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A B S T R A C T

The use of embedded current loops for the attitude control of large, flexible spacecraft is investigated. Length-
scaling laws are derived by determining what fraction of a planar spacecraft’s mass would need to be allocated
to the conductive current loops in order to produce a torque at least as large as the gravity gradient torque.
Simulations are then performed of a flexible truss structure, modelled as a spring–mass system, for a range
of structural flexibilities and a variety of current loop geometries. Simulations demonstrate rotation of the
structure via the electromagnetic force on the current carrying elements, and are also used to characterise
the structural deformations caused by the various current loop geometries. An attitude control simulation is
performed, demonstrating a 90◦ slew manoeuvre of a 250 × 250 m flexible structure through the use of three
orthogonal sets of current loops embedded within the spacecraft.
1. Introduction

Large Space Structures (LSS) could be constructed to serve a variety
of purposes, both in Earth-orbit (space-based solar power, orbiting solar
reflectors, telescopes) and beyond (solar sailing, parabolic reflectors
for interplanetery missions, sun-shields). The design and operation of
such structures poses a number of engineering challenges. One such
challenge is in attitude control, a topic which has received considerable
attention with many different strategies proposed. In this paper, we
investigate the use of large current loops for the attitude control of
LSS. Current loops, i.e. magnetorquers, are widely used for the attitude
control of small satellites [1], though this strategy is not often suitable
for large spacecraft due to the relatively small torques produced. For
some LSS however, particularly those with a low areal density such as
membrane or gossamer spacecraft, magnetic control could be a viable
form of attitude control [2–4]. Magnetic attitude control in general
is attractive due its low cost, power requirements, and its relative
simplicity and robustness [5]. With these benefits in mind, this paper
aims to address the lack of knowledge surrounding the use of magnetic
attitude control via large current loops for LSS. In particular we aim
to explore the LSS design space at which the strategy could be most
feasible by considering how length-scale, structural flexibility and areal
mass density affect the utility of the concept.

Many future LSS are likely to be manufactured on-orbit using ad-
ditive manufacturing techniques, a paradigm shift from the current
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convention of deployable structures which must be stowed during
launch and then deployed once in space [6]. On-orbit manufacturing
offers a number of advantages over deployables, foremost being that
printed structures can be much lighter than a deployable of equivalent
scale [7]. This is because the structure does not need to withstand
launch loads, and instead needs only be designed to withstand the more
gentle disturbing or control forces of its in-space operating environ-
ment. Magnetic attitude control could be particularly well-suited to LSS
which are 3D-printed on-orbit for the following two reasons. Firstly, as
these structures will be extremely lightweight, the relatively small con-
trol torques produced by the current loops will be capable of meeting
the pointing requirements of LSS of a length-scale greater than would
be otherwise possible for conventional constructions. Secondly, as the
actuator is simply a loop of conductive material, it would be relatively
straightforward to integrate construction of the attitude control system
alongside the 3D printing of the main structure. Potential strategies for
achieving this could include the direct printing of conductive material,
such as through fused metal deposition, or a conductive wire could be
embedded within/affixed to the (non-conductive) support structure as
it is being 3D-printed. Additive manufacturing of the structure in this
fashion would allow the current loops to have complex geometries,
capable of producing control torques around multiple axes, a topic
which is investigated in Section 2 of this paper.
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Magnetic attitude control of LSS has received some attention in
the literature. Recent work [2] considered the use of arrays of mag-
netorquer rods for the attitude control of 75 × 75 m flexible, planar
structures, demonstrating that distributed arrays offered significant
advantages over central torquing strategies, and demonstrating de-
tumbling and slew manoeuvres in the presence of gravity gradient
torques and a time-varying magnetic field. In this paper we consider the
quite different problem of large integrated ‘‘current loops’’ as opposed
to discrete magnetorquers. A key difference is that magnetic torque
rods are generally comprised of wire coiled around a core material
with high relative permeability, increasing the field strength and thus
torque produced, whereas current loops can be considered to be ‘‘air-
core’’ magnetorquers. This distinction is relevant because although both
current loops and magnetorquers generate a torque via interaction
between a produced and external field, for magnetorquers this torque
is increased by having a larger number of turns of the wire and by the
core material, both of which increase the mass of the package. For a
large current loop embedded in an LSS, a large torque is attained by
virtue of the large area enclosed by the current loop. This results in a
difference in how these actuators scale with the size of the spacecraft,
a subject which we discuss further in Section 3. An early example of a
current loop being used for attitude control of a LSS is found in Ref. [3],
in which a conceptual design for a 1500 m diameter radiotelescope is
presented. Ref. [3] proposes the use of a large current loop around
the perimeter of the disk-like telescope structure. When a current is
applied to this loop a torque is produced which is used to precess the
spin-axis of the rotating telescope, enabling the telescope to scan the
celestial sphere. Ref. [8] investigates the use of four current loops for
the attitude control of a 15 × 15 m spinning membrane spacecraft,
performing numerical simulations with the membrane modelled as a
multi-particle system. These simulations demonstrate precession of the
spin-axis by 20◦ to a target orientation for a variety of cases (different
rbits and spin-rates). Similar to Ref. [3], Ref. [8] use the current loop
orque to precess the spin axis of a spin-stabilised spacecraft, though
ef. [8] is based on an earlier concept study which demonstrates slew
anoeuvres of a non-spinning membrane spacecraft with a perimetric

urrent loop [9]. Also notable is that in these examples the current
oops lie in the plane of the spacecraft, and so a torque can only
e produced around one axis, while in this paper we consider multi-
le, orthogonal current loop geometries which could allow the torque
irection to be controlled.

A related but distinct concept is the use of current loops for the
eployment or tensioning of membrane spacecraft [10–12]. Ref. [10]
nvestigates the use of superconducting current loops to deploy and
ension solar sails with radii in the range of 5 to 150 m. A key difference
etween this concept and our proposed attitude control strategy is
hat the forces acting on the superconducting loop in Ref. [10] are
ue to self-interaction of the wire with its own generated magnetic
ield, whereas we consider current loops interacting with the external
eomagnetic field. Generation of these self-forces requires much larger
oop currents (on the order of 104 A for a 10 m solar sail in Ref. [10])
han are found to be necessary for attitude control purposes, hence the
eed for superconducting materials in Refs. [10–12].

This paper therefore investigates the feasibility of using large inte-
rated current loops for the attitude control of large space structures.
n Section 2, the principles of torque generation via current loops is
iscussed and a number of candidate current loop geometries for planar
tructures are presented. Section 3 investigates the maximum length
cale of spacecraft that the strategy could be suitable for, by considering
simplified thermal model and relating the torque generated by an

mbedded current loop of a planar structure to the gravity gradient
orque such a structure would experience. In Section 4, results of
imulations of a flexible structure with embedded current loops are
resented for a range of structural flexibilities and for each current
oop geometry. These simulations are used to assess whether current
449

oops are a viable attitude control strategy for ultra lightweight, flexible d
structures such as gossamer spacecraft. Finally in Section 5, attitude
control of an orbiting 250 m square flexible structure with embedded
current loops is demonstrated using a quaternion error feedback control
law, in the presence of gravity gradient torques and a representative
magnetic field model.

2. Current loop geometries for planar spacecraft

A current loop in a uniform external magnetic field experiences no
net force, but will experience a torque which is proportional to the area
enclosed by the loop, and the current flowing. The torque arises due to
the Lorentz force on the moving charges within the conductive loop,
and is given by:

𝑻 = 𝐼𝑨𝑒 × 𝑩 (1)

where 𝐼 is the current in the loop, 𝑨𝑒 a vector with magnitude equal
to the area enclosed by the loop and normal to that area, and 𝑩 the

agnetic field vector. The product 𝐼𝑨𝑒 is often referred to as the
agnetic dipole moment, 𝒎𝑑 , which characterises the strength of a
agnetorquer. Considering a planar, 3D-printed spacecraft with con-
ucting pathways, there are a number of possibilities for the geometries
hat these current loops could take. The most straightforward geometry
s to have one large current loop around the perimeter of the spacecraft
as in Ref. [3]). This current loop would enclose the maximum possible
rea on the spacecraft, and could only produce attitude control torques
round some axis lying in the plane of the structure, due to the cross
roduct in Eq. (1).

The most efficient geometry in terms of the mass required would
e a large closed loop, since the maximum area enclosed for a given
erimeter length is given by a circle. This geometry is illustrated in
ig. 1A, where the current loop is shown as a blue path on the perimeter
f the top layer of the structure. Although less efficient in terms of the
ath length to enclosed area ratio, for a flexible structure it may be
esirable to have multiple current loops spaced throughout the struc-
ure, illustrated in Fig. 1B. This geometry would distribute the control
orques throughout the flexible structure, which has previously been
hown to reduce structural deformations during slew manoeuvres [2].
ig. 1B shows three current loops on both the top and bottom layer of
he structure, though an arbitrary number of loops could be fabricated
epending on the flexibility of the structure and thus the need to
istribute control torques. A given current loop can only produce
orques around one axis, defined by the cross product of the enclosed
rea surface normal vector and the magnetic field vector in Eq. (1).
agnetic attitude control systems generally employ three orthogonal
agnetorquers, so that by varying the current in each torquer control

orques can be produced around any axis lying in the plane normal
o the field vector. Similarly, this could be achieved for a 3D-printed
onductive structure by constructing current loops which enclose area
n the 𝑦𝑧 or 𝑥𝑧 plane of Fig. 1. Although we are considering a planar
tructure, these current loops would require the structure to have some
epth. One possible configuration is shown in Fig. 1C, which shows
urrent loops lying in the 𝑦𝑧 plane on each layer of the structure.
nother possible configuration is shown in Fig. 1D and detailed in
ig. 1E. In this case, the conducting pathway is formed of a single
ontinuous circuit, rather than separate loops, which winds back and
orth across the structure, as shown for a single unit in Fig. 1E. Though
his geometry may be less mass efficient than the multiple current loops
f Fig. 1D, it may be desirable to have a single continuous pathway,
nd furthermore this geometry is included as it demonstrates a path
eometry that could be implemented in long trusses as well as the
lanar lattice structure shown here. Fig. 1F shows how three orthogonal
oil directions can be achieved by overlaying patterns B and D, where
he third direction is achieved by rotating the pattern shown in Fig. 1D
y 90◦, shown in green on the figure. By varying the current in each
oop, the strength and direction of the overall magnetic dipole moment
f the system can be specified, allowing torques to be produced in any

irection perpendicular to the magnetic field.
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Fig. 1. Current loop geometries for attitude control of a square, planar truss structure. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
3. Length scaling of large current loops

In this section, analysis is undertaken to determine how the ef-
fectiveness of the proposed attitude control strategy changes with the
length-scale of the spacecraft structure. For this analysis we assume the
spacecraft is a homogeneous, square planar structure which has been
3D-printed on-orbit. We assume that during manufacturing, conductive
pathways have been embedded in the structure which form closed
current loops. We also assume that the conductive pathway itself is
a solid, cylindrical wire, and that the spacecraft is orbiting the Earth,
where the Earth’s magnetic field is approximated as a dipole field.

The torque generated by the conducting structure is proportional
to the current flowing through the conducting pathway. The maximum
current depends upon the power available, but will also be limited by
the temperature rise in the conductor allowed by the materials of the
supporting structure and heat flow between the conductor and support
structure. For the analysis of this section, a simplified thermal model of
the conductive structure is considered to estimate the extent to which
a maximum wire temperature will limit the achievable torque. Fig. 2
illustrates a single unit cube of a conducting structure, consisting of
3D-printed booms or trusses onto which a conducting wire is anchored
by thermally insulated nodes attached to the main structure. With a
current applied, the power loss due to resistive heating in the wire is
given by:

𝑃𝑗 = 𝐼2𝑅 (2)

for current 𝐼 and resistance 𝑅. The resistance is assumed to vary
450

inearly with temperature over the operational temperature ranges, and
is given by:

𝑅 = 𝑅𝑟
[

1 + 𝛼(𝛤 − 𝛤𝑟)
]

(3)

where 𝑅𝑟 is the resistance at reference temperature 𝛤𝑟, 𝛼 is the temper-
ature coefficient and 𝛤 the current temperature of the conductor. 𝑅𝑟 is
inversely proportional to the cross sectional area of the wire, which is
assumed to be circular:

𝑅𝑟 =
4𝜌𝑟𝑙
𝜋𝑑2

(4)

where 𝜌𝑟 is the resistivity of the conducting material at the reference
temperature, 𝑙 is the total length of the conductor and 𝑑 the wire
diameter.

Heat leaves the wire through thermal radiation only, as it is assumed
that the anchor points are thermally insulating so any heat flow into
the support structure is negligible. It is also assumed that a thin
film membrane shields the wire from any incoming radiation, as the
membrane side of the spacecraft would be directed towards the sun
during operation if the spacecraft were acting as a reflector or solar
sail. The effect of heat being reflected by the back of the membrane
and reabsorbed by the wire is also not considered. It is assumed that
the wire is a grey body with emissivity 𝜖, so that the power dissipated
through thermal radiation is given by the Stefan–Boltzmann law:

𝑃𝑟 = 𝜖𝜎𝐴𝑠𝛤
4 = 𝜖𝜎𝜋𝑑𝑙𝛤 4 (5)

where 𝜎 = 5.670373×10−8 W m−2 K−4 is the Stefan–Boltzmann constant,
and 𝐴𝑠 the surface area of the wire. Of note is that both the resistive
heating and thermal radiation are proportional to the length of the
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Fig. 2. A unit cube of an implementation of the concept, consisting of a conducting
wire anchored to lightweight 3D-printed structural members.

conducting wire, and so the heat flow can be considered per unit length
of the conductive path, with units of Watts per meter.

The wire will rise to the temperature at which the resistive heating
and thermal radiation are in equilibrium. For a given diameter of
wire, there will be a maximum allowable temperature in the conductor
depending on the specific construction of the spacecraft. This tem-
perature then determines the maximum current that can be applied
to the wire and thus the maximum achievable torque. If the wire
were perfectly insulated from the supporting structure, this temperature
could be very high, approaching the melting point of the conductor. In
practice, it may be desirable to restrict the maximum temperature of
the conductor to be below the melting point of the support structure,
in case of accidental contact or because there will be radiative heat
transfer from the wire to the structure. This restriction would also
allow the anchor points to be constructed from the same material as
the support structure in a continuous 3D print. Potential materials
for 3D-printing the support structure are thermoplastics which could
be printed through fused deposition modelling (FDM). We consider
polycarbonate as a candidate material for such structures [13], which
has a glass transition temperature of around 147◦, and a melting point
of 155 ◦C.

Equating 𝑃𝑗 and 𝑃𝑟 (Eqs. (2) and (5) respectively) allows an expres-
sion for 𝑑 to be found, in terms of 𝐼 and 𝛤𝑒 for a given wire material,
such that:

𝜖𝜎𝜋𝑑𝛤 4
𝑒 =

4𝜌𝑟
𝜋𝑑2

[

1 + 𝛼(𝛤𝑒 − 𝛤𝑟)
]

(6)

where Eq. (3) for 𝑅 has been substituted into Eq. (2). Therefore,
Eq. (6) gives an expression for the wire diameter required to carry a
specified current while maintaining thermal equilibrium at the desired
temperature. The torque produced is proportional to the current in
the conductive path, and to the magnetic field strength which will
vary with orbital altitude and position. To proceed we approximate the
Earth’s magnetic field as a dipole field and consider at a point above
the equator, where the field strength is the weakest for a given altitude
and thus gives a conservative estimate of the field strength. The field
strength is given by [14]:

𝐵 = 𝐵0

(

𝑅𝐸
𝑅𝑜

)3
(7)

where 𝐵0 = 3.12 × 10−5 T is the typical field strength on the Earth’s
surface at the equator, 𝑅𝐸 = 6370 km is the mean radius of the Earth,
and 𝑅 is the orbital altitude. The attitude control torque requirements
451

𝑜

for structures with different length scales will vary greatly, due to
the scaling of the mass moment of inertia and the scaling of various
disturbance torques that will need to be counteracted by the attitude
control system. Furthermore, these factors will all vary with altitude
as well. We assume that the torque produced by a current loop may
be considered ‘‘useful’’ if, for a given length-scale, the torque produced
by the current loop has a magnitude at least as great as the maximum
gravity gradient torque that the spacecraft will experience, following
the discussion in Ref. [2]. The maximum gravity gradient torque for
a square, planar structure occurs when the face of the structure is
oriented at 45◦ to nadir, and is given by:

𝑇max
𝑔 =

𝐷2𝑀𝜇
8𝑅3

𝑜
(8)

where 𝐷 is the side-length of the square spacecraft, 𝑀 the total mass,
and 𝜇 = 3.986 × 1014 m3 s−2 the standard gravitational parameter of
Earth. Eq. (8) is found by evaluating the standard gravity gradient
torque equation, 𝑇𝑔 = 3𝜇∕𝑅5

𝑜(𝑹𝒐 × 𝑖𝑹𝒐) [15], for a square structure
which has an inertia tensor 𝑖 with principal components given by 𝑖1 =
𝑖2 =

1
12𝑀𝐷2, 𝑖3 = 2𝑖1, i.e. a square plate with uniform mass density. The

subscripts 1, 2 and 3 refer to the 𝑥𝑜, 𝑦𝑜, 𝑧𝑜 body frame axes respectively,
which is fixed to the structure as shown in Fig. 1.

The torque produced by a current loop depends on the enclosed
area, while the mass of that current loops depends on its length. Expres-
sions for both enclosed area and path length as a function of structural
side-length are now found. For geometry A of Fig. 1, the enclosed area
is given by 𝐴𝑒 = 𝐷2 for side-length 𝐷, and the path length is given
by 𝑙 = 4𝐷. For geometries B and C, a general expression is found
for 𝑁 equally spaced loops, while for geometry D the expression is
given for 𝑁 ‘‘layers’’ of coils arranged lengthways across the structure.
Additionally, for geometries C and D, the enclosed area of the coils
depends on the depth of the structure, 𝑤, which is taken to be 𝐷∕𝑁 .
Of note is that the following analysis is only accurate for sufficiently
large 𝑁 that 𝑤 ≪ 𝐷, as it was assumed in Eq. (8) that the structure’s
inertia tensor is that of a thin square plate. The expressions for 𝐴𝑒
and 𝑙 for the coil geometries considered are summarised in Table 1.
For the geometries which contain multiple current loops the number
of coils/layers is denoted 𝑁 , and it is assumed the loops are equally
spaced. For the last two geometries, it is further assumed that the
depth of the structure is given by 𝐷∕𝑁 , i.e. that the structure can be
considered to be composed of square unit cells.

The maximum torque produced by the current loop is 𝑇max
L = 𝐼𝐴𝑒𝐵,

from Eq. (1). Equating this with the maximum gravity gradient torque
(Eq. (8)), which is taken as the reference requirement for useful attitude
control, and substituting the dipole field magnitude from Eq. (7) allows
an expression for the current required of a current loop to counteract
the gravity gradient torque:

𝐼𝐴𝑒𝐵0𝑅
3
𝐸 =

𝐷2𝑀𝜇
8

(9)

We define the conductor mass fraction 𝜆𝑓 = 𝑀𝑐∕𝑀 as the conductor
mass divided by the total mass, and express the total mass in terms of
the areal mass density 𝜎𝐴, giving:

𝑀 =
𝑀𝑐
𝜆𝑓

=
1
4𝜋𝑑

2𝑙

𝜆𝑓
= 𝜎𝐴𝐷

2 (10)

Eqs. (6), (9) and (10) are then used to find an expression for 𝜆𝑓 with
𝑑 and 𝐼 eliminated:

𝜆𝑓 =

(

𝜇4𝜌3𝑐𝜌
2
𝑟 (1 + 𝛼(𝛤𝑒 − 𝛤𝑟))2

16384 ⋅ 𝜋𝛤 8
𝑒 𝜖2𝜎

2
𝐵𝐵

4
0𝑅

12
𝐸

)
1
3

⋅
𝐷

10
3 𝑙

𝐴
4
3
𝑒

𝜎
1
3
𝐴

= 𝐶1𝐺(𝑁)𝐷
5
3 𝜎

1
3
𝐴

(11)

where the constant 𝐶1 is the bracketed term in Eq. (11), and 𝐺(𝑁) =

(𝐷
5
3 𝑙)∕𝐴

4
3 is a factor determined by the coil geometry, where it is noted
𝑒
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Table 1
Current loop geometries.
that the 𝐷 term is eliminated for the geometries considered here in
Table 1 leaving some function of the coil number 𝑁 . This is the case
for any geometry where the enclosed area 𝐴𝑒 scales with 𝐷2 while path
length scales with 𝐷, which is true in general if both dimensions of the
enclosed area scale with 𝐷.

Eq. (11) holds for geometries B, C and D in Table 1, so long as
the number of coils/layers in the structure 𝑁 is sufficiently large that
the mass density of the structure can be assumed to be approximately
uniform, as was assumed in Eq. (8). For geometry A, this assumption
does not hold and the derivation must be modified to account for the
uneven mass distribution of the single, outer current loop. The final
expression for 𝜆𝑓 in this case is omitted here for brevity, but is derived
by calculating the maximum gravity gradient torque for a body with
inertia tensor components 𝑖1 = 𝑖2 = ( 1

12 (𝑀−𝑀𝑐 )+
4
3𝑀𝑐 )𝐷2, and 𝑖3 = 2𝑖1.

In summary, an expression for 𝜆𝑓 has been derived, which gives the
fraction of the total mass that must be comprised by the conducting
pathway in order to produce a torque as great as the maximum gravity
gradient torque a planar spacecraft may experience, while maintaining
a specified equilibrium temperature in the conducting path.

Plots of 𝜆𝑓 , 𝑑, 𝐼 and 𝑃𝑗∕𝐷2 are shown in Fig. 3 for geometry A, and
Fig. 4 for geometries B-D. For geometries B-D the equations have the
same form with different horizontal axis scaling since the 𝐺(𝑁) factor
is unique to each geometry. It is assumed the conductor is a copper
wire, and that the spacecraft is fabricated from some polycarbonate
printed structure, so that the wire temperature should not exceed the
glass temperature of 147 ◦C. Other physical data is summarised in
Table 2. For geometry A it is noted that there are two branches for the
solutions due to the uneven mass distribution. This is because at some
452

length scales the gravity gradient torque can be counteracted either
by a lightweight current loop with a more massive structure, or by a
more massive current loop capable of carrying a greater current. This
more massive current loop is capable of carrying a greater current, thus
producing a greater torque and offsetting the increase in inertia and
thus greater gravity gradient torque. For the other coil geometries, the
conductor mass is uniformly distributed and therefore this branching
of the solutions does not appear. Fig. 3 shows that for a single, outer
current loop, length scales on the order of 100 m to 1000 m could
be feasible to meet the given criteria, for areal mass densities on the
order of near to far term solar sails. The plot of the required areal
power density is included, as it was assumed in the derivation that the
available power would not be a limiting factor for this attitude control
strategy. This assumption is likely valid, as the required areal power
density is relatively insignificant when compared to the solar insolation
of 1368 W/m2 the spacecraft will intercept on-orbit, and PV panels
covering a small fraction of the spacecraft surface will be capable of
powering the system. Note that the red points on the plots represent
the length scale at which 𝜆𝑓 = 1, and therefore solutions beyond (or
below for that branch of the solution in the case of geometry A) are
unphysical.

For geometry B, the length-scaling is found to be much more
favourable than the outer loop geometry, with length scales on the
order of 10 km meeting the criteria of the thermal and torque equi-
librium equations. Both geometries C and D are seen to have much
more adverse scaling than geometry B. As discussed previously, this
is due to the fact that the area enclosed by these current loops relies
on the structure having some depth, which will by definition be the
smallest dimension of the planar structures considered here. For both

cases, length scales on the order of 100 m would be feasible, and the
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power requirements are also well within what could be considered
reasonable for such structures. Figs. 3 and 4 both show the scaling
functions for 𝑁 = 27, i.e. for a structure with a depth dimension that
s 3.7% its length. This value was chosen here as this is the value
sed in later simulations, where larger values would result in excessive
omputation times. For geometries B-D, the factor 𝐺(𝑁) influences the
ength-scaling however and must be considered. The change in the
aximum length scale - i.e. the length scale at which 𝜆𝑓 = 1 (the top

ine of the 𝜆𝑓 plots in Figs. 3 and 4) with 𝑁 is shown in 5. For geometry
, increasing 𝑁 increases the number of current loops (which lie in the
lane of the structure), and it is seen to increase the maximum possible
ength scale at which the torque from the current loops can equal
he gravity gradient torque (i.e. the plot shows that having multiple,
hinner current loops is more thermally efficient than fewer loops).
lthough the plot suggests that 𝑁 could be increased indefinitely to
chieve greater torques, there will be a practical limit on how thin a
seable conductive wire can be which we do not consider here. For
oth geometries C and D, the maximum length scale decreases with 𝑁 ,
s these geometries rely on the structure’s depth which also decreases
ith increasing 𝑁 , and so a greater number of current loops enclosing
n ever-decreasing area is seen to be less mass-efficient in this case.

In the length-scaling analysis, radiative heating due to the wire
eing illuminated by the Sun was not included in the thermal model,
453

f

oth for simplicity and as it was assumed the reflective membrane
ould be directed towards the Sun and thus shade the conductive wire.
iven solar irradiance in LEO of 1360 W/m2, assuming that 70% of

this is absorbed by the wire, (𝜖 = 0.7), which has an illuminated area of
𝐴𝑠 = 𝑙×𝑑, the (worst-case) radiative heating power is 𝑃𝑆1360 ∗ 𝜖 ∗ 𝐴𝑠 =
52× 𝑙𝑑 (W). The power dissipated through thermal radiation (Eq. (5)),
or a wire temperature of 𝛤𝑒 = 420 K, is given by 𝑃𝑟 = 3880.2 × 𝑙𝑑,
r approximately 4𝑃𝑆 . This addition to the thermal energy balance
ould require an increased wire diameter to maintain the required

emperature, but as a 25% increase it is not the dominant contribution
nd does not significantly alter the length-scaling analysis here. In
ractice, this increase in wire diameter may be built in as a safety
actor anyway, or another solution could be to reduce the current or
mplement pulse width modulation (PWM) when the current loop is
lluminated. This would reduce the control effectiveness during illumi-
ation, but maintain the lower mass requirement of non-illuminated
peration. A trade-off between these strategies could be performed,
epending on the specific pointing requirements of the application
onsidered and whether the wire will be shaded by the membrane
uring operation.

Results of analysis for all geometries show that the use of conductive
athways embedded in a large, planar structure could feasibly be used
or attitude control purposes at length scales on the order of kilometers,
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Fig. 4. Scaling for coil geometries B, C & D (𝑁 = 27).
though in practice this length scale is more likely to be reduced to the
order of 100 m. This is due to the fact that large values of 𝜆𝑓 would
not be physically realisable, as this would constitute the structure being
comprised solely of the thin copper wire and leave no mass for the
actual supporting structure. Furthermore, the analysis was performed
for each coil geometry individually, while in practice it would most
likely be required to have three, orthogonal current loop geometries
overlaid with one another, such that three-axis magnetic control could
be implemented. In other words, although analysis of geometry B has
suggested length-scales on the order of 10 km may be feasible, the
length-scale of the worst-performing geometry will be the limiting
factor if three-axis control is desired. Though we have not analysed any
other actuation forms here, it may be possible that geometry B could
be employed for a kilometer scale structure, providing torque around
one axis only, and then be supplemented by another form of attitude
control such as an array of CMGs or the use of solar radiation pressure
454

to enact torques around other axes. s
4. Simulations of flexible structures with embedded current loops

Although it has been demonstrated that current loops can provide
sufficiently large torques for attitude control purposes, a further con-
sideration is whether they are capable of reorienting a highly flexible
structure successfully. The structural response is particularly of interest
for current loops because the torque produced by the current loop
is the result of integrating the Lorentz forces on the current carrying
wire around the loop. For a rigid current loop this produces a pure
torque as described by Eq. (1), but for a flexible loop these forces
act to deform the structure (effectively modifying the enclosed area).
Additionally, this behaviour is highly nonlinear in that the direction of
the forces acting on the current loop depends on the changing shape
of the current loop/structure at a given point in time. The dynamics
of flexible structures with embedded current loops are investigated in
this section by performing numerical simulations of a 250 × 250 m

quare truss structure, for a range of structural flexibilities and 𝑁 ,
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or each of the coil geometries presented in the previous section. The
im of these simulations is to determine how rigid a structure of this
ength-scale would need to be for this attitude control strategy to be
onsidered feasible, and furthermore to gain some general insight into
he nature of the structural deformations and dynamics observed in the
tructure when the current loops are energised. At this stage, gravity
s not included in the model so that the structural deformations are
ntirely due to the current loop interacting with the magnetic field.
ravity forces are then included in Section 5, where attitude control
sing the current loops is demonstrated.

.1. Model description

The structure is modelled as a spring–mass system (also commonly
nown as a lumped-parameter or multi-particle model [16]), following
ef. [2]. This gives a computationally efficient model of a general,

lexible LSS. In this paper, the equations are recast in matrix form,
s opposed to in Ref. [2] where the particle forces were determined
teratively. This reduces the computation time of the model and also
llows a modification to the damping term detailed here. In matrix
orm, the equations are:

𝒓̈ = 𝑭mag − K(𝒓 − 𝑅𝜃𝒓0) − 𝛾 𝒓̇ (12)

here M is the diagonal mass matrix, 𝑭mag the Lorentz forces, K the
tiffness matrix, 𝒓 the particle positions, 𝒓0 the equilibrium/initial parti-

cle positions (and 𝑅𝜃 the rotation matrix found by least-squares fitting
a rotation between 𝒓0 and 𝒓) and 𝛾 the damping matrix. As in Ref. [2],
he system is comprised of point masses connected by linear springs,
nd so the stiffness matrix is assembled in the usual way (e.g. [17]).
n terms of the adjacency matrix A defining the structural connectivity
defined in Ref. [2]), the stiffness matrix can be constructed from 3 × 3
ubmatrices according to:

3×3
𝑖𝑗 =

{

∑𝑖−1
𝑖′=1 A𝑖′𝑗 +

∑𝑁𝑝
𝑗′=𝑗 A𝑖𝑗′𝑖𝑗′ if 𝑖 = 𝑗

−A𝑖𝑗𝑖𝑗 otherwise
(13)

where 𝑁𝑝 is the number of particles, and 𝑖𝑗 the first 3 × 3 submatrix
f the global stiffness matrix of a 3D linear spring [17], given by:

𝑖𝑗 = 𝑘𝑖,𝑗
⎡

⎢

⎢

⎣

𝑐2𝑥 𝑐𝑥𝑐𝑦 𝑐𝑥𝑐𝑧
𝑐𝑥𝑐𝑦 𝑐2𝑦 𝑐𝑦𝑐𝑧
𝑐𝑥𝑐𝑧 𝑐𝑦𝑐𝑧 𝑐2𝑧

⎤

⎥

⎥

⎦

(14)

here 𝑐𝑥 = (𝑥𝑗 − 𝑥𝑖)∕𝐿𝑖,𝑗 is the cosine of the angle between the
455

ocal and global 𝑥 axes (with equivalent expressions for 𝑦 and 𝑧),
nd 𝑘𝑖𝑗 is the spring constant of the spring connecting particles 𝑖
nd 𝑗. This is determined by first selecting the desired the overall
eam-like bending stiffness 𝐸𝐼 of the structure, relating this to an
quivalent beam element elastic modulus 𝐸 and cross section 𝐴𝑐 fol-
owing Ref. [2] (𝐸𝐼 = 2𝐸𝐴𝑐𝑅2

𝑐 ), and setting 𝑘𝑖,𝑗 = 𝐸𝐴𝑐∕𝐿𝑖,𝑗 , for
𝐿𝑖,𝑗 =

√

(

𝑥𝑗 − 𝑥𝑖
)

2 +
(

𝑦𝑗 − 𝑦𝑖
)

2 +
(

𝑧𝑗 − 𝑧𝑖
)

2 which is the natural length
of the spring.

In Ref. [2] viscous damping with a uniform damping coefficient
value for each spring element was used, with a value chosen that pro-
vided numerical stability without significantly affecting the response
(i.e. near zero damping for all vibration modes). In this paper we
instead use Caughey or modal damping to provide increased numerical
stability and to give damping behaviour more closely representing that
of an LSS in general, though of course the damping behaviour can vary
greatly depending on the specific design and construction. The Caughey
damping matrix is defined [18]:

𝛾 = M
⎛

⎜

⎜

⎝

𝑁𝜙
∑

𝑛=1
2𝜉𝑛𝜔𝑛𝜙𝑛𝜙

𝑇
𝑛

⎞

⎟

⎟

⎠

M (15)

here M is the (diagonal) mass matrix, 𝜉𝑛 the damping ratio, 𝑁𝜙 the
otal number of vibration modes, 𝜔𝑛 the modal frequency and 𝜙𝑛 the
ode shape for the 𝑛th mode of the undamped system in all cases.
he mode shapes and natural frequencies of the undamped system
re found in the usual manner by solving the eigenvalue problem
K − 𝜔2M| = 0 (e.g. [19]). The damping ratios for each mode are then
pecified. For the first 100 modes, the damping ratio was set to 1%
f critical damping. For all modes with mode number 𝑛 > 100 the
amping ratio is either equal to the Rayleigh (proportional) damping
alue, 𝜉𝑛 = 2𝜉100𝜔𝑛∕𝜔100 or 10, whichever is greater, where 𝜉100 = 0.01
s the damping ratio of the 100th mode. These values are chosen in
n attempt to represent a general LSS, which will most likely have
ery light damping of the low-frequency modes (under 10% without
ctive vibration control [20]) while the high-frequency, more localised
ibration modes would have higher damping. The damping ratio was
iven an upper limit of 𝜉 = 10 as it was found that higher values led to
umerical instability for the structural cases considered here.

The Lorentz forces acting on particle 𝑖 of the spring–mass model due
o the current carrying wires is determined by:

mag
𝑖 =

∑ 1
2
𝐼𝐿𝒓𝑖𝑗 × 𝑩 −

∑

−

1
2
𝐼𝐿𝒓𝑖𝑗 × 𝑩 (16)
𝑗∈𝐶𝐿 𝑗∈𝐶𝐿
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Table 2
Simulation parameters.

Structural simulation parameters Loop geometry: A B C D

Length 𝐷 250 m 𝑁 Current, 𝐼 (Amps)

Areal mass density 𝜎𝐴 100 g/m2 12 42.60 15.28 35.64 47.53
Damping ratio 𝜉𝑛 0.01 (𝑛 < 99) 19 42.60 10.02 36.68 48.91
Beam-like bending stiffness 𝐸𝐼 103, 104, 105 N m2 27 42.60 7.457 37.24 49.65

Integration timestep (for 𝐸𝐼) d𝑡 0.1, 0.05 , 0.01 s Attitude control simulation parameters

Integration method 4th order Runge–Kutta Length 𝐷 250 m
Magnetic field strength 𝐵 27.7 μT (800 km) Unit number 𝑁 19

Current loop physical data Bending stiffness 𝐸𝐼 104 N m2

Density of copper wire 𝑃 8960 kg∕m3 Loop Geometries – [𝐶,𝐶, 𝐵]
Reference temperature 𝛤𝑟 293 K Max. currents 𝐼𝑚𝑎𝑥 [36.68, 36.68, 5.644]
equilibrium temperature 𝛤𝑒 420 K Max. dip. moment 𝑚𝑚𝑎𝑥 2.413 × 106 A m2

Reference resistivity at 𝛤𝑟 𝜌𝑟 1.68 ×10−8 Ω m Control gains 𝑘𝑝 600
Grey-body emissivity 𝜖 0.7 𝑘𝜔 4 × 105

Temperature coefficient 𝛼 0.00404 K−1 Orbital altitude 𝑅𝑜 800 km
Stefan–Boltzmann constant 𝜎𝐵 5.67 × 10−8 W m−2 K−4 Integration timestep d𝑡 0.05 s
Magnetic field (sea-level) 𝐵0 3.12 × 10−5 T Simulation runtime 10 000 s
Std. gravitational parameter 𝜇 3.986 × 1014 m3 s−2 Mag. field model WMM (2022) [21]
Mean radius of Earth 𝑟𝑒 6370 km (Other data same as structural simulations.)
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where 𝐶𝐿 = {𝑗|A𝐿
𝑖𝑗 = 1} and 𝐶−

𝐿 = {𝑗|A𝐿
𝑗𝑖 = 1} are the sets of

article indices where a current carrying element of loop 𝐿 is con-
ecting particles 𝑖 and 𝑗, with current flowing from 𝑖 to 𝑗 or from
to 𝑖 respectively. The current loops are defined by the directional

djacency matrix A𝐿, in which A𝐿
𝑖𝑗 = 1 if a current carrying element

onnects particles 𝑖 and 𝑗 with current flowing in that direction. The
djacency matrices define the direction of ‘‘positive’’ current, and the
ame matrix then gives the correct forces for current flowing in the
pposite direction if the loop current 𝐼𝐿 takes a negative value. The

‘positive’’ current direction is defined for the current loop geometries
ere such that the magnetic dipole moment of the current loop points
n the positive 𝑥𝑦𝑧 direction for the geometries shown in Fig. 1 (i.e. the
urrent loops all follow the right hand rule, winding anti-clockwise
round their respective axis). Each current loop geometry has a unique
djacency matrix, which is computed prior to the simulation being
erformed. The overall magnetic force vector 𝑭mag is then found by
ummation over all current loops (if multiple loops are defined/present)
nd assembling the particle force vectors into a single vector for use in
q. (12). Note that we only consider forces due to interaction with the
xternal geomagnetic field, and not any interaction with the magnetic
ield generated by the current loops themselves. This assumption is
ade because it was found that the magnetic field strength generated

y the current loop, measured at some other perpendicular point of the
oop, would be much lower than the geomagnetic field strength and
hus would not be a significant contribution to the particle forces. The
agnetic field generated by a straight, current carrying wire is given

y:

𝑤 =
𝜇0𝐼
2𝜋𝑟

(17)

where 𝜇0 = 4𝜋 × 10−7 H/m is the magnetic permeability of free space,
nd 𝑟 the distance from the wire. For the cases considered in the
ollowing simulations, the current is on the order of 10 A, and the
tructural unit spacing (and thus closest spacing between parallel wire
lements) is on the order of 10 m, resulting in the self-interaction field
eing on the order of 10−7 T, two orders of magnitude lower than
he geomagnetic field in LEO. The self-forces due to the current loop’s
wn magnetic field are therefore assumed to be negligible for the cases
onsidered in the following simulations. For a tightly packed structure
<1 m unit spacing) with loop currents > 100 A, the field generated by
he current loop could be comparable to the geomagnetic field and act
o compress/expand the units of the structure, and would need to be
onsidered in the analysis.
456
4.2. Simulation results

Using the spring–mass model, simulations have been performed for
each of the current loop geometries A–D shown in Table 1. As noted, the
aim of these simulations is to determine how rigid the structure must
be to withstand the forces acting on the current loop and be gently
rotated, when that current loop is capable of producing a torque at
least as large as the maximum gravity gradient torque the structure
would experience. Simulations are performed for each of the four loop
geometries, and for three values of both the equivalent bending stiffness
𝐸𝐼 and the number of structural units 𝑁 . Varying 𝑁 changes both
he number of current loops for geometries B-D, and the structural
epth. There are therefore nine simulations performed for each of the
our geometries, resulting in 36 simulations total. Each simulation is
erformed in free-space with a fixed external magnetic field direction
ith no other disturbing forces considered. This choice is made so that

he deformation of the structure under application of the Lorentz forces
an be directly observed and compared for each case without other
actors affecting the structural dynamics. In all cases the structure is
nitially at rest, and the magnetic dipole moment is perpendicular to
he magnetic field. The loop has a constant current, and then Eq. (12)
s numerically integrated for 4000 s. Under these conditions, a rigid
urrent loop would undergo simple harmonic motion, completing a
otation of 180 deg and then reversing direction. The simulation param-
ters are summarised in Table 2, where the loop currents are calculated
ollowing the derivations in Section 3. A length scale of 250 m is
elected as this results in a 𝜆𝑓 value of <10% in all cases (following

Figs. 3 and 4), which we consider to be an upper limit on a reasonable
mass allowance for the attitude control system of a gossamer structure
of this size. Following Ref. [2], 103 N m 2 is taken as a reference beam
like bending stiffness for a solar sail-type gossamer spacecraft, and we
then consider two orders of magnitude greater to cover a wide range of
structural flexibilities. The areal mass density is selected as 100 g/m 2 by
considering that near term solar sails can have an areal mass density on
the order of 10 g/m 2, and thus an order of magnitude greater than this
is thought to be a reasonable value to cover the range of flexibilities we
consider here. The magnetic field strength is considered a typical value
for an orbital altitude of 800 km, determined by Eq. (7). The values of
𝑁 were chosen to cover a range of values, with an upper limit of 27
selected due to exceedingly long computation times for values greater
than this.

Results of the simulations are shown in Tables 3 and 4. The figures
show the structure at the point of maximum strain energy (shown in

the 𝑥𝑜𝑦𝑜𝑧𝑜 body frame), and a plot of strain against time throughout
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Table 3
Results of simulation for Geometry A.
the simulation. The total strain energy 𝑈 is calculated by summa-
tion of the contribution of each spring element in the model, where
the spring potential is 1∕2𝑘𝑖𝑗𝐿2

𝑖𝑗 , where 𝑘𝑖𝑗 and 𝐿𝑖𝑗 are the spring
constant and extension respectively of the spring element connecting
particles 𝑖 and 𝑗. The 𝑥𝑜𝑦𝑜𝑧𝑜 body frame is initially aligned with the
𝑥𝑦𝑧 inertial frame as shown in Fig. 1. The structure itself is drawn
in black while the current loops are coloured blue and green for the
𝑧 and 𝑦 direction dipole moment loops respectively. Table 3 shows
plots for all nine simulations performed for geometry A, while results
for the other geometries are only shown for 𝐸𝐼 = 104 N m2. In all
cases, it was found that a bending stiffness 𝐸𝐼 = 103 N m2 was too
flexible for the current loop to rotate successfully, and the structure
would collapse (as in the first column of Table 3). In particular, for
457
geometries C and D, the orientation of the magnetic field and resultant
Lorentz forces ended up stretching the structure in the 𝑧 direction,
to a distance of over 500 m. Although the structure essentially folds
up in these simulations, it is important to note that this model does
not exactly represent a membrane, in that the springs here are linear
an behave the same under tension and compression. This represents a
general, homogeneous flexible truss structure rather than a gossamer
spacecraft specifically. For a gossamer spacecraft of this flexibility, it
is likely that the tensioning of the membrane would be a significant
contribution to the structural response. Although it was thought that
an electromagnetic current loop could in fact be used to tension the
membrane of such a spacecraft, our results suggest that this would not
be possible in practice. This is because, although some of the forces on
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Results of simulation for Geometries B, C and D (𝐸𝐼 = 104 N m2), 𝑧𝑜 direction dipole moment loops (A) are shown in blue while 𝑦𝑜 direction loops (C,D) are shown
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the current loop would act to tension the membrane in one direction,
there are always force pairs that will act to collapse/fold the structure
in a direction perpendicular to these forces. In the simulation results
this was observed most clearly for geometries C and D, as the structure
was stretched in the 𝑧 direction, and simultaneously compressed in the

direction. However, we note that this result is due to the interaction
f the current loop with the external, geomagnetic field. For much
igher currents, requiring superconducting loops, it has been demon-
trated [10–12] that tensioning could be achieved via the self-forces in
he wire. For 𝐸𝐼 = 105 N m2, it was found that the structure behaves

essentially as a rigid body in all cases, and thus for structures of this
458

s

rigidity large current loops would be an effective means of attitude
control, and standard rigid-body control laws may be used.

The chosen current loop geometries all resulted in quite different
structural responses. This is because although the torque in all cases
is the same, the forces which result in that torque have different mag-
nitudes and are applied at different points. Comparing the 𝑧 direction
oops (A and B), the structural deformation and maximum value of the
otal strain are quite similar in each case, though there is some differ-
nce in the strain profiles for 𝑁 = 19 and 27. For geometry B, there
s a large peak in 𝑈 at approximately 2000 s, whereas for geometry a
here are larger oscillations in 𝑈 over the entire simulation. At 2000
the magnetic dipole moment is aligned with the field direction, and
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this is the point of minimum torque, but maximum ‘‘stretching’’ of the
structure (as discussed in the previous paragraph). This suggests that
although there is a slight benefit to having multiple planar current loops
in that the structure can be more smoothly rotated, the tensioning of the
current loop/s at certain orientations results in similar deformations for
both cases. Comparison of geometries C and D shows that for achieving
a magnetic dipole moment in this direction, geometry C performs much
better than the coil type geometry, with the strain energy two to three
orders of magnitudes lower for the cases here. This is because for
geometry D, there are many more opposing force pairs present which
act to deform the structure instead of producing the desired torque, and
these force pairs are always located in the same unit of the structure,
whereas for C these forces act at opposite ends of the structure (the
vertical loop elements at the edge of the structure). Considering the
variation of 𝑁 for cases B and C, there is a clear benefit to having
a greater number of current loops in that the total strain is greatly
reduced and the rotation is more similar to that of a rigid body.

Overall the results show that current loops are capable of smoothly
rotating flexible structures, though for a given areal mass density there
will be a minimum level of structural rigidity required to prevent exces-
sive stretching of the structure. For a 100 g/m2 structure results suggest
a beamlike bending stiffness of approximately 104 N m 2 is sufficient.
Although the current loops failed to rotate more flexible structures in
this case, it is important to note that more flexible structures may have
a lower mass than that considered here, and thus the torque applied
in these simulations may be greater than would be required for their
attitude control, though our analysis is restricted to 100 g/m2 here. In
all cases, having a greater number of current loops which distribute the
Lorentz forces more evenly across the structure was found to result in
lower structural deformation.

5. Attitude control simulation of a conductive structure

Having found that embedded current loops are capable of rotating
a flexible spacecraft, this section now demonstrates the attitude control
of a large space structure using current loops, in the presence of gravity
gradient torques and a representative magnetic field model. A 250 m
square planar structure is again considered, with multiple embedded
current loops allowing three axes of controllable magnetic dipole mo-
ment. Current loop geometries B and C are considered, such that the
structure is composed of a square lattice containing loop geometry B
and two perpendicular cases of geometry C overlapping in the same
structure. The spacecraft is placed in an 800 km altitude, circular polar
orbit. An areal mass density of 100 g/m2 and beam-like bending stiff-
ness of 𝐸𝐼 = 104 N m 2 is selected, in keeping with the previous section
where it was determined such a structure may be successfully rotated
by embedded current loops with relatively little structural deformation.
The spacecraft structural model is the same as in the previous section,
as given by Eq. (12). Gravitational forces are now added to Eq. (12),
which are calculated for each point-mass particle of the model (using
𝑭 𝑔𝑟𝑎𝑣
𝑖 = (𝜇𝑚𝑖∕|𝑹𝑖|

2)𝑹̂𝑖, where 𝑹𝑖 is the position vector of particle 𝑖
in an Earth centred inertial frame). As noted, gravity forces were not
included in the analysis of Section 4, as the aim of these simulations
was to investigate the structural deformation and rotations caused by
the conductive current loops. Now gravity is introduced to demonstrate
that the current loops could be used for attitude control purposes in
LEO, where gravity will be a disturbing force. As the gravitational force
on each particle is calculated individually using that particle’s position,
variations across the structure naturally lead to gravity-gradient torques
in the simulation. The structure is placed onto the desired orbit by
giving every particle an initial velocity in the 𝑧-direction equal to the
orbital velocity 𝑣𝑜 =

√

𝜇∕𝑅𝑜. The magnetic field is now calculated
at each timestep of the simulation by determining the position of the
structure’s centre of mass in an Earth-centred inertial frame and finding
the value of the World Magnetic Model (WMM) at that position [21].
It is assumed that there is no variation of the field across the structure
459
Fig. 6. Structural displacement at maximum strain (𝑡 = 9339 s).

to avoid evaluating the WMM multiple times and save computation
time. In all other respects the simulation and model are the same as
the previous section.

A proportional-derivative (PD) type quaternion error feedback con-
trol law is implemented, which is commonly used for magnetic atti-
tude control [22]. The controller generates reference control torques
according to:

𝑇𝑟𝑒𝑓 = −𝑘𝑝𝒒𝑒𝑟𝑟 − 𝑘𝜔𝜔 (18)

where 𝒒𝑒𝑟𝑟 is the vector part of a quaternion representing the rotation
between the current attitude and the desired attitude, 𝜔 is the body rate
vector, and 𝑘𝑝 and 𝑘𝜔 are the control gains. Once a reference torque is
found, the magnetic dipole moment necessary to generate this torque
is then given by:

𝒎𝑑 =
𝑩 × 𝑻𝑟𝑒𝑓

|𝑩|

(19)

from which the loop currents are determined, according to:

𝑰 =
( 𝒎𝑑
𝑚𝑚𝑎𝑥

)

⋅ 𝑰𝑚𝑎𝑥

𝐼𝐿 = sign(𝐼𝐿)𝐼𝑚𝑎𝑥𝐿 if 𝐼𝐿 > 𝐼𝑚𝑎𝑥𝐿

(20)

where 𝑰𝑚𝑎𝑥 is the vector of maximum allowable currents in the loops
calculated from Eq. (9), and 𝑚𝑚𝑎𝑥 is the magnitude of the magnetic
dipole moment of each loop at maximum current (which is the same
value for all loops). The current vector 𝑰 has components 𝐼𝐿, with
𝐿 = 𝑥, 𝑦, 𝑧 corresponding to current in the 𝑥𝑦𝑧 direction dipole loops
respectively. The second line of Eq. (20) ensures that the current in each
loop does not exceed the maximum allowable value. The control gains
are selected following a trial-and-error approach, using a rigid-body
simulation (which is faster to evaluate compared to the spring–mass
model) with an equivalent inertia tensor to the spring–mass model. The
structure is initially lying in the 𝑥𝑦 plane, and the desired rotation is
a 90◦ slew manoeuvre around the 𝑦-axis. Simulation data and model
parameters are summarised in Table 2.

5.1. Results of simulation

Simulation results are shown in Fig. 7. The simulation was per-
formed for 10 000 s, which is approximately 1.5 orbits. The structure is
seen to smoothly rotate, reaching the target attitude in 3000 s. As the
structure orbits, it is then periodically disturbed by the gravity gradient
torque, which results in attitude errors of up to 18◦ (at 6500 s), which
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Fig. 7. Attitude control simulation results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
are then corrected by the controller. The torque profile shows that the
actuation torque (blue) is mostly able to negate the gravity gradient
torque (red), although at 5000 s there is a point where the controller
is saturated, which leads to the large attitude error a short time later.
The strain energy is calculated as in Section 4, while the normalised
modal amplitudes are found by expressing the structure displacements
as a superposition of the mode shapes in the standard way [17],
and dividing by the maximum modal amplitude. The plots of strain
energy and modal amplitudes show that the structural deformation is
fairly small while the structure rotates, though there is some growing
vibration of primarily the first and third mode shape towards the end of
460
the simulation. Fig. 6 shows a plot of the structure at 9339 s, the point
of maximum strain energy in the system, showing that the structure is
visibly deformed, though it is unlikely a displacement of this amplitude
would cause failure due to buckling. While there are some growing
vibrations towards the end of the simulation, these are to be expected
due to the time-varying actuator and gravity forces. With some form
of active or passive vibration control a damping ratio of closer to 10%
of critical damping is expected to be a reasonable value for structures
of this type [20], which would likely be sufficient to suppress these
excitations on a longer timescale. The modal amplitudes show that the
structure’s deformation is made up of primarily the low frequency mode
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shapes, which correspond to global deformation/curvature rather than
local vibrations. This shows that the force pairs which occur within the
individual units of the structure are evenly distributed and do not result
in large deformation of the structural units or localised vibrations,
which could be more likely to lead to structural failure, or failure of the
wire or membrane attachment points. We also note that although there
is some control saturation, this could be avoided by increasing the wire
mass. The current loops here were sized to produce a maximum torque
equal to the maximum possible gravity gradient, but this maximum
can only be achieved when the loop is oriented perpendicular to the
magnetic field. Therefore, it is likely necessary that in practice the
current loops should be sized to produce a maximum torque slightly
greater than the maximum gravity gradient torque to avoid the control
saturation which occurred in this simulation.

6. Conclusion

Results of a length-scaling analysis and a simple thermal model
show that embedded current loops should be considered as a viable
form of attitude control for large space structures, particularly for
lightweight, planar structures which are most likely to be realised by
on-orbit manufacturing techniques in the coming years. The analysis
suggests that current loops lying in the plane of the structure are
capable of producing torques at least as large as the maximum gravity
gradient torque for structures on the order of 1000 m in length, when
a modest portion (<10%) of the total structural mass is afforded to
he conductive material. To achieve 3-axis magnetic attitude control,
ome structural depth is required, and the length-scaling is found to be
ore adverse, though it seems feasible that this could be achieved for

tructures of lengths on the order of 100 m, again assuming <10% of
the mass for the conductive loops and that the structures depth is at
least 3% of the length.

Considering structural flexibility, results of simulation have shown
that a 250 m square structure, with areal mass density of 100 g/m2,
would require a beam-like bending stiffness of at least 104 N m2 in
rder to not completely collapse under the effect of the Lorentz forces
cting on the current loop. However, we note that a more flexible
tructure of lower mass would require lower torques to control, and
t is possible current loops could still be viable in this case. Although
t is possible that membrane tensioning via current loops could be
ossible, our results do suggest that any tensioning effect using current
oops occurs simultaneously with a perpendicular compression of the
tructure, and so it appears unlikely that conductive loops interacting
ith the geomagnetic field could be used for this purpose. Simulations
ave shown that all the current loop geometries considered here are
apable of rotating a flexible structure, though the structural deforma-
ion observed varies. In particular it was found that for current loops
hich enclose area in the depth dimension of a planar structure, having
ultiple large current loops is much preferred to having the coil type

onducting pathway which was originally proposed in this paper.
Finally, an attitude control simulation has demonstrated that the

trategy is capable of performing a slew manoeuvre and maintaining
set attitude, in the presence of gravity gradient torques and a repre-

entative magnetic field model. Overall, it is concluded that embedded
urrent loops or conductive structures appear to be a promising form
f attitude control strategy for large, lightweight space structures, and
hat the strategy is particularly appealing for the type of structure that
ay be 3D-printed on-orbit, due to the simplicity of the design and

elative ease with which production of the large current loops could be
ntegrated with the 3D-printing process.
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