

[http://pubs.acs.org/journal/acscii](http://pubs.acs.org/journal/acscii?ref=pdf) Research Article

A © Û S ⊝

Thousand-fold increase in O₂ electroreduction rates with conductive MOFs

Ruperto G. [Mariano,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Ruperto+G.+Mariano"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Oluwasegun](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Oluwasegun+J.+Wahab"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) J. Wahab,[∥](#page-5-0) Joshua A. [Rabinowitz,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Joshua+A.+Rabinowitz"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[∥](#page-5-0) Julius [Oppenheim,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Julius+Oppenheim"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) [Tianyang](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Tianyang+Chen"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Chen, Patrick R. [Unwin,](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+R.+Unwin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf)[*](#page-5-0) and [Mircea](https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Mircea+Dinca%CC%8C"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf) Dinca^{*}

ABSTRACT: Molecular materials must deliver high current densities to be competitive with traditional heterogeneous catalysts. Despite their high density of active sites, it has been unclear why the reported O_2 reduction reaction (ORR) activity of molecularly defined conductive metal−organic frameworks (MOFs) have been very low: ca. −1 mA cm[−]² . Here, we use a combination of gas diffusion electrolyses and nanoelectrochemical measurements to lift multiscale O_2 transport limitations and show that the intrinsic electrocatalytic ORR activity of a model 2D conductive MOF, $Ni₃(HITP)₂$, has been underestimated by at least 3 orders of magnitude. When it is supported on a gas diffusion electrode (GDE), $\text{Ni}_3(\text{HITP})_2$ can deliver ORR activities >-150 mA cm⁻² and gravimetric H_2O_2 electrosynthesis rates

exceeding or on par with those of prior heterogeneous electrocatalysts. Enforcing the fastest accessible mass transport rates using
exceeding or on par with those of prior heterogeneous electrocatalysts. Enforcing the fas scanning electrochemical cell microscopy revealed that $Ni₃(HITP)₂$ is capable of ORR current densities exceeding −1200 mA cm⁻ and at least another 130-fold higher ORR mass activity than has been observed in GDEs. Our results directly implicate precise control over multiscale mass transport to achieve high-current-density electrocatalysis in molecular materials.

■ **INTRODUCTION**

Achieving synthetic molecular control over electrocatalytic materials is a longstanding challenge in electrocatalysis. Molecular materials need to deliver high current densities to be competitive with heterogeneous electrocatalysts, but this is rare.[1](#page-5-0) Electrically conductive metal−organic frameworks (MOFs) offer a way to bridge this gap, as they are molecularly defined and are both intrinsically porous and conductive.^{[2](#page-5-0)} They are fundamentally distinct from electrocatalysts made from sacrificial MOF precursors (such as single-atom catalysts accessed via thermolysis or electrolytic degradation of MOFs), because they retain their molecular definition.[3,4](#page-5-0)[,13,14](#page-6-0),[5](#page-5-0)−[12](#page-6-0) As such, the structure space available to conductive MOFs renders them an ideal platform to tune the atomic structure for performance. We and others have previously shown that a family of 2D MOFs with the general formula $M_3(HITP)_2$ (HITP = 2,3,6,7,10,11-hexaiminotriphenylene, $M = Co$, Cu , Ni) [\(Figure](#page-1-0) [1](#page-1-0)A) are active for the O_2 electroreduction reaction (ORR), a transformation central to H_2O_2 electrosynthesis, metal/air batteries, and fuel cells. $4,15,16$ $4,15,16$ $4,15,16$ $4,15,16$ These and other conductive MOFs typically exhibit intrinsic surface areas (∼300−900 m² $\rm g^{-1})$ at least 10 times larger than that of dense metallic nanoparticles and conductivities comparable to that of graphite, yet their geometric current densities for ORR rarely exceed −1 mA cm[−]² , implying a surprisingly low intrinsic electrocatalytic activity.[2](#page-5-0),[4](#page-5-0),[5,](#page-5-0)[15](#page-6-0),[17](#page-6-0)[−][19](#page-6-0)

The performance of ORR electrocatalysts is most commonly measured using rotating ring disk electrodes (RRDEs) immersed in an electrolyte within two-compartment "Hcells".[4](#page-5-0)[,20,21](#page-6-0) During ORR catalysis in an H-cell, a region of depleted O_2 concentration (the concentration boundary, or diffusion layer) is formed adjacent to the catalyst layer [\(Figure](#page-1-0) [1](#page-1-0)B), because O_2 is reduced to H_2O_2 or H_2O at the electrode/ electrolyte interface. In combination with the low saturation concentration of O₂ in water (∼1 mM at 1 bar of O₂ and 298 K), O_2 must diffuse over distances of ca. 100 μ m from the bulk electrolyte in order to reach the electrode/electrolyte inter-face.^{[22](#page-6-0)} Concentration gradients are further exacerbated in porous electrodes, where diffusion within the porous layer can be severely restricted; $2^{3,24}$ $2^{3,24}$ $2^{3,24}$ the resulting transport resistance depresses the mass activity of the electrocatalyst and leads to underutilization of the active sites.

Under these circumstances, it is unclear whether the −1 mA cm[−]² limit arises from mass transport limitations or in fact reflects intrinsically slow ORR kinetics with molecular materials. To probe the fundamental limitations of ORR catalysis with

Received: April 28, 2022 Published: July 1, 2022

Figure 1. Controlling mass transport during ORR electrocatalysis with conductive MOFs: (A) atomic structure and connectivity of $M_3(HITP)_{2}$; (B) schematic of transport gradients during ORR catalysisin a conventional electrochemical H-cell using RRDEs; (C) schematic of transport dynamicsin a GDE combined with flow fields; (D) mass transport of O_2 across a nanodroplet in SECCM.

MOFs and potentially unlock a much higher intrinsic activity, we pursued a campaign to lift mass transport limitations by integrating $Ni₃(HITP)$, with gas diffusion electrodes (GDEs) and by leveraging the rapid transport environment afforded by scanning electrochemical cell microscopy (SECCM).

Here, we show that conductive MOFs enable geometric ORR current densities greater than −150 mA cm⁻² if the mass transport of O_2 is carefully controlled. When it is supported on a GDE (Figure 1C), $\text{Ni}_3(\text{HITP})_2$ exhibits ORR activity and H_2O_2 electrosynthesis rates >100-fold higher and >740-fold higher, respectively, than in an H-cell. At low mass loadings in a GDE, the gravimetric rates of H_2O_2 electrosynthesis using $Ni_3(HITP)_2$ rival those of the highest rates reported for state of the art heterogeneous electrocatalysts. Together with efficient O_2 mass transport, metal ion substitution revealed that the intrinsic porosity and conductivity of $M_3(HITP)_2$ are the major drivers of activity during ORR catalysis. By enforcing the fastest accessible mass transport rates using SECCM (Figure 1D), we find that $Ni₃(HITP)$, is capable of at least another 130-fold higher mass activity than has been observed in GDEs. Our results directly implicate precise control over mass transport to achieve highcurrent-density electrocatalysis in molecularly defined, conductive MOFs.

■ **RESULTS AND DISCUSSION**

Due to its high conductivity, intrinsic porosity, and established activity for the ORR, we prepared $\mathrm{Ni}_{3}(\mathrm{HITP})_{2}$, an archetypal 2D conductive MOF, to understand mass transport effects on ORR catalysis.^{[19](#page-6-0)} Powder X-ray diffraction (PXRD) patterns [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) [S1](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf)) and X-ray photoelectron spectra (XPS; [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S2) were consistent with literature precedent and indicated the formation of a monophasic and highly crystalline 2D framework.^{[19](#page-6-0),[25](#page-6-0)} N₂ adsorption measurements of $\text{Ni}_3(\text{HITP})_2$ ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S3) at 77 K after activation at 373 K under dynamic vacuum revealed a high Brunauer–Emmett–Teller (BET) surface area of 802 \pm 0.8 m² $\rm g^{-1}$. SEM imaging ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S4) indicated that the Ni $\rm_3(HITP)_2$ powders were composed of crystallites measuring 50−200 nm agglomerated into 1 *μ*m wide clusters.

We drop-cast a suspension of as-synthesized $\text{Ni}_3(\text{HITP})_2$ particles sonicated with Nafion (to act as a binder; see the Supporting [Information](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) and [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S5) onto glassy-carbon

electrodes (GCEs) for a total mass loading of 0.4 mg cm^{-2} of $Ni₃(HITP)₂$. We then evaluated the performance of the $Ni₃(HITP)₂$ -loaded GCEs for the ORR in a two-compartment H-cell combined with a RRDE setup ([Figure](#page-2-0) 2B). We measured cyclic voltammograms (CVs) in O_2 and N_2 , using 1.0 M sodium chloride electrolyte buffered with 0.3 M sodium phosphate (NaPi) at pH 7. Polarization from +0.21 to −0.29 V versus the standard hydrogen electrode (SHE, to which all potentials are referenced), indicated that $\text{Ni}_3(\text{HITP})_2$ exhibited less than -1 mA cm⁻² O₂ electroreduction activity. The onset of catalytic activity was observed at −0.05 V, and a plateau in the CV (around −0.6 mA cm[−]²) was observed beginning at −0.2 V ([Figure](#page-2-0) 2B, inset). Polarization to more negative potentials or an increase in the rotation rate did not significantly increase the current density for O_2 reduction (j_{ORR} ; [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S6A,B). We quantified the partial current density for H_2O_2 synthesis $(j_{H_2O_2})$ under potentiostatic conditions while applying an oxidizing potential of 0.91 V at the Pt ring to simultaneously detect $\rm\dot{H}_2O_2$ ^{[15](#page-6-0)} ([Figure](#page-2-0) 2C,D). The Faradaic efficiency (FE) for $\rm H_2O_2$ peaked at 60% (-0.121 mA $\rm cm^{-2})$ at 0.09 V and decreased upon application of more cathodic potentials, dropping to 21% (−0.085 mA cm[−]²) at −0.54 V [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S6C). The small limiting current values ($j_{\text{ORR}} = -0.4 \text{ mA cm}^{-2}$) are less than expected from the Koutecky–Levich equation ($j_d \approx -2.5$ mA cm⁻² at 1500 rpm for the 2e⁻ process), indicative of slow O_2 mass transport not only from the bulk solution to the $\text{Ni}_3(\text{HITP})_2$ catalyst layer but also within the immersed $\mathrm{Ni}_{3}(\mathrm{HTP})_{2}/\mathrm{Nafion}$ catalyst layer.^{[20](#page-6-0)}

To investigate whether the ORR activity of $\mathrm{Ni}_{3}(\mathrm{HTP})_{2}$ would improve under a rapid bulk mass transport regime, we drop-casted $\mathrm{Ni}_{3}(\mathrm{HITP})_{2}$ particles onto GDEs, at the same mass loading of 0.4 mg cm[−]² (SEM imaging in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S7 and S8). Composed of a carbon fiber support and a hydrophobic microporous conductive coating, GDEs enhance gas mass transport by providing a gas flow pathway unimpeded by electrolyte through the back of the electrode (Figure $1C$). $\text{Ni}_3(\text{HITP})_2$ GDEs were interfaced into a custom-built gas diffusion flow electrolyzer ([Figure](#page-2-0) 2A, detailed in the [Supporting](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) [Information](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf))^{[26](#page-6-0)-[29](#page-6-0)} with a microfluidic pocket that limits the contact area $(\sim 0.8 \text{ cm}^2)$ between the MOF-loaded GDE and electrolyte [\(Figure](#page-2-0) 2A). The $\mathrm{Ni}_3(\mathrm{HTP})_2$ GDE was compressed

Figure 2. Polarization of $M_3(HITP)_2$ in an H-cell and using a GDE flow electrolyzer. All current densities reported are normalized to the geometric surface area. (A) Schematic of the gas diffusion flow electrolysis cell used in this study. (B) Cyclic voltammograms of 0.4 mg cm⁻² Ni₃(HITP)₂ GDEs in 1 M NaCl, 0.3 M sodium phosphate $\rm(NaP_i)$ electrolyte at pH 7. Inset CVs show RRDE data at the same 0.4 mg cm $^{-2}$ mass loading, but where the current scale is much smaller. Scan rate: 50 mV s $^{-1}$. The RRDE was rotated at 1000 rpm. Potentials vs SHE reported in (B) are not corrected for the system *iR* drop. (C) Geometric current densities for O₂ reduction during potentiostatic polarization for both the RRDE and GDE electrolyses. The RRDE was rotated at 1500 rpm. (D) Partial current densities for H_2O_2 synthesis during potentiostatic polarization for both the RRDE and GDE electrolyses. The RRDE was rotated at 1500 rpm. (E) SEM images of $M_3(HITP)_2$. Scale bar: 200 nm. (F) BET surface area derived from N₂ adsorption measurements and electrochemical roughness factors (RF) represented as multiples of geometric surface area, calculated from CVs obtained in N₂. (G) CVs of the three isoreticular $M_3(HITP)_2$ GDEs in O_2 . Scan rate: 50 mV s⁻¹.

against a conductive, interdigitated flow field that rapidly transports O_2 to the $Ni_3(HITP)_2/electrolyte$ interface. Electrolyte flowed through the cell and into a collection vial, enabling quantification of electrogenerated H_2O_2 . Enhancing O_2 transport to the $\text{Ni}_3(\text{HITP})_2$ /electrolyte interface led to orders of magnitude higher ORR current densities using $Ni₃(HITP)$, GDEs. Across the same potential range as was used with RRDEs, CVs of a $\mathrm{Ni}_{3}(\mathrm{HITP})_{2}$ GDE indicated that the geometric j_{ORR} was ca. 1−2 orders of magnitude larger with the GDE relative to the RRDE (Figure 2B). At -0.29 V, whereas $Ni₃(HITP)₂$ exhibited a *j*_{ORR} value of only −0.6 mA cm⁻² on the RRDE, its activity on the GDE was -62 mA cm $^{-2}$. Control experiments of both the GDE support under an O_2 atmosphere ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S9) and the $\text{Ni}_3(\text{HITP})_2$ GDE under an N_2 atmosphere (Figure 2B) indicated that essentially all of the observed current could be attributed to ORR catalysis (i.e., no H_2 evolution) occurring at the $\text{Ni}_3(\text{HITP})_2$ sites. These data indicate that $\text{Ni}_3(\text{HITP})_2$ was

starved of O_2 during polarization in the H-cell, which led to a vast underestimation of its intrinsic electrocatalytic performance.

We evaluated the ORR performance of the $Ni₃(HITP)$, GDEs by measuring the current during step-potential polarization (Figure 2C). Unlike the case in the H-cell, the geometric j_{ORR} value using the GDE increased monotonically with the applied potential in a broader range, reaching a maximum current density of -103 mA cm⁻² at -0.36 V, an approximately 310-fold improvement in $j_{\rm ORR}$ relative to those measured in the RRDE/H-cell. Similarly, the $j_{\text{H}_2\text{O}_2}$ value using the $\text{Ni}_3(\text{HITP})_2$ GDE increased as a function of applied potential from −1.2 mA cm^{-2} at 0.01 V to a maximum current density of -88.5 mA cm^{-2} (or 85% FE for H_2O_2) at −0.36 V, a 740-fold improvement over the maximum $j_{H,O}$, value measured using the RRDE/H-cell at the same mass loading (Figure 2D). With 0.2 mL min⁻¹ of electrolyte flowing through the cell, we measured a 108 mM

 $(\sim$ 3270 ppm) H₂O₂ product stream at −0.36 V. These high ORR current densities corresponded to a mass activity of 259 A g^{-1} at −0.36 V, which is competitive with state of the art, H₂O₂producing heterogeneous electrocatalysts in a neutral electrolyte.³⁰ PXRD patterns and XPS spectra obtained immediately after polarization indicated that $Ni₃(HITP)₂$ retained its crystallinity, and we found no evidence for the formation of metallic Ni from reduction of framework $Ni²⁺$ ([Figures](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S10 and [S11\)](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf). As H_2O_2 concentrations were likely even higher within the $\mathrm{Ni}_3(\mathrm{HITP})_2$ pores, these data indicate that $\mathrm{Ni}_3(\mathrm{HITP})_2$ is stable to high local concentrations of electrogenerated H_2O_2 .

Supporting conductive MOFs on GDEs is a general strategy that allowed us to probe the effect of metal ion substitution in $M_3(HITP)$ ₂ under a high O₂ flux. We integrated two additional, isostructural HITP-based frameworks, namely $\text{Cu}_3(\text{HITP})_2$ and $Co₃(HITP)₂$ with GDEs [\(Figure](#page-2-0) 2E–G; characterization in [Text](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) 1 in the Supporting Information and [Figures](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S12−S17), to evaluate their ORR activity under high-mass-transport con-ditions.^{[25](#page-6-0)} Polarization in O₂ revealed that the total j_{ORR} and $j_{\text{H}_2\text{O}_2}$ values both depend on the identity of the MOF and vary in the order $Ni > Co > Cu$ ([Figure](#page-2-0) 2G). This reflected the trend in electrochemical surface area (ECSA, a composite value of intrinsic surface area and conductivity) among the three MOFs (Ni > Co > Cu; [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) 2F and Figure S18). $Ni₃(HITP)₂$ exhibits more than 6-fold higher ECSAs in comparison to the Cu or Co analogues, characteristic of its high conductivity and porosity. On a mass activity basis, $\text{Ni}_3(\text{HITP})_2$ exhibits the highest activity at the lowest driving forces ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S17A). These data provided a simple model to rationalize the observed *j*_{ORR} value: $\text{Ni}_3(\text{HITP})_2$ is the most active of the three $\text{M}_3(\text{HITP})_2$ because it possesses an intrinsically higher ECSA and therefore a higher density of active sites. Given that crystallinity generally engenders high conductivity and surface area in conductive MOFs, and noting that as-synthesized $\text{Ni}_3(\text{HITP})_2$ is intrinsically more crystalline than either $Co_3(HITP)_2$ or $Cu_3(HITP)_2$ (cf. [Figures](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S1 and S12), these results suggest that high conductivity, porosity, and crystallinity are the keys to unlocking high rates of ORR catalysis in MOFs.^{[2](#page-5-0)}

Motivated by the apparent dependence of j_{ORR} on $M_3(HITP)_2$ ECSA in the GDE and because maximizing j_{ORR} is technologically desirable, we sought to understand how much of the ECSA in $\mathrm{Ni}_3(\mathrm{HTP})_2$ could be productively recruited for catalysis. To this end, we varied the $\text{Ni}_3(\text{HITP})_2$ mass loading from 0.1 to 0.8 mg cm⁻² (Figure 3; chronoamperograms are given in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S20). The geometric j_{ORR} value generally increased with higher catalyst loading (Figure 3A). For instance, at −0.36 V, the geometric *j*_{ORR} value at 0.4 mg cm⁻² was ~2-fold higher than that at 0.1 mg cm^{-2} . CVs in N_2 showed that the ECSA also increased with increased mass loading ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S21 and [Table](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S1). These mass-dependent increases in ECSA correlate with the increase in j_{ORR} and indicate a larger number of active sites available for ORR catalysis. Additionally, higher values of $j_{H_2O_2}$ are correlated with higher mass loadings of up to 0.4 mg cm⁻² (Figure 3B). At −0.36 V, $j_{\text{H}_2\text{O}_2}$ increased ~3.3-fold as the mass loading increased from 0.1 to 0.4 mg cm $^{-2}$. We did not observe a systematic correlation between mass loading and FE [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S22A), suggesting that $2e^-$ reduction of H_2O_2 to H_2O , or framework-catalyzed decomposition of H_2O_2 to O_2 , does not accelerate with higher mass loadings under the conditions employed here.

At a high overpotential, the mass activity decreases as the catalyst loading increases (Figure 3C and [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S22B), with the

Figure 3. ORR activity limits in $\text{Ni}_3(\text{HITP})_2$ GDEs. (A) Geometric current densities for the ORR during potentiostatic polarization with different catalyst mass loadings: (\bigbullet) 0.1 mg cm⁻²; (\blacktriangle) 0.2 mg cm⁻²; (●) 0.4 mg cm[−]² ; (■) 0.8 mg cm[−]² . (B) Partial current densities for $H₂O₂$ synthesis during potentiostatic polarization. (C) Comparison of total ORR mass activities of the four different mass loadings.

lowest mass loading of 0.1 mg cm[−]² being responsible for the highest mass activity of 553 A $\rm g^{-1}$ at the most cathodic applied potential. At the highest applied potentials, the rate of $\rm H_2O_2$ production using the 0.1 mg cm^{-2} electrode is equivalent to a gravimetric rate of 6570 mol H_{2}O_{2} kg_{MOF}⁻¹ h⁻¹, better than or competitive with the highest activities reported among state of the art H_2O_2 -evolving electrocatalysts.^{[30](#page-6-0)–[32](#page-6-0)}

Although low $\text{Ni}_3(\text{HITP})_2$ mass loadings yield the highest mass activities (Figure 3C), they also exhibit the lowest geometric j_{ORR} and $j_{\text{H}_2\text{O}_2}$ values (Figure 3A,B). This an important dilemma to address, because it implies that much of the ECSA in $\mathrm{Ni}_3(\mathrm{HITP})_2$ GDEs remained underutilized at high mass loading. Indeed, an apparent plateau in the geometric *j*_{ORR} value (ca. -110 mA cm⁻²) is observed for GDEs with 0.4 and 0.8 mg cm⁻² of $\mathrm{Ni}_{3}(\mathrm{HITP})_{2}$ at a high driving force. The contrast between the 0.8 and 0.4 mg cm^{-2} electrodes is small: doubling the mass loading provides only marginal improvements at low overpotentials and essentially identical activity at high overpotentials. Moreover, the $j_{\text{H}_2\text{O}_2}$ value for the 0.8 mg cm⁻² electrode is only ~80% of that for the 0.4 mg cm⁻² electrode (Figure 3B). If the mass activity of the 0.8 mg cm^{-2} electrode were identical with that of the 0.1 mg cm⁻² electrode (481 A g^{-1})

at −0.36 V), the measured j_{ORR} value for the 0.8 mg cm⁻² electrode should be >380 mA $\rm cm^{-2}$, almost 4 \times larger than what we observe. In fact, mass activities across the four different mass loadings were relatively uniform at low overpotentials and diverged prominently only at high overpotentials [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) 22B). This activity plateau limited the single-pass O_2 conversion rate to just 30% [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S22C).

High-resolution scanning electrochemical cell microscopy (SECCM; Figure 4A)[33](#page-6-0)−[35](#page-6-0) lent critical insight into the origin of

Figure 4. SECCM mapping of ORR activity on $Ni₃(HITP)₂$. (A) Schematic of the experimental geometry in SECCM using a singlebarrel nanopipet. (B) Optical image of the $\text{Ni}_3(\text{HITP})_2$ particles scanned using SECCM under air. (C) Single-pixel LSVs of $\mathrm{Ni}_3(\mathrm{HITP})_2$ obtained under N_2 and air. Inset: average current densities at -0.36 V for $Ni₃(HITP)₂$ under N₂ and air. SECCM scans corresponding to those in N_2 are shown in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S24. (D) SECCM map of geometric current densities (defined as the current divided by the tip droplet area) measured on $Ni₃(HITP)₂$ at −0.36 V. (E) Corresponding topographic map of $\mathrm{Ni}_3(\mathrm{HTP})_2$ derived from SECCM mapping.

the plateau in activity observed in our GDE studies [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S23 and the Supporting [Information](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) for experimental details). By confinement of the entirety of the electrode contact area to the footprint of a droplet at the end of a nanopipet, SECCM offers the fastest gas mass transport rates experimentally accessible for electrocatalysis: N_2 or O_2 can rapidly traverse the nanoscale droplet electrolyte and the porous $\mathrm{Ni}_3(\mathrm{HITP})_2$ particles, with the maximum diffusion length of gaseous species to the catalyst surface being set by the droplet radius.^{[28](#page-6-0),[36](#page-6-0)} For example, a hemispherical droplet with a radius $r_d = 25$ nm has a submicrosecond diffusion time, about 6 orders of magnitude higher than that in the RRDE studies. By confining electrocatalytic studies to a nanoscale droplet, SECCM provides a unique platform to measure the intrinsic electrochemical mass activity in the absence of extrinsic transport limitations.

Using a 50 nm diameter nanopipet filled with a solution of 30 mM NaP_i (pH 7) and 100 mM NaCl, we directly mapped the electrochemical activity of $\mathrm{Ni}_{3}(\mathrm{HTP})_{2}$ particles under cathodic polarization under both N₂ and air (P_{O_2} = 0.2 bar) [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S24 and Figure 4, respectively).^{[37](#page-6-0)} The average current under N_2 at −0.36 V was negligible at ca. −1 pA, close to the noise limit of the conditions we employ here [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S24, [Movie](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_002.avi) S1, histograms in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S29). Comparison of individual linear

sweep voltammograms (LSVs) in N_2 versus those in air indicated that essentially all of the measured current in air arose from the ORR (Figure 4C). Importantly, control experiments probing the nanodroplet while it was in contact with $\text{Ni}_3(\text{HITP})_2$ revealed that the droplet was stable while it was in contact with the MOF. Furthermore, the droplet contact areas were similar on both $Ni₃(HITP)$, and ITO, allowing us to estimate the maximum ECSA of $Ni₃(HITP)₂$ contacted during SECCM measurements. [\(Text](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) 2 in the Supporting Information and [Figures](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S26−S29).

In contrast, SECCM scans of $\text{Ni}_3(\text{HITP})_2$ under air indicated high ORR activity across the MOF particle surface, with an average current of −25 pA at −0.36 V vs SHE (Figure 4B,C, [Movie](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_003.avi) S2, and histograms in [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S29B). Given a droplet radius of 25 nm, this current translates to a geometric *j*_{ORR} value of −1273 mA cm[−]² , 38-fold greater than the highest current densities observed under air using the GDE ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S25). The larger current densities observed in SECCM versus the GDE or RRDE configurations are consistent with the short diffusion pathways enforced by the nanoscopic dimensions of SECCM.^{[28](#page-6-0),[35,38](#page-6-0)−[51](#page-7-0)}

Using the SECCM and topography maps obtained under air, we calculated a lower-bound estimate of the intrinsic mass activity of $\text{Ni}_3(\text{HTP})_2$, making a conservative assumption that all of the cylindrical mass of $Ni₃(HITP)₂$ under the droplet's 50 nm footprint is recruited for catalysis [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S30). Strikingly, these estimates yielded a lower-bound average mass activity of 11250 A g^{-1} at -0.36 V vs SHE, 136-fold higher than the highest mass activities measured with GDEs in air.

The rapid transport environment of SECCM revealed that $Ni₃(HITP)$ ₂ is even more active intrinsically than has been observed in the GDE, suggesting that even at low mass loadings some O_2 mass transport resistance persists in the agglomerated $\mathrm{Ni}_3(\mathrm{HITP})_2$ GDE catalyst layer. At high $\mathrm{Ni}_3(\mathrm{HITP})_2$ GDE mass loadings, much of the active material is immersed in a thick aqueous electrolyte layer through which $O₂$ mass transport is sluggish [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S31), with maximum diffusion lengths likely exceeding the thickness of the flooded GDE pores and Ni3(HITP)2 catalyst layer (>10 *μ*m; see [Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S8).

Crucially, the high mass activities observed in SECCM mean that the activity plateau observed in the GDE was extrinsic to $Ni₃(HITP)₂$. Identifying slow micrometer-scale O₂ mass transport, rather than low intrinsic catalyst activity, as the origin of current density limitations observed in the GDE provides an impetus to improve the mass transport properties of the $\text{Ni}_3(\text{HITP})_2$ GDE. As a simple proof of principle, we reformulated the catalyst ink to include 10 wt % of hydrophobic polytetrafluoroethylene (PTFE) powder that was intimately mixed with the $\text{Ni}_3(\text{HITP})_2$ nanoparticles, reducing $\text{Ni}_3(\text{HITP})_2$ particle agglomeration and providing continuous, hydrophobic channels through which O_2 could diffuse rapidly ([Figures](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S31−S34 and [Text](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) 3 in the Supporting Information).[26,29](#page-6-0)

The facility of O_2 transport across the hydrophobic PTFE domains led to substantial increases in ORR activity: a 0.8 mg $\text{cm}^{-2}\,\text{Ni}_3(\text{HITP})_2 \,\text{GDE}$ with 10 wt % added PTFE passed a total current density of -170 mA cm⁻² at just -0.27 V ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S34A). By comparison, the previous best-performing PTFE-free 0.4 mg cm^{−2} Ni₃(HITP)₂ electrode reached a peak *j*_{ORR} value of −103 mA cm[−]² while also requiring a 90 mV higher driving force of −0.36 V. This activity translated to a 60%higher totalsingle-pass O_2 conversion rate of 48% at an O_2 flow rate of 1.5 mL min⁻¹ ([Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S34F). With the addition of 10 wt % PTFE, the 0.8 mg

 cm^{-2} electrode exhibits 70% greater mass activity than its PTFEfree analogue: 212 vs ~124 A g^{-1} [\(Figure](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf) S34C). Incorporating PTFE into the catalyst ink increased the apparent masstransport-limited current from -110 to -180 mA cm⁻², an increase of ∼60%. These large differences in activity demonstrate that enhancing O_2 mass transport in the $Ni₃(HITP)₂$ catalyst layer allows more of the $Ni₃(HITP)₂'s$ ECSA to be recruited for productive catalysis. However, the mass activity of the 10% PTFE electrode with 0.8 mg cm[−]² $Ni₃(HITP)₂$ remains more than a factor of 2 below the mass activity of the PTFE-free electrode with only 0.1 mg cm^{-2} $Ni₃(HITP)₂$ and >50-fold below those recorded in SECCM. Further improvements in the geometric *j*_{ORR} value in practical devices are gated not by the intrinsic activity of $\mathrm{Ni}_3(\mathrm{HTP})_2$ but by the facility of O_2 mass transport. Identifying the multiscale transport bottlenecks that prevent MOFs from delivering high current densities motivates the broader exploration and deployment of these designer materials for a variety of electrocatalytic processes.

■ **ASSOCIATED CONTENT**

\bullet Supporting Information

The Supporting Information is available free of charge at . (PDF). The Supporting Information is available free of charge at [https://pubs.acs.org/doi/10.1021/acscentsci.2c00509](https://pubs.acs.org/doi/10.1021/acscentsci.2c00509?goto=supporting-info).

> Experimental details, materials and electrochemical characterization, Texts 1−3, SECCM control experiments, mass activity estimation, and movie captions [\(PDF](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_001.pdf))

> Spatially resolved electrochemical video of $\mathrm{Ni}_3(\mathrm{HTP})_2$ under an N_2 atmosphere (AVI)

> Spatially resolved electrochemical video of $\text{Ni}_3(\text{HITP})_2$ under an air atmosphere ([AVI](https://pubs.acs.org/doi/suppl/10.1021/acscentsci.2c00509/suppl_file/oc2c00509_si_003.avi))

■ **AUTHOR INFORMATION**

Corresponding Authors

Patrick R. Unwin − *Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.;* ● [orcid.org/0000-](https://orcid.org/0000-0003-3106-2178) [0003-3106-2178](https://orcid.org/0000-0003-3106-2178); Email: p.r.unwin@warwick.ac.uk

Mircea Dinca**̌**− *Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;* ● [orcid.org/0000-0002-1262-1264;](https://orcid.org/0000-0002-1262-1264) Email: mdinca@mit.edu

Authors

- Ruperto G. Mariano − *Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States*
- Oluwasegun J. Wahab − *Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.;* [orcid.org/0000-](https://orcid.org/0000-0003-4280-9089) [0003-4280-9089](https://orcid.org/0000-0003-4280-9089)
- Joshua A. Rabinowitz − *Department of Chemistry, Stanford University, Stanford, California 94305, United States*
- Julius Oppenheim − *Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States*

Tianyang Chen − *Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States;* ● orcid.org/0000-0003-3142-8176

Complete contact information is available at: [https://pubs.acs.org/10.1021/acscentsci.2c00509](https://pubs.acs.org/doi/10.1021/acscentsci.2c00509?ref=pdf)

Author Contributions

Conceptualization: R.G.M., P.R.U., M.D. Methodology: R.G.M., O.J.W., J.A.R., P.R.U., M.D. Investigation: R.G.M., J.A.R., O.J.W., J.O., T.C. Visualization: R.G.M., J.O., O.J.W. Funding acquisition: R.G.M., P.R.U., M.D. Project administration: R.G.M., P.R.U., M.D. Supervision: P.R.U., M.D. Writing−original draft: R.G.M. Writing−review and editing: R.G.M., O.J.W, J.A.R., J.O., T.C., P.R.U., M.D.

Author Contributions

∥ O.J.W. and J.A.R. contributed equally.

Notes

The authors declare no competing financial interest.

■ **ACKNOWLEDGMENTS**
This work was supported by the National Science Foundation (DMR-2105495), the Research Corporation for Science Advancement (R.G.M., M.D.), the University of Warwick Chancellor's International Scholarship (O.J.W.) and the Royal Society of Chemistry Wolfson Research Merit Award (P.R.U.). The authors are grateful to Prof. Matthew Kanan of Stanford University for accessto 3D printing equipment. The authors also thank Dr. Enrico Daviddi, Mr. Joshua J. Tully, and Dr. Gabriel N. Meloni of the University of Warwick for helpful comments and the design and 3D printing of SECCM environmental cells. The SEM imaging performed as part of this work made use of the facilities at MIT.nano. XPS data were collected at the Harvard Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

■ **REFERENCES**

(1) Ren, S.; Joulié, D.; Salvatore, D.; Torbensen, K.; Wang, M.; Robert, M.; Berlinguette, C. P. Molecular [Electrocatalysts](https://doi.org/10.1126/science.aax4608) Can Mediate Fast, Selective CO₂ [Reduction](https://doi.org/10.1126/science.aax4608) in a Flow Cell. *Science*. 2019, 365 (6451), 367−369.

(2) Xie, L. S.; Skorupskii, G.; Dinca, ̌M. Electrically [Conductive](https://doi.org/10.1021/acs.chemrev.9b00766?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Metal-Organic [Frameworks.](https://doi.org/10.1021/acs.chemrev.9b00766?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Chem. Rev.* 2020, *120* (16), 8536−8580.

(3) *Metal Organic Frameworks for Electrochemical Applications*; Morozan, A., Jaouen, E., Eds.; Royal Society of Chemistry: 2011. DOI: [10.1039/c2ee22989g.](https://doi.org/10.1039/c2ee22989g?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)

(4) Miner, E. M.; Wang, L.; Dincă, M. Modular O₂ [Electroreduction](https://doi.org/10.1039/C8SC02049C) Activity in [Triphenylene-Based](https://doi.org/10.1039/C8SC02049C) Metal-Organic Frameworks. *Chem. Sci.* 2018, *9* (29), 6286−6291.

(5) Miner, E. M.; Gul, S.; Ricke, N. D.; Pastor, E.; Yano, J.; Yachandra, V. K.; Van Voorhis, T.; Dincă, M. [Mechanistic](https://doi.org/10.1021/acscatal.7b02647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Evidence for Ligand-Centered [Electrocatalytic](https://doi.org/10.1021/acscatal.7b02647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Oxygen Reduction with the Conductive MOF [Ni3\(Hexaiminotriphenylene\)2.](https://doi.org/10.1021/acscatal.7b02647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *ACS Catal.* 2017, *7* (11), 7726− 7731.

(6) Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF Electrodes for Stable [Supercapacitors](https://doi.org/10.1038/nmat4766) with High Areal [Capacitance.](https://doi.org/10.1038/nmat4766) *Nat. Mater.* 2017, *16* (2), 220−224.

(7) Gu, J.; Hsu, C.-S.; Bai, L.; Chen, H. M.; Hu, X. [Atomically](https://doi.org/10.1126/science.aaw7515) Dispersed Fe³⁺ Sites Catalyze Efficient $CO₂$ [Electroreduction](https://doi.org/10.1126/science.aaw7515) to CO. *Science.* 2019, *364* (6445), 1091−1094.

(8) Wang, H. F.; Chen, L.; Pang, H.; Kaskel, S.; Xu, Q. [MOF-Derived](https://doi.org/10.1039/C9CS00906J) [Electrocatalysts](https://doi.org/10.1039/C9CS00906J) for Oxygen Reduction, Oxygen Evolution and Hydrogen Evolution [Reactions.](https://doi.org/10.1039/C9CS00906J) *Chem. Soc. Rev.* 2020, *49* (5), 1414− 1448.

(9) Kuruvinashetti, K.; Kornienko, N. Linker [Modulated](https://doi.org/10.1002/celc.202101632) Peroxide [Electrosynthesis](https://doi.org/10.1002/celc.202101632) Using Metal-organic Nanosheets. *ChemElectroChem.* 2022, DOI: [10.1002/celc.202101632.](https://doi.org/10.1002/celc.202101632?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)

(10) Majidi, L.; Ahmadiparidari, A.; Shan, N.; Misal, S. N.; Kumar, K.; Huang, Z.; Rastegar, S.; Hemmat, Z.; Zou, X.; Zapol, P.; Cabana, J.; Curtiss, L. A.; Salehi-Khojin, A. 2D Copper [Tetrahydroxyquinone](https://doi.org/10.1002/adma.202004393) Conductive [Metal-Organic](https://doi.org/10.1002/adma.202004393) Framework for Selective $CO₂$ Electrocatalysis at Low [Overpotentials.](https://doi.org/10.1002/adma.202004393) *Adv. Mater.* 2021, *33* (10), 2004393.

(11) Sikdar, N.; Junqueira, J. R. C.; Dieckhöfer, S.; Quast, T.; Braun, M.; Song, Y.; Aiyappa, H. B.; Seisel, S.; Weidner, J.; Ö hl, D.; Andronescu, C.; Schuhmann, W. A [Metal-Organic](https://doi.org/10.1002/anie.202108313) Framework Derived $Cu_xO_yC_z$ Catalyst for [Electrochemical](https://doi.org/10.1002/anie.202108313) $CO₂$ Reduction and Impact of Local PH [Change.](https://doi.org/10.1002/anie.202108313) *Angew. Chemie Int. Ed.* 2021, *60* (43), 23427− 23434.

(12) Perfecto-Irigaray, M.; Albo, J.; Beobide, G.; Castillo, O.; Irabien, A.; Pérez-Yáñez, S. Synthesis of [Heterometallic](https://doi.org/10.1039/C8RA02676A) Metal-Organic Frameworks and Their Performance as [Electrocatalyst](https://doi.org/10.1039/C8RA02676A) for $CO₂$ [Reduction.](https://doi.org/10.1039/C8RA02676A) *RSC Adv.* 2018, *8* (38), 21092−21099.

(13) Zhang, Q.; Guan, J. Single-Atom Catalysts for [Electrocatalytic](https://doi.org/10.1002/adfm.202000768) [Applications.](https://doi.org/10.1002/adfm.202000768) *Adv. Funct. Mater.* 2020, *30* (31), 2000768.

(14) Wang, Y.; Wang, D.; Li, Y. Rational Design of [Single-Atom](https://doi.org/10.1002/adma.202008151) Site [Electrocatalysts:](https://doi.org/10.1002/adma.202008151) From Theoretical Understandings to Practical [Applications.](https://doi.org/10.1002/adma.202008151) *Adv. Mater.* 2021, *33* (34), 2008151.

(15) Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. [Electrochemical](https://doi.org/10.1038/ncomms10942) Oxygen Reduction Catalysed by Ni₃(Hexaiminotriphenylene)₂. *Nat. Commun.* 2016, 7 (1) , 10942.

(16) Lian, Y.; Yang, W.; Zhang, C.; Sun, H.; Deng, Z.; Xu, W.; Song, L.; Ouyang, Z.; Wang, Z.; Guo, J.; Peng, Y. [Unpaired](https://doi.org/10.1002/anie.201910879) 3d Electrons on Atomically Dispersed Cobalt Centres in [Coordination](https://doi.org/10.1002/anie.201910879) Polymers Regulate Both Oxygen [Reduction](https://doi.org/10.1002/anie.201910879) Reaction (ORR) Activity and [Selectivity](https://doi.org/10.1002/anie.201910879) for Use in Zinc-Air Batteries. *Angew. ChemieInt. Ed.* 2020, *59* (1), 286−294.

(17) Hackley, V. A.; Stefaniak, A. B. [Real-World"](https://doi.org/10.1007/s11051-013-1742-y) Precision, Bias, and [between-Laboratory](https://doi.org/10.1007/s11051-013-1742-y) Variation for Surface Area Measurement of a Titanium Dioxide [Nanomaterial](https://doi.org/10.1007/s11051-013-1742-y) in Powder Form. *J. Nanoparticle Res.* 2013, *15* (6), 1742.

(18) Zhou, M.; Wei, Z.; Qiao, H.; Zhu, L.; Yang, H.; Xia, T. [Particle](https://doi.org/10.1155/2009/968058) Size and Pore Structure [Characterization](https://doi.org/10.1155/2009/968058) of Silver Nanoparticles Prepared by [Confined](https://doi.org/10.1155/2009/968058) Arc Plasma. *J. Nanomater.* 2009, *2009*, 1−5.

(19) Sheberla, D.; Sun, L.; Blood-Forsythe, M. A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dincă, M. High [Electrical](https://doi.org/10.1021/ja502765n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Conductivity in $Ni₃(2,3,6,7,10,11-Hexaiminotriphenylene)₂$, a Semiconducting [Metal-Organic](https://doi.org/10.1021/ja502765n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Graphene Analogue. *J. Am. Chem. Soc.* 2014, *136* (25), 8859−8862.

(20) Bard, A. J.; Faulkner, L. R. *Electrochemical Methods: Fundamentals and Applications*, 2nd ed.; Wiley: 2000.

(21) Xing, W.; Yin, G.; Zhang, J. *Rotating Electrode Methods and Oxygen Reduction Electrocatalysts*; Elsevier: 2014. DOI: [10.1016/](https://doi.org/10.1016/C2012-0-06455-1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [C2012-0-06455-1](https://doi.org/10.1016/C2012-0-06455-1?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as).

(22) Lide, D. *CRC Handbook of Chemistry and Physics*, 76th ed.; CRC Press: 1996.

(23) Hall, A. S.; Yoon, Y.; Wuttig, A.; Surendranath, Y. [Mesostructure-](https://doi.org/10.1021/jacs.5b08259?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)Induced Selectivity in CO₂ [Reduction](https://doi.org/10.1021/jacs.5b08259?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalysis. *J. Am. Chem. Soc.* 2015, *137* (47), 14834−14837.

(24) Yoon, Y.; Hall, A. S.; Surendranath, Y. Tuning of Silver [Catalyst](https://doi.org/10.1002/ange.201607942) [Mesostructure](https://doi.org/10.1002/ange.201607942) Promotes Selective Carbon Dioxide Conversion into [Fuels.](https://doi.org/10.1002/ange.201607942) *Angew. Chem.* 2016, *128* (49), 15508−15512.

(25) Chen, T.; Dou, J.-H.; Yang, L.; Sun, C.; Libretto, N. J.; Skorupskii, G.; Miller, J. T.; Dincă, M. [Continuous](https://doi.org/10.1021/jacs.0c04458?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Electrical Conductivity Variation in M₃ (Hexaiminotriphenylene)₂(M = Co, Ni, Cu) MOF [Alloys.](https://doi.org/10.1021/jacs.0c04458?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2020, *142* (28), 12367−12373. (26) Xing, Z.; Hu, L.; Ripatti, D. S.; Hu, X.; Feng, X. [Enhancing](https://doi.org/10.1038/s41467-020-20397-5) Carbon Dioxide [Gas-Diffusion](https://doi.org/10.1038/s41467-020-20397-5) Electrolysis by Creating a Hydrophobic Catalyst [Microenvironment.](https://doi.org/10.1038/s41467-020-20397-5) *Nat. Commun.* 2021, *12* (1), 136.

(27) Ripatti, D. S.; Veltman, T. R.; Kanan, M. W. Carbon [Monoxide](https://doi.org/10.1016/j.joule.2018.10.007) Gas Diffusion Electrolysis That Produces [Concentrated](https://doi.org/10.1016/j.joule.2018.10.007) C_2 Products with High Single-Pass [Conversion.](https://doi.org/10.1016/j.joule.2018.10.007) *Joule* 2019, *3* (1), 240−256.

(28) Mariano, R. G.; Kang, M.; Wahab, O. J.; McPherson, I. J.; Rabinowitz, J. A.; Unwin, P. R.; Kanan, M. W. [Microstructural](https://doi.org/10.1038/s41563-021-00958-9) Origin of Locally Enhanced CO₂ [Electroreduction](https://doi.org/10.1038/s41563-021-00958-9) Activity on Gold. Nat. Mater. 2021, *20* (7), 1000−1006.

(29) Xing, Z.; Hu, X.; Feng, X. Tuning the [Microenvironment](https://doi.org/10.1021/acsenergylett.1c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Gas-Diffusion Electrodes Enables High-Rate CO₂ [Electrolysis](https://doi.org/10.1021/acsenergylett.1c00612?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) to Formate. *ACS Energy Lett.* 2021, *6*, 1694−1702.

(30) Xia, C.; Xia, Y.; Zhu, P.; Fan, L.; Wang, H. [Direct](https://doi.org/10.1126/science.aay1844) [Electrosynthesis](https://doi.org/10.1126/science.aay1844) of Pure Aqueous H_2O_2 Solutions up to 20% by Weight Using a Solid [Electrolyte.](https://doi.org/10.1126/science.aay1844) *Science.* 2019, *366* (6462), 226−231. (31) Tang, C.; Chen, L.; Li, H.; Li, L.; Jiao, Y.; Zheng, Y.; Xu, H.;

Davey, K.; Qiao, S.-Z. Tailoring Acidic Oxygen [Reduction](https://doi.org/10.1021/jacs.1c03135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Selectivity on Single-Atom Catalysts via [Modification](https://doi.org/10.1021/jacs.1c03135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of First and Second [Coordination](https://doi.org/10.1021/jacs.1c03135?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Spheres. *J. Am. Chem. Soc.* 2021, *143* (20), 7819−7827. (32) Lin, Z.; Zhang, Q.; Pan, J.; Tsounis, C.; Esmailpour, A. A.; Xi, S.; Yang, H. Y.; Han, Z.; Yun, J.; Amal, R.; Lu, X. Atomic Co [Decorated](https://doi.org/10.1039/D1EE02884G) [Free-Standing](https://doi.org/10.1039/D1EE02884G) Graphene Electrode Assembly for Efficient Hydrogen Peroxide [Production](https://doi.org/10.1039/D1EE02884G) in Acid. *Energy Environ. Sci.* 2022, *15*, 1172.

(33) Wahab, O. J.; Kang, M.; Unwin, P. R. Scanning [Electrochemical](https://doi.org/10.1016/j.coelec.2020.04.018) Cell [Microscopy:](https://doi.org/10.1016/j.coelec.2020.04.018) A Natural Technique for Single Entity Electro[chemistry.](https://doi.org/10.1016/j.coelec.2020.04.018) *Curr. Opin. Electrochem.* 2020, *22*, 120−128.

(34) Bentley, C. L.; Kang, M.; Unwin, P. R. [Nanoscale](https://doi.org/10.1021/jacs.8b09828?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Surface [Structure-Activity](https://doi.org/10.1021/jacs.8b09828?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) in Electrochemistry and Electrocatalysis. *J. Am. Chem. Soc.* 2019, *141* (6), 2179−2193.

(35) Guo, S.-X.; Bentley, C. L.; Kang, M.; Bond, A. M.; Unwin, P. R.; Zhang, J. Advanced [Spatiotemporal](https://doi.org/10.1021/acs.accounts.1c00617?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Voltammetric Techniques for Kinetic Analysis and Active Site Determination in the [Electrochemical](https://doi.org/10.1021/acs.accounts.1c00617?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) [Reduction](https://doi.org/10.1021/acs.accounts.1c00617?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) of CO2. *Acc. Chem. Res.* 2022, *55* (3), 241−251.

(36) Chen, C.-H.; Meadows, K. E.; Cuharuc, A.; Lai, S. C. S.; Unwin, P. R. High [Resolution](https://doi.org/10.1039/C4CP01511H) Mapping of Oxygen Reduction Reaction Kinetics at [Polycrystalline](https://doi.org/10.1039/C4CP01511H) Platinum Electrodes. *Phys. Chem. Chem. Phys.* 2014, *16* (34), 18545−18552.

(37) Bentley, C. L.; Kang, M.; Unwin, P. R. [Nanoscale](https://doi.org/10.1021/jacs.7b09355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Structure Dynamics within [Electrocatalytic](https://doi.org/10.1021/jacs.7b09355?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Materials. *J. Am. Chem. Soc.* 2017, *139* (46), 16813−16821.

(38) Mariano, R. G.; McKelvey, K.; White, H. S.; Kanan, M. W. Selective Increase in $CO₂$ [Electroreduction](https://doi.org/10.1126/science.aao3691) Activity at Grain-Boundary Surface [Terminations.](https://doi.org/10.1126/science.aao3691) *Science.* 2017, *358* (6367), 1187−1192.

(39) Forster, R. Micro- and [Nanoelectrodes.](https://doi.org/10.1007/978-1-4419-6996-5_228) *Encycl. Appl. Electrochem.* 2014, 1248−1256.

(40) Chen, L.; Kim, J.; Ishizuka, T.; Honsho, Y.; Saeki, A.; Seki, S.; Ihee, H.; Jiang, D. Noncovalently Netted, [Photoconductive](https://doi.org/10.1021/ja901357h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Sheets with Extremely High Carrier Mobility and [Conduction](https://doi.org/10.1021/ja901357h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Anisotropy from [Triphenylene-Fused](https://doi.org/10.1021/ja901357h?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Metal Trigon Conjugates. *J. Am. Chem. Soc.* 2009, *131* (21), 7287−7292.

(41) Wuttig, A.; Surendranath, Y. Impurity Ion [Complexation](https://doi.org/10.1021/acscatal.5b00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Enhances Carbon Dioxide [Reduction](https://doi.org/10.1021/acscatal.5b00808?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Catalysis. *ACS Catal.* 2015, *5* (7), 4479−4484.

(42) Chen, Z.; Chen, S.; Siahrostami, S.; Chakthranont, P.; Hahn, C.; Nordlund, D.; Dimosthenis, S.; Nørskov, J. K.; Bao, Z.; Jaramillo, T. F. Development of a Reactor with Carbon Catalysts for [Modular-Scale,](https://doi.org/10.1039/C6RE00195E) Low-Cost [Electrochemical](https://doi.org/10.1039/C6RE00195E) Generation of H₂O₂. React. Chem. Eng. 2017, *2* (2), 239−245.

(43) Yoon, Y.; Yan, B.; Surendranath, Y. [Suppressing](https://doi.org/10.1021/jacs.7b10966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Ion Transfer Enables Versatile Measurements of [Electrochemical](https://doi.org/10.1021/jacs.7b10966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Surface Area for Intrinsic Activity [Comparisons.](https://doi.org/10.1021/jacs.7b10966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2018, *140* (7), 2397− 2400.

(44) Valavanis, D.; Ciocci, P.; Meloni, G. N.; Morris, P.; Lemineur, J.- F.; Mcpherson, I. J.; Fr,́ F.; Fréd́ , F.; Kanoufi, F.; Unwin, P. R. [Hybrid](https://doi.org/10.1039/d1fd00063b) Scanning Electrochemical Cell [Microscopy-Interference](https://doi.org/10.1039/d1fd00063b) Reflection Microscopy [\(SECCM-IRM\):](https://doi.org/10.1039/d1fd00063b) Tracking Phase Formation on Surfaces in Small [Volumes.](https://doi.org/10.1039/d1fd00063b) *Faraday Discuss.* 2021, *233*, 122−148.

(45) Ebejer, N.; Güell, A. G.; Lai, S. C. S.; McKelvey, K.; Snowden, M. E.; Unwin, P. R. Scanning [Electrochemical](https://doi.org/10.1146/annurev-anchem-062012-092650) Cell Microscopy: A Versatile Technique for Nanoscale [Electrochemistry](https://doi.org/10.1146/annurev-anchem-062012-092650) and Functional Imaging. *Annu. Rev. Anal. Chem.* 2013, *6* (1), 329−351.

(46) Bentley, C. L.; Kang, M.; Unwin, P. R. Scanning [Electrochemical](https://doi.org/10.1016/j.coelec.2017.06.011) Cell [Microscopy:](https://doi.org/10.1016/j.coelec.2017.06.011) New Perspectives on Electrode Processes in Action. *Curr. Opin. Electrochem.* 2017, *6* (1), 23−30.

(47) Nam, D.-H.; Shekhah, O.; Lee, G.; Mallick, A.; Jiang, H.; Li, F.; Chen, B.; Wicks, J.; Eddaoudi, M.; Sargent, E. H. [Intermediate](https://doi.org/10.1021/jacs.0c10774?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Binding Control Using Metal-Organic Frameworks Enhances [Electrochemical](https://doi.org/10.1021/jacs.0c10774?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) CO2 [Reduction.](https://doi.org/10.1021/jacs.0c10774?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *J. Am. Chem. Soc.* 2020, *142*, 21513.

(48) Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dinca, ̌ M. $Cu₃(Hexaiminotriphenylene)₂$: An Electrically Conductive 2D Metal-Organic Framework for [Chemiresistive](https://doi.org/10.1002/anie.201411854) Sensing. *Angew. Chemie Int. Ed.* 2015, *54* (14), 4349−4352.

(49) Dong, R.; Zheng, Z.; Tranca, D. C.; Zhang, J.; Chandrasekhar, N.; Liu, S.; Zhuang, X.; Seifert, G.; Feng, X. [Immobilizing](https://doi.org/10.1002/chem.201605337) Molecular Metal [Dithiolene-Diamine](https://doi.org/10.1002/chem.201605337) Complexes on 2D Metal-Organic Frameworks for [Electrocatalytic](https://doi.org/10.1002/chem.201605337) H2 Production. *Chem. - A Eur. J.* 2017, *23* (10) , 2255–2260.

(50) Borysiewicz, M.; Dou, J.; Stassen, I.; Dinca, M. Why [Conductivity](https://doi.org/10.1039/D1FD00028D) Is Not Always King - Physical Properties Governing the [Capacitance](https://doi.org/10.1039/D1FD00028D) of 2-D Metal-Organic Framework - Based EDLC [Supercapacitor](https://doi.org/10.1039/D1FD00028D) Electrodes: [Ni3\(HITP\)2](https://doi.org/10.1039/D1FD00028D) as a Case Study. *Faraday Discuss.* 2021, *231*, 298.

(51) Zhang, G.; Walker, M.; Unwin, P. R. Low-Voltage [Voltammetric](https://doi.org/10.1021/acs.langmuir.6b01506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) Electrowetting of Graphite Surfaces by Ion [Intercalation/Deintercala](https://doi.org/10.1021/acs.langmuir.6b01506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as)[tion.](https://doi.org/10.1021/acs.langmuir.6b01506?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as) *Langmuir* 2016, *32* (30), 7476−7484.

Recommended by ACS

[Two-Dimensional Metal Hexahydroxybenzene](http://pubs.acs.org/doi/10.1021/acssuschemeng.0c01908?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [Frameworks as Promising Electrocatalysts for an](http://pubs.acs.org/doi/10.1021/acssuschemeng.0c01908?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [Oxygen Reduction Reaction](http://pubs.acs.org/doi/10.1021/acssuschemeng.0c01908?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)

Juan Zhang, Yu Jing, et al. APRIL 23, 2020 ACS SUSTAINABLE CHEMISTRY & ENGINEERING [READ](http://pubs.acs.org/doi/10.1021/acssuschemeng.0c01908?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) CONSTANT READ CONSTANT

[Recent Advances in Electrochemical Oxygen Reduction](http://pubs.acs.org/doi/10.1021/acsenergylett.0c00812?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [to H](http://pubs.acs.org/doi/10.1021/acsenergylett.0c00812?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)[2](http://pubs.acs.org/doi/10.1021/acsenergylett.0c00812?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)[O](http://pubs.acs.org/doi/10.1021/acsenergylett.0c00812?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)[2](http://pubs.acs.org/doi/10.1021/acsenergylett.0c00812?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [: Catalyst and Cell Design](http://pubs.acs.org/doi/10.1021/acsenergylett.0c00812?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)

Euiyeon Jung, Taeghwan Hyeon, et al. MAY 08, 2020 ACS ENERGY LETTERS **READ**

[Combinatorial Studies of Palladium-Based Oxygen](http://pubs.acs.org/doi/10.1021/jacs.9b13400?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [Reduction Electrocatalysts for Alkaline Fuel Cells](http://pubs.acs.org/doi/10.1021/jacs.9b13400?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)

Yao Yang, Héctor D. Abruña, et al. FEBRUARY 06, 2020 JOURNAL OF THE AMERICAN CHEMICAL SOCIETY [READ](http://pubs.acs.org/doi/10.1021/jacs.9b13400?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) CONTRACT AND READ CONTRACT OF THE AMERICAN CHEMICAL SOCIETY

[Improved Oxygen Reduction Reaction Activity of](http://pubs.acs.org/doi/10.1021/acsaem.9b01527?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [Nanostructured CoS](http://pubs.acs.org/doi/10.1021/acsaem.9b01527?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)[2](http://pubs.acs.org/doi/10.1021/acsaem.9b01527?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) [through Electrochemical Tuning](http://pubs.acs.org/doi/10.1021/acsaem.9b01527?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509)

Wei-Wei Zhao, Yi Cui, et al. OCTOBER 24, 2019 ACS APPLIED ENERGY MATERIALS [READ](http://pubs.acs.org/doi/10.1021/acsaem.9b01527?utm_campaign=RRCC_acscii&utm_source=RRCC&utm_medium=pdf_stamp&originated=1659591606&referrer_DOI=10.1021%2Facscentsci.2c00509) \mathbb{Z}^n

[Get More Suggestions >](https://preferences.acs.org/ai_alert?follow=1)