t) − N0)

1 + ε |E(t)|2
|E(t)|2 (4)

where E(t) is the complex electric field amplitude, N(t) is the corresponding carrier density,
E(t-τ) is the feedback signal with feedback time τ. α is the linewidth enhancement factor, g
is the differential gain coefficient, N0 represents the transparent carrier density, ε denotes the
gain saturation coefficient, τp is the photon lifetime, τs is the carrier lifetime, kf is the feedback
strength of RL, kinj is the injection strength from DL to RL, J means the injection current, v is
the frequency of RL, and ∆v is the frequency detuning between DL and RL. A white Gaussian
noise χ with zero mean and unity variance is used to model the spontaneous emission noise, and
β is the spontaneous emission rate.

In a conventional RC structure using the least-squares algorithm (LS-RC) for training, the
readout weights w1, w2, . . . , wN are fixed, once the training process is completed, as such this
type of RC structure cannot afford to process the parameter-variant tasks that require adaptive
readout-weight updating. To enable a reservoir to estimate the readout weights adaptively, a KF
training method is introduced in the proposed RC structure. Differing from the traditional LS
algorithm, the KF algorithm is a kind of typical method that adopts the state-space model to
solve the error minimization problem, and it can provide adaptive recursive estimation without
large data storage requirement [29]. In the proposed RC structure, the nonlinear part of the task is
processed by the reservoir, as such the residual output weights training is a linear regression task,
and then a simple classic KF algorithm is able to update the output weights adaptively. The states
of virtual nodes x(n) (i.e., x(n)= [x1(n), x2(n), . . . , xN(n)]T , here T means the transpose operation
of matrix) are directly sent into the Kalman filter, and the fading memory of the reservoir provides
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memory capacity for the filter. The state-space of KF is described by the following equations:

w(n) = w(n − 1) + ξ(n − 1) (5)

ȳ(n) = wT (n)x(n) + η(n). (6)

where w(n) (i.e., w(n)= [w1(n), w2(n), . . . , wN(n)]T ) is the readout weights, ȳ(n) is the target
value (teacher output), ξ(n) and η(n) are two independent Gaussian noise sources with zero mean,
and their covariance matrices are denoted as Q(n) and R(n), respectively. In the proposed RC
structure, the readout weights are recursively obtained by the following equations [29,30]:

w(n|n − 1) = w(n − 1) (7)

P(n|n − 1) = P(n − 1) + Q(n − 1) (8)

K(n) = P(n|n − 1)x(n)[R(n) + xT (n)P(n|n − 1)x(n)]−1 (9)

w(n) = w(n|n − 1) + K(n)[ȳ(n) − w(n|n − 1)x(n)] (10)

P(n) = [I − K(n)x(n)]P(n|n − 1) (11)

where P(n) is the covariance matrix of the estimation error of output weights, K(n) is Kalman
gain matrix, w(n|n-1) and P(n|n-1) are the estimations of w(n) and P(n) based on the previous
measurements from the time index 1 to n-1. Through this process, the readout weights can be
adaptively updated with the variation of the task states, and the RC output can be obtained by
Eq. (2). The proposed RC structure is abbreviated as KF-RC.

3. Results and discussion

To thoroughly discuss the properties and demonstrate the advantages of the proposed structure of
KF-RC, other two relevant structures, namely KF and LS-RC, are also considered for comparison.
The fourth-order Runge-Kutta algorithm with a step of 1 ps is adopted to solve the rate equations
of RL shown in Eqs. (3)-(4). The laser parameters used in our simulations are as follows: α= 3.0,
g= 8.40×10−13 m3s−1, N0 = 1.4×1024 m−3, ε = 2×10−23, τp = 1.927 ps, τs = 2.04 ns, kinj = 12.43
ns−1, kf = 15.53 ns−1, J = 1.037 ×1033 m−3s−1, Id = 6.56× 1020, v= 1.96× 1014 s−1, ∆v= -4.0
GHz, and β= 1.5 ×10−6. Here, these parameters correspond to an optimum RC operation
condition, which is selected by repeating simulations with the parameters reported in [16]. The
value of T is set as 1ns, which corresponds to a processing rate of 1GSamples/s.

3.1. Conventional and complexity-enhanced chaotic mask signals

Two chaotic masks are introduced to investigate the impact of the complexity of chaotic mask
signals on the performance of RC. One is the conventional chaotic mask that is derived from an
external-cavity semiconductor laser (ECSL) and referred to as the C-chaotic mask. The other one
is the complexity-enhanced chaotic mask that is referred to as the E-chaotic mask and obtained
by a self-phase-modulated feedback ECSL cascaded with dispersive component. The generation
of the E-chaotic signal has been thoroughly investigated in our recent work [31].

Figure 2 presents the temporal waveforms, the power spectra, and the autocorrelation function
(ACF) of the analog C-chaotic mask and E-chaotic mask signals generated by using identical
ECSL (the laser and dispersive component parameters can be found in [31], and the feedback
delay is set as 8 ns here). For the C-chaotic mask signal generated by conventional ECSL (first
row), the power is mainly concentrated nearby the relaxation oscillation frequency, as such the
effective bandwidth is relatively low, which is only 7.45 GHz. Moreover, an obvious time-delay
signature (TDS) appears at the position of feedback delay [32–34]. While for the E-chaotic mask
signal (second row), the spectrum is much flatter, and the effective bandwidth is enhanced to 36.9
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GHz. Besides, it shows Delta-like autocorrelation, as that shown in Fig. 2(b3). Therefore, with
respect to the C-chaotic mask, both of the bandwidth and complexity of the E-chaotic mask signal
have been significantly enhanced. In the following discussions, as that in [16], the amplitude
of both chaotic masks is rescaled so that the mean value of the chaos masks is set to 0, and its
standard deviation is set to 1.

Fig. 2. Temporal waveforms (first column), RF spectra (second column), and ACF traces
(third column) of (a) C-chaotic mask signal and (b) E-chaotic mask signal

Figure 3 presents the temporal waveforms of the masked input signals, as well as the
corresponding transient responses of RL and virtual node states, in the cases with C-chaotic
mask signal and E-chaotic mask signal. The temporal waveforms of the masked input signals are
similar to those of the mask signals for the linear relationship between them [s(t)=u(n)×m(t)×γ,
in each period of T= 1ns, u(n) is a constant, and s(t) is proportional to m(t)]. Regarding the
C-chaotic mask case, both of the masked input signal and the output of RL fluctuate smoothly,
which induces that some virtual nodes do not display transient dynamics. While for the case
with E-chaotic mask signal, since the bandwidth and complexity of mask signal are significantly
enhanced, it is more efficient for the masked input signal to activate the high-dimensional
mapping capability. Consequently, with respect to that in the C-chaotic mask case, the output of
RL fluctuates more dramatically, and richer virtual node states can be obtained from the more
complex and frequent dynamical response signal. Based on this, with the E-chaotic mask, better
performance can be achieved, and this will be confirmed in the following discussions.

Fig. 3. Temporal waveforms of masked input signal (first column), transient response of
RL (second column), and virtual node states (third column), in the cases with (a) C-chaotic
mask signal and (b) E-chaotic mask signal.
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3.2. Performance of Santa Fe chaotic time-series prediction

To evaluate the prediction performance of the proposed RC structure, the Santa Fe time-series
prediction task which is a typical benchmark task that has been extensively used in the machine
learning area is employed. The target for this task is to perform a one-step forward prediction of
the Santa Fe chaotic time series that is experimentally derived from a far-infrared laser [35]. The
prediction performance of RC is quantitatively evaluated by using the normalized mean square
error (NMSE) defined as follows:

NMSE =
1
L

L∑︁
n=1

(ȳ(n) − y(n))2

var(ȳ)
(12)

where L is the total number of the input data, n is the index of input data, y(n) is the prediction
result of RC, ȳ(n) denotes the target value, and var represents the variance. Generally, when
NMSE ≤ 0.1, the prediction performance of RC can be considered good [14,15,22–24]. In the
following investigations on the performance of the Santa Fe chaotic time-series prediction, 3000
steps in the Santa Fe data set are used for training, 1000 steps are adopted for testing, the number
of virtual nodes is set as N = 100, the virtual node interval is fixed at θ = 0.01ns, and the scaling
factor is chosen as γ = 0.6.

Figure 4 presents the results of the Santa Fe time-series prediction using direct Kalman filtering,
as well those using LS-RC and KF-RC with C-chaotic mask and E-chaotic mask. As shown in
Fig. 4(b), for the direct Kalman filtering, the prediction output fluctuates in a relatively small
range and a relatively large prediction error is observed (NMSE= 0.1478). That is, using a single
Kalman filter cannot achieve accurate time-series prediction. For the prediction with LS-RC
structure, as those shown in Figs. 4(c) and 4(d), the prediction error is significantly improved,
accurate prediction with small prediction error can be observed in a large time duration except
that nearby the sharp jump point in the envelope of the Santa Fe time series. The NMSEs are
respectively reduced to 0.0166 and 0.0084 for the cases with C-chaotic mask and E-chaotic mask.
For the prediction with KF-RC, as those shown in Figs. 4(e) and 4(f), the NMSEs are further
reduced to 0.0080 and 0.0028, which means the prediction performance is further improved. The
performance improvement of KF-RC (with respect to LS-RC) is because the KF algorithm uses
the state-space model to recursively update the readout weights in each training step, as such
the effects of multicollinearity that would reduce the accuracy of the readout weight estimation
in the conventional LS method can be avoided [30]. On the other hand, it is indicated that in
both of the LS-RC and KF-RC structures, using E-chaotic mask can obtain better prediction
performance than that of the cases with C-chaotic mask. Overall, the proposed RC structure
using Kalman filter algorithm for training and adopting E-chaotic mask with enhanced bandwidth
and complexity shows better prediction performance.

In addition to the linear readout layer defined in Eq. (2), a recurrent readout layer can also
be introduced into the proposed RC structure. Figure 5 presents the NMSE values of the Santa
Fe time-series prediction task using the KF-RC+E-chaotic mask RC structures with the linear
readout layer in Eq. (2) and a recurrent readout layer defined as y(n)=wT (n)[1; x(n); x(n-1)].
Here, the sampling period of input data T is fixed at 1 ns. It is observed that for both of the RC
structures, the more the virtual nodes, the smaller the NMSE, and the RC system with recurrent
readout layer behaves better prediction performance than that with linear readout layer. This is
because the RC structure with recurrent readout layer can utilize the states of virtual nodes in
multiple time indexes, as such the fade memory feature of RC is enhanced.

3.3. Performance of nonlinear channel equalization

In this subsection, the nonlinear channel equalization that is a practical task of great significance
in the field of wireless communication [3], is studied to evaluate the equalization performance of



Research Article Vol. 30, No. 8 / 11 Apr 2022 / Optics Express 13653

Fig. 4. (a)Santa Fe chaotic time series; Results of the Santa Fe time-series prediction task
using the structure of (b) KF, (c) LS-RC+C-chaotic mask, (d) LS-RC+E-chaotic mask,
(e) KF-RC+C-chaotic mask, and (f) KF-RC+E-chaotic mask. The blue curve denotes the
error signal, representing the deviation between the target value and the prediction value.

Fig. 5. NMSEs as a function of the number of virtual nodes N by utilizing the KF-RC+E-
chaotic mask structure with linear readout layer (red curve) and recurrent readout layer (blue
curve).
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the proposed KF-RC structure. The original signal sequence d(n) is randomly chosen from four
values {-3, -1, 1, 3} and propagated through a standardized multipath radio frequency channel
with nonlinear distortions, defined as follows [36]:

q(n) = 0.08d(n + 2) − 0.12d(n + 1) + d(n) + 0.18d(n − 1)
− 0.1d(n − 2) + 0.091d(n − 3) − 0.05d(n − 4)
+ 0.04d(n − 5) + 0.03d(n − 6) + 0.01d(n − 7)

(13)

m(n) = q(n) + 0.036q2(n) − 0.011q3(n) + ζ(n) (14)
where ζ(n) is a Gaussian noise with zero mean, adjusted to yield signal-to-noise ratios (SNRs)
ranging from 12 and 32 dB. Our goal is to recover the original symbol signal d(n) from the
disturbed signal m(n). For this task, 105 symbols are generated, wherein 3×103 symbols are
used for training and 9.7×104 symbols are applied to test the performance of RC. The number
of virtual nodes is set as N = 50, which corresponds to a virtual-nodes interval of θ = 20ps, and
the scaling factor is chosen as γ = 0.3. The equalization performance of RC is quantitatively
evaluated in terms of the symbol error rate (SER), which is the fraction of error symbols.

Figure 6 presents the SER performance of the nonlinear channel equalization task under the
five scenarios identical to those in Fig. 4. Here the SER values are obtained by averaging the
results of 10 repeating testing procedures. The results indicate that for all the five equalization
schemes, as the increase of SNR, the SER decreases accordingly, and the performances of RC
structures are always better than that of individual Kalman filtering. When the SNR is smaller
than 20dB, the equalization performance differences between different RC structures are not
significant. However, when the SNR further increases, the equalization performance gaps raise
up gradually. When the SNR is larger than 28dB, a SER floor can be observed in the two cases
of LS-RC structures (red curves), which is in line with the experimental results reported in
[36]. While for the KF-RC structures (blue curves), the SERs are further decreased, and better
performance is achieved. Comparing to the LS-RC structures, the KF-RC structures with same
chaotic mask show better equalization performances. On the other hand, the comparisons of the
performances of RC structures with C-chaotic mask and E-chaotic mask show that the latter RC
structures with identical training method can achieve better equalization performance. These
phenomena are similar to those shown in Fig. 4, therefore it can be concluded that the proposed
KF-RC structure with E-chaotic mask can support better prediction performance and equalization
performance, with respect to the conventional LS-RC structure.

3.4. Performance of adaptive parameter-variant channel equalization

The model presented in Eqs. (13) and (14) is a static wireless communication channel model.
Under such a scenario, the channel state remains invariable during the information transmission.
However, in practice, the wireless channel is a typical parameter-variant channel. Either the
change of environment or the relative offset of emitters and receivers would induce channel state
variation. Here, in our simulations, the channel parameter variation is introduced by randomly
tuning the coefficients in the channel model shown in Eqs. (13) and (14), which is mathematically
expressed as

q′(n) = 0.08(1 + λ1)d(n + 2) − 0.12(1 + λ2)d(n + 1) + (1 + λ3)d(n)
+ 0.18(1 + λ4)d(n − 1) − 0.1(1 + λ5)d(n − 2) + 0.091(1 + λ6)d(n − 3)
− 0.05(1 + λ7)d(n − 4) + 0.04(1 + λ8)d(n − 5) + 0.03(1 + λ9)d(n − 6)
+ 0.01(1 + λ10)d(n − 4)

(15)

m′(n) = (1 + λ11)q′(n) + 0.036(1 + λ12)q′2(n) − 0.011(1 + λ13)q′3(n) + ζ(n) (16)
where λi (i= 1, 2, 3. . . , 13) is the variation factor that follows the Gaussian distribution with
zero mean, and the probability distribution for different variation factors are independent. To
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Fig. 6. Performance for the nonlinear channel equalization task versus the SNR by utilizing
individual KF (black curve), LS-RC+C-chaotic mask (red dotted line), LS-RC+E-chaotic
mask (red curve), KF-RC+C-chaotic mask (blue dotted line), and KF-RC+E-chaotic mask
(blue curve).

thoroughly investigate the equalization performances under different variation-strength scenarios,
four different values for the variance of variation factor that is referred to as σ2, namely σ2=
0.1, 0.2, 0.5, and 1, are simultaneously considered. In the following discussions, for the sake
of simplicity, only the RC structures with E-chaotic mask are considered for its advantages of
prediction and statistic channel equalization.

Figure 7 presents the SER performance of the parameter-variant channel equalization task
utilizing the LS-RC and KF-RC structures with E-chaotic mask, for the case of SNR= 24 dB.
Here, six variation periods including one static period and five subsequent varying periods are
discussed, and the variation period of λi (i= 1, 2, 3. . . , 13) is set as 0.2ms (which is equivalent
to that the channel state varies five times, and in each period, there are 2×105 symbols being
transmitted in a static channel). In the initial static period T1, the equalization performance of
KF-RC is better than that of LS-RC, this is in line with the results shown in Fig. 6. Furthermore,
in the periods from T2 to T6, as the channel states are varied periodically, the SERs for both of
LS-RC and KF-RC vary accordingly. For the LS-RC structure, due to the lack of adaptability, the
SER maintains at a higher level with respect to that in the initial period. While for the KF-RC
structure, even though there is a short-term high-SER peak occurring at the sudden channel state
switching moment (in which the readout weights have not been updated accordingly), the SER
decreases quickly after that. This phenomenon is because after a short transient process, the
readout weights in the KF-RC structure are adaptively updated according to the new channel state,
in virtue of the high-speed adaptive learning ability of the KF algorithm. It is worth mentioning
that in some cases, such as the periods T3 in Fig. 7(a), T4 in Fig. 7(b), and T3 in Fig. 7(d), the
SER can be improved to a level better than the that of the initial period T1, which is due to that in
these cases the coefficients for the nonlinear terms in Eqs. (15) and (16) are decreased, as such
the channel state is more ideal than that in the initial period. In general, for the parameter-variant
channel equalization tasks, the KF-RC structure shows significantly better performance with
respect to the LS-RC structure, for its ability of adaptive readout-weights updating.
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Fig. 7. SERs of the parameter-variant channel equalization task versus SNR by utilizing
LS-RC (red curve) and KF-RC (blue curve). The variances of scaling factors are selected as
(a) σ2 = 0.1, (b) σ2 = 0.2, (c) σ2 = 0.5, and (d) σ2 = 1, respectively.

4. Conclusion

In conclusion, we propose and demonstrate an adaptive time-delayed RC structure by applying a
KF algorithm as the training approach. The performance of the proposed KF-RC structure is
evaluated by the classic Santa Fe time-series prediction task and nonlinear channel equalization
task. It is numerically demonstrated that the proposed KF-RC structure can provide better
prediction and equalization performance than the conventional LS-RC system, and moreover,
utilizing a bandwidth and complexity enhanced chaotic signal as the mask signal, the performances
for prediction and channel equalization can be further improved, since it activates a faster transient
response and richer dynamics for the response laser, and then improves the high-dimensional
mapping capability of the reservoir. Furthermore, as the readout weights can be updated
adaptively according to the variation of channel states, the proposed KF-RC structure is efficient
to process the parameter-variant tasks.
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