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Abstract
This paper is motivated by the potential advantages of higher doping and lower contact barriers in
CdTe photovoltaic devices that may be realized by using n-type rather than the conventional p-type
solar absorber layers. We present post-growth doping trials for indium in thin polycrystalline CdTe
films using the diffusion of indium metal with indium chloride. Chemical concentrations of
indium up to 1019 cm−3 were achieved and the films were verified as n-type by hard x-ray
photoemission. Post-growth chlorine treatment (or InCl3) was found to compensate the n-doping.
Trial structures comprising CdS/CdTe:In verified that the doped absorber structures performed as
expected both before and after chloride treatment, but it is recognized that this is not an optimum
combination. Hence, in order to identify how the advantages of n-type absorbers might be fully
realized in future work, we also report simulations of a range of p–n junction combinations with
n-CdTe, a number of which have the potential for high Voc.

1. Introduction

For the last 50 years in the development of p–n junction thin film photovoltaics, the device designs have been
dominated by those with p-type absorbers, this being the case for both the commercially successful
materials—CdTe and CIGS—and also for emerging materials such as CZTS. In this paper, we focus on an
alternative device concept featuring n-type CdTe absorber layers. Devices with n-type absorbers have the
potential for high performance arising from favorable material properties. Although we focus on CdTe, the
concepts are likely to be translatable to other established and emerging materials systems.

The motivation for our interest in n-type absorbers is illustrated by the rationale for the conventional
choice of p-type absorbers in thin film photovoltaics. The selection of p-type is essentially a default choice
for the absorber since the window and transparent electrodes must comprise wide-gap semiconductors, and
they can only be effectively doped n-type [1–3]. This demands that the absorber should be p-type to form a
p–n junction with them. This combination is achievable in practice since semiconductors having the
mid-range gaps required for solar absorbers can be doped p-type to complete the junction [1]. Therefore, the
earliest CdTe solar cells were built in the nominal p–n configuration comprising glass/n-TCO/n-CdS/
p-CdTe/contact. Industrially, the n-type transparent conducting oxide (TCO) is SnO2:F (FTO) [4–6]. This
device design reached a high point of∼16% PCE [7, 8] while the structures that evolved from it
(i.e. omitting the CdS and including Cd(Se,Te) in the absorber) have reached 21% [9, 10]. All these devices
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have p-type absorbers. The p-doping has most often been achieved by copper [11–19] but alternatives have
been explored, including phosphorous [20] and more recently arsenic [21, 22], culminating in CdTe:As
devices having PCEs > 20% [23].

Despite these successes, the use of p-type CdTe absorber layers present their own challenges related to
doping and contacting. There is the potential to sidestep these by using n-type CdTe as follows: Firstly,
doping—the efficiency of CdTe devices is limited by their open circuit voltage (Voc), which is directly related
to the achievable doping level [24]. While there is an upper limit for the stable n- or p-type doping density
for any semiconductor [3], that limit is lower for p- than it is for n-CdTe. For example, the experimental data
from Burst et al [25, 26] for CdTe:P shows a compensation crash at p > 1017 cm−3. (Marfaing [27] gives a
detailed analysis of the phenomena.) On the other hand, stable n-type doping up to n= 1018 cm−3 has been
demonstrated using indium [28], this being close to the degenerate doping density and comfortably
exceeding the levels required in PV devices. Secondly, contacting is a well-known issue for p-CdTe [29], and
may create a back-contact barrier (from band line ups [30] or Fermi level pinning [31]) which limits the
forward bias current of the devices [32]. Strategies, such as using ZnTe:Cu [33], are required to mitigate this
barrier by supplying high local p-doping near the contact. Nevertheless, contacting to p-CdTe solar cells is
found to be universally problematic, and a recent review identified more than 70 different strategies for
making the contacts [29]. Whatever the origin of the difficulties for contacting p-CdTe, they are not an issue
with n-type material, for which indium is known to give a low-resistance Ohmic contact [34, 35].

We therefore propose that re-designing the CdTe solar cell for an n-type absorber layer will provide
options for manipulating the doping level and contacting that are not available from p-type. In particular,
there may be opportunities for increasing Voc and in simplifying contacting.

The key papers on the doping and properties of n-type and indium-doped CdTe include:

(a) Indiumdoping [28]: n-dopingwith In is achievable with close to 100%activation in single crystal CdTe up
to ∼1018 cm3 after which VCd compensation sets in, followed by indium precipitation above 1020 cm−3.
The diffusion coefficient of indium isD= 6.48× 10−4 exp(−1.15 eV kT−1) cm2 s−1 at Te-saturation and
D = 117 exp(−2.21 eV kT−1) cm2 s−1 at Cd-saturation. Segregation coefficients and the compensation
mechanisms for indium in CdTe are comprehensively reviewed in Panchuk and Fochuk [36].

(b) Contacting [34]: low resistance contacts to single crystal n-CdTe may be formed with indium, providing
the surface is oxide-free and the indium is thick enough, for example, 500 nm.

(c) Minority carrier lifetime and diffusion length: A range of values have been reported for τh in single crys-
tal samples as follows: single crystal Bridgman—0.5 ns [37]; ion implanted single crystal—5.5 ns [38];
epitaxial MBE [39] and single crystal solvent evaporated 18.6 ns [39]. For polycrystalline CdTe grown
under excess Te, the lifetime was measured as 7 ns [40]. The value of τh may well be a function of the
doping density. Indeed, the minority carrier diffusion length Lh in single crystals drops in the range
2× 1013–8× 1017 cm−3 according to the empirical relation:

log(Lh)≈ 4.9− 0.315 log(n)1. (1)

Published reports of thin film polycrystalline devices having intentionally doped n-CdTe are limited to
that from Palekis et al [41] who fabricated glass/TCO/CdS/CdTe:In/ZnTe devices having efficiencies up to
8.8%. The paper reports the effect on devices by varying the II/VI ratio in an elemental vapor delivery
system, and of varying the amount of indium supplied to the substrate. No chloride processing was used.

There are also reports of n-CdTe in more complex junction devices: A series of papers from Arizona State
University report MBE-growth of a unique ZnTe/CdTe/MgCdTe double heterostructure PV device
demonstrating Voc > 1 V, this being higher than for conventional CdTe devices [42–46]. Another work on
MBE-grown epitaxial p-ZnTe/n-CdTe reports dark diode behavior, but no PV response [35].
Heterojunctions with n-CdTe have also been attempted on single crystal CdTe wafers coated with p-diamond
(0.1%) [47], p–NiOx (0.001%) [48] and MoOx (no power conversion efficiency) [49, 50].

CdTe homojunctions have received little attention despite being ubiquitous in the traditional
‘n-CdS/p-CdTe’ device. It is well-known that the junction in these devices is a shallow homojunction in the
CdTe, as demonstrated by electron beam induced current imaging [51]. Nevertheless, they are described as
n-CdS/p-CdTe for convenience, and this is sometimes misunderstood [52]. The fabrication of doped
homojunctions by MOCVD [22, 53] has been reported but with dark diode device results only. The
modelling of intentionally doped shallow homojunction options has been reported by Song et al [54, 55].

In this work, we report post-growth doping trials using both indium metal and indium chloride with
characterization by bulk and surface chemical analysis, near-surface band positions and carrier lifetime
measurements. Photoemission measurements confirmed that indium imparted n-conductivity but that
chlorine acted to compensate this. Accordingly, junctions based on CdS/CdTe had low efficiencies (∼1%),
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for indium-only doped CdTe, as would be expected for an n+-n junction. Higher efficiencies were observed
for chloride-treated material (∼10%), but given the observed compensation as a result of the chloride
treatment, we do not consider this to be an n-CdTe based structure. As a result, we conclude the paper with
modelling to evaluate future p–n device designs that have the potential to achieve high Voc.

2. Experimental

2.1. Materials fabrication and doping
Thin films for the doping studies and for junction fabrication were prepared as follows: CdTe films were
deposited by close space sublimation in a custom-built kit (Electro-gas Systems, Manchester). The source
material was undoped 5 N CdTe (Alfa Aesar, particle size 0.5–4 mm), and the films were 3 µm thick. CdS was
argon ion sputtered from a single source 5 N target (PiKem) in an AJA International Orion system. Au
contacts were applied by evaporating 99.99% gold (Goodfellow). Substrates for device fabrication were NSG
TEC15, a fluorine doped tin oxide (FTO) coated glass product having a sheet resistance of 15 Ω□−1. Where
chloride processing was applied to the finished devices, it was done by spraying aqueous MgCl2 (99+% Alfa
Aesar) followed by heating in air in a tube furnace at 410 ◦C after any doping had been done. Post-growth
doping trials were conducted with two strategies, either (a) evaporation of indium metal directly onto the
CdTe films (99.999% Sigma Aldrich) and annealing in a tube furnace under argon or (b) InCl3 spray coating
onto CdTe films in either an aqueous or methanolic solution (1 M solutions of 99.999% InCl3 from Alfa
Aesar) followed by annealing in air or under argon. Residues were removed using dilute nitric acid.

2.2. Materials characterization
X-ray diffraction was carried out using monochromated Cu-Kα1 radiation in θ-2θmode on a Rigaku
Smart Lab system. X-ray photoelectron spectroscopy (XPS) of the surface chemistry of the films was
undertaken at Harwell XPS. Calibration standards for the quantitative secondary ion mass spectroscopy
(SIMS) measurement of indium in CdTe were prepared by implanting 115In into single crystal CdTe wafers to
a peak density of 1019 cm−3 at the Surrey Ion Beam Centre, UK. SIMS profiles were measured on a Cameca
IMS 7f instrument by LSA Ltd.

Hot probe measurements were attempted on the films, with one contact being heated with a soldering
iron to give a temperature gradient of 40 ◦C cm−1. The currents were measured using a Keithley 2400 source
meter on the 105 µA range and n-type InSb wafer was used as a reference. Hall measurements were
attempted using a high sensitivity Semilab PDL Hall system at the University of Loughborough.

Hard x-ray photoemission spectroscopy (HAXPES) was performed on a beamline i09 at the Diamond
Light Source synchrotron at Didcot, UK. Measurements were made using beam energies of 1.09, 2.2 and
6.6 keV in order to achieve a range of sampling depths. The core levels of Cd, Te, O and In were used to gain
chemical information while the positions of the Fermi levels in the band gap were estimated by measuring
the valence band (VB) edge relative to the Fermi level of a gold calibration specimen. Further details of the
methods are reported by Hobson et al [56]. Both In-metal diffused and doped/MgCl2-treated samples were
measured, these being freshly prepared in the normal laboratory environment and transferred to the
synchrotron in a vacuum suitcase system.

Carrier lifetime measurements were performed using an integrated Horiba time-correlated single photon
counting system comprised of a DeltaDiode DD-650L 650 nm 100 MHz diode laser with a DeltaDiode
controller and DeltaHub timing units. The excitation was performed through the glass to avoid any artefacts
from free surface recombination. Time resolved photoluminescence (TRPL) signals were detected using a
Horiba PPD-900 Si CCD-based picosecond photon detector mounted on a Horiba Jobin Yvon iHR320 fully
automated spectrometer utilizing a 900 lines mm−1 diffraction grating. The decay signal for TRPL was
selectively monitored at the peaks of near-gap CdTe emission. Data fitting was done using Horiba DAS-6
software. Standard PL spectra were measured using the 650 nm pulsed diode laser as an excitation source and
collected using a Horiba Syncerity Si CCD detector.

2.3. Devices and device characterization
Trial structures based on a glass/FTO/n-CdS/n-CdTe/Au were fabricated using all of the different doping and
chloride treatment protocols above. Current voltage (J–V) curves were measured using a Keithley 2400
source meter and when required, AAA AM1.5 illumination was provided at 1000 W m−2 by a TS Space
Systems solar simulator. External quantum efficiency (EQE) measurements were made under white light bias
using a Bentham PVE300 system. Capacitance–voltage (CV) measurements were used to determine carrier
concentrations in the devices. Measurements were performed using a Solartron 1260 frequency response
analyser with SmartLab software used to apply a 100 kHz frequency 30 mV AC perturbation voltage with the
DC bias voltage sweep being from−1 to+1 V.

3



J. Phys. Energy 4 (2022) 045001 L Thomas et al

2.4. Simulations
Device simulations were performed with SCAPS Version 3.3.07, which is a one-dimensional solar cell
simulation application developed at the Department of Electronics and Information Systems of the
University of Gent, Belgium [57, 58]. This software is designed for thin film PV simulations and is based on
the Poisson equation and the continuity equations for electrons and holes. A fulsome description of the
simulation parameters used is given in the supplementary information.

3. Results

3.1. Chemical effects and indium incorporation in post-growth doped CdTe:In
Diffusion of In metal into CdTe surfaces did not leave any residue. However, use of either methanolic or
aqueous InCl3 left a white coating. Figures 1(a) and SI1 show the XPS survey spectra which have strong
oxygen signals along with weaker signatures from indium and chlorine. The residue was sufficiently thick to
allow XRD (figures 1(b) and SI2) and the principal peaks corresponded with those of InOCl (JCPDS
11-0510) [59]. This was considered to arise from the reaction [60]:

InCl3+ H2O→ InOCl + 2HCl

This reaction is known to occur above 280 ◦C, while further heat treatment at 400 ◦C > T > 900 ◦C for
extended periods is known to yield In2O3 as follows: 3InOCl→ In2O3 + InCl3. Rinsing in 1 M HCl dissolved
the InOCl and returned the XRD of the coated surfaces back to the standard pattern for CdTe (figure 1(b),
bottom panel, JCPDS 15-0770). Hence the use of InCl3 in bothmethanolic and aqueous solutions yielded
InOCl—this being expected since methanol contains sufficient residual water to supply the reaction above.

Quantitative SIMS was used to check the incorporation of indium into the films. Figure 2 shows the
profiles for films doped with indium metal only (200 ◦C and 400 ◦C for 20 min), a film that had been
indium metal doped at 200 ◦C followed by MgCl2 treatment (410 ◦C, 20 min) and an undoped control film
with MgCl2 treatment only. The 200 ◦C indium metal process gave a diffusion-like profile with a high signal
near the free surface (left hand side, between 0 and 1 µm), before declining to the background signal level of
5× 1015 cm−3 (the same background level as for the MgCl2-only control). Indium metal doping at 200 ◦C
followed by MgCl2 treatment drove the indium to about 2.5 µm. Annealing without chlorine at the higher
temperature of 400 ◦C gave flatter chemical densities of indium at the level of 1019 cm−3. The peaks at the
right-hand sides of the profiles are due to 115Sn which is present in the underlying SnO2 with a natural
isotopic abundance of 0.34%. Comments on other features of the SIMS profiles are given in the
supplementary information.

3.2. Carrier type and hard x-ray photoemission determination of Fermi level positions
Determination of the carrier type in polycrystalline CdTe films using transport methods is known to be
difficult due to the adverse influence of the grain boundary fields. Nevertheless, we attempted both
hot-probe and Hall measurements. While we were able to confirm n-type conductivity using the hot probe
on large-grained (>5 mm) fragments of bulk CdTe:In, no reliable data could be obtained from any of the
thin films prepared for this work. Similarly, high sensitivity Hall measurements made using both
conventional and parallel dipole line systems failed to give a conclusive indication of the conductivity type.

Instead, we utilised HAXPES to determine the Fermi level positions which could then be used to infer the
majority carrier type directly. Whereas conventional laboratory XPS is capable of Fermi level determination,
we used a synchrotron hard x-ray source here to obtain depth-sensitive information: surface measurements
may be compromised by surface band bending or else the surface chemistry. In this work, we used x-ray
energies of 1.09, 2.2 and 6.6 keV at the Diamond Light Source i09 beamline in order to identify trends as a
function of depth.

Figure 3 shows the variation in the apparent band positions for the two samples measured, i.e. those
which had been (i) post-growth doped by diffusion of indium metal and (ii) doped and then treated with
MgCl2. The depth scale was obtained by estimating the escape depths of the photoelectrons as being twice
the inelastic mean free paths (IMFP) using the IMFP data from Shinotsuka et al [61] and using the average of
the photoelectron energies for Cd and Te 3d5/2, and 3d3/2 emissions for each energy (see figure SI3).

The trend line for the doped-only band positions in figure 3 shows an unexpected peak—such behaviour
would be unphysical as a solution to Poisson’s equation for a homogeneous semiconductor terminated by a
charged surface. Hence, we considered the possible origins of this anomaly. First, we ruled out sample
charging effects by monitoring the invariance of the C1s and core-level peaks. Secondly, we looked into
systematic errors in the VB-edge fitting procedure. The data in the figure comes from applying a linear fit to
the VB edge, with an example being shown in figure SI4. The uncertainty was <0.1 eV, which is less than the
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Figure 1. (a) XPS survey spectrum of a CdTe film that had been spray-coated with methanolic InCl3 and heated in air at 400 ◦C
for 20 min. There is strong oxygen contamination plus indium and a weak chlorine signal. (b) θ–2θ XRD pattern for a similar
CdTe film (top). It corresponds with the peaks from InOCl and CdTe reference spectra (middle panels). This residue could be
removed by etching with dilute acid to reveal the underlying CdTe (bottom).

Figure 2. Quantitative SIMS profiles of 115In in CdTe films post-growth doped with indium metal only and 200 ◦C and 400 ◦C,
with indium metal at 200 ◦C followed by MgCl2 and a MgCl2-only control. The free surfaces of the CdTe are on the left while the
peaks on the right are from 115Sn (0.34% abundance).
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Figure 3. Band edge diagrams showing VB and CB positions using the Fermi level positions obtained from XPS and HAXPES at
1.09, 2.2 and 6.6 keV for CdTe samples that had been (i) post-growth doped by diffusion of indium metal and (ii) post-growth
doped and then treated with MgCl2. The Fermi level corresponds to 0 eV. The deepest two data points for each sample are the
most reliable since they are not compromised of surface oxidation, as explained in the text.

difference between samples. Moreover, these results were comparable to those obtained from fitting the
calculated VB DOS to the experimental spectra. Thirdly, and most tellingly, we estimated the near-surface
oxide formation using the HAXPES core-level peaks and using photoelectron cross sections from Yeh and
Lindau [62] (see figure SI5). For the doped sample, the ratio [O]/[Cd+ Te] was 0.72 at the near-surface,
falling to 0.29 and 0.23 for harder x-rays, while for the doped and chloride-treated sample it was 1.69, falling
to 1.0 and 0.93 deeper in the sample. Recognising that these results represent convolutions over the escape
depths (as opposed to true depth profiles), it remains clear in both cases that the near-surface measurements
(1.09 keV) represent a more oxidised region than the deeper measurements (2.2 and 6.6 keV). We have
therefore interpreted figure 3 using the data from these two deeper measurements only.

In both the doped and doped/chloride samples, the Fermi level measured with the highest energy x-rays
is above mid-gap, indicating that they all have n-type characteristics. The In doped-only sample has the
highest Fermi level position (0 eV in figure 3), this being consistent with n-doping. On the other hand,
chloride treatment acts to depress the Fermi level, indicating that it acts to compensate the n-doping. In both
cases, there is upward band bending towards the surface (disregarding the near surface data point for the
oxidised region as explained above). Therefore, while all these photoemission measurements are
surface-based, and so do not represent the true bulk materials behaviour, the trend is clear, and it is
reasonable to conclude that the indium doping imparts n-type conductivity (indeed, this is borne out by the
behaviour of the junction test structures reported in section 3.3).

3.3. Time resolved PLmeasurement of minority carrier lifetime
Figure 4 shows the room temperature PL spectra and decay curves obtained from CdTe films which were
undoped (i.e. as grown) and post-growth doped with indium metal. All samples showed broad PL peaks
which are consistent with the material being polycrystalline rather than single crystal. The strongest peaks
were centered on∼820 nm (1.51 eV) which is close to the room temperature bandgap. This energy is
consistent with the near-gap emission seen in, for example, high quality MBE-grown CdTe:In samples,
although it is sharper at low temperatures [63].

The decay curves and their time constants are shown in figure 4 and table 1 respectively. For all samples,
the time dependent PL decay was fitted to a two-component exponential:

IPL (t) = A+B1e
−
(t/τ1) +B2e

−
(t/τ2)

where A is a background offset (fitting parameter), the process subscripted ‘1’ is charge separation and that
subscripted ‘2’ represents minority carrier recombination. For these samples, the initial decay in the PL
intensity in the first one or two nanoseconds is dominated by the fast component τ1 (0.21–0.54 ns) while
thereafter the curve shape matches that for the slower, bulk recombination, lifetime, τ2, which falls in the
range 1.5–2.5 ns. As expected, these values for polycrystalline material are all somewhat less than those
reported for single crystal n-CdTe (5–20 ns) [37–40].
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Figure 4. Photoluminescence data. (a) Room temperature PL spectra showing strong near band edge emission at∼820 nm
(∼1.51 eV) and weaker deeper luminescence at∼890 nm (the inset shows the spectra normalized to the intense peak). (b) TRPL
decay curves—the lifetimes are shown in table 1.

Table 1. TRPL lifetimes extracted from a double exponential fit to the data in figure 4.

Sample τ1 (ns) τ2 (ns)

(a) Undoped 0.22 1.49
(b) Undoped with MgCl2 0.21 1.62
(c) Post-growth In 0.24 1.56
(d) Post-growth In with MgCl2 0.54 2.51

3.4. CdS/CdTe:In junctions
To gain insight into how CdTe:In films performed in the context of a well-understood junction, we
incorporated CdTe:In into ‘traditional’ CdS/CdTe junction designs. For example, it would be expected that
n-type behavior in the CdTe would give a very weak junction when combined with CdS, which is n-type. We
also examined the effects of chloride processing, for which the outcomes on CdTe:In in devices are unknown.

3.4.1. Junctions having CdTe post-growth doped with indium metal
Figure 5 shows the evolution of the CdS/CdTe:In solar cell performance parameters with the post-growth
doping temperature in the range 200 ◦C–400 ◦C for 20 min diffusion time, plus an undoped control. (Shunt
and series resistances are shown in figure SI6.)

Although there is a step up in Voc from∼0.2 to∼0.4 V for the doped films compared to the undoped
ones, all the performance parameters are low, and the average efficiency did not exceed 0.1%. The highest
performing device achieved 0.24%, that being for doping at 400 ◦C. The reason for this low performance is
explored in figure SI7 which shows the EQE responses for the same devices. All have a very low EQE response
with a peak at the long wavelength (near-gap) end of the spectrum. This is characteristic of a buried junction
which accounts for the very low photocurrents achieved.

Chloride treatment of indium-doped devices had the effect of increasing all performance parameters
significantly: figures 6(a)–(d) show the working parameters of devices that had been first post-growth
indium metal doped and then MgCl2 treated at 410 ◦C for 20–60 min. There has been an increase of PCE
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Figure 5. Performance parameters of glass/FTO/CdS/CdTe:In/Au devices in which the CdTe had been post-growth doped with
indium metal at temperatures between 200 ◦C and 400 ◦C, plus a room temperature control. There was no chloride processing.
N = 16 for each process.

from <0.5 to >10%. This increase is reflected in the change in the EQE shape from the buried junction seen
for indium-only devices (figure SI7) to the shallow junction shape seen in figure 6(e). Moreover, the EQE
shape for the chloride-treated devices very closely resembles that for a conventional CdS/CdTe device having
copper doping and chloride processing, i.e. having a shoulder for wavelengths <500 nm due to parasitic
absorption in the CdS and high collection between 600 nm and the bandgap cutoff. Repeat runs of the best
processing conditions gave a peak performing cell having PCE= 10.3%, Voc = 0.74 V, Jsc = 25 mA cm−2

and FF = 55%, Rshunt = 985 Ω and Rseries = 11.2 Ω as shown in figure 6(f). However, since the CdTe:In is
known to be compensated by chlorine (section 3.1) this performance cannot be attributed to n-doping—a
point which we discuss further in section 4.

3.4.2. Junctions having CdTe post-growth doped by diffusion of InCl3
We conducted similar trials of CdS/CdTe junctions with InCl3 processing in the temperature range
200 ◦C–400 ◦C. A temperature of 200 ◦C gave a buried junction EQE response as shown in figure SI8, with
shallow junctions forming for higher temperatures. Hence temperatures in the range 390 ◦C–420 ◦C were
explored in greater detail, with the device performance parameters being shown in figures 7(a)–(d) and their
EQEs in figure SI9. The PV performance parameters did not change greatly in this temperature range but
there was a peak in the C-V carrier concentration of∼6× 1014 cm−3 for processing at 400 ◦C, which was
twice that measured for the MgCl2 control sample figure 7(e). (The C-V data is shown in figure SI10.) The
highest performance for this series was a PCE of 9.6%, as shown in figure 7(f). Again, compensation of the
n-doping by chlorine has generated a response similar to that of a traditional CdS/CdTe device and is
discussed in section 4.

3.5. Modelling future concepts for n-CdTe devices
In order to realize the full potential of n-CdTe in devices we recognize that it will be necessary to deploy it in
proper p–n junctions rather than the CdS/CdTe:In structures used in this work to gain initial insights. We
therefore conclude this paper with a survey of potential device architectures and some SCAPS modelling of
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Figure 6. Data for glass/FTO/CdS/CdTe:In/Au devices that had been first doped by indium metal diffusion followed by MgCl2
processing. (a)–(d) Performance parameters for chloride processing at 410 ◦C for the times shown (N = 8). (e) EQE responses
for the devices which were chloride treated at 410 ◦C for 20 min as a function of the indium doping temperature. (f) AM1.5 J–V
curve for the single highest efficiency device achieved by chloride processing at 410 ◦C in repeat runs.

specific designs. There are four basic alternatives, as shown in figure 8. They are (a) superstrate/n-uppermost,
(b) superstrate/p-uppermost, (c) substrate/n-uppermost and (d) substrate/p-uppermost. Configurations (a)
and (c), for which the n-type absorber is uppermost, have the advantage that light entering the junction does
not have to first pass through a p-type semiconductor for which there will be optical losses.

We therefore trialled simulations of a wide range of device structures having the ‘superstrate’
configuration on FTO coated glass and with the light entering the n-CdTe before the p-type partner layer.
Partner layers included i- and p-ZnTe, p-aSi, p-P3HT and p-CuI and also n-ZnO. We recognize that to make
realistic models, it would be necessary to conduct extensive experiments to determine the bulk and interface
trapping characteristics. Since that was out of the scope of this study, we instead included mid-gap traps in
the model for all materials and having densities similar to those reported in the literature. Examples include:
P3HT, 1013 cm−3; ZnTe, 1013 cm−3; CdTe, 1015 cm−3; ZnO, 1015 cm−3 and FTO, 1015 cm−3 with full details
of the material parameters being given in table SI1. The results of the modelling survey (table SI2) show a
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Figure 7. Data for glass/FTO/CdS/CdTe:In/Au devices prepared using a one-step post-growth doping/chloride treatment using
InCl3. (a)–(d) Performance parameters N = 16 (see figure SI9 for the EQE spectra). (e) Carrier densities for the devices processed
using InCl3 shown in (a)–(d), plus for an MgCl2 control processed at 410 ◦C. (f) Light J–V curve for the highest performing
single device fabricated using InCl3.

selection of structures for which SCAPS modelling [57, 58] indicates Voc > 1 V. For example, figure 9 shows
the SCAPS-generated band diagram for glass/FTO/n-ZnO/n-CdTe/p-ZnTe/P3HT/Au and for which
PCE= 24.6%; Voc = 1.1 V; Jsc = 30.2 mA·cm−2 and FF = 74.2%. This exercise gives some pointers to the
structures for n-CdTe devices having the potential for high voltages and which may be worthy of future
experimental investigation.

4. Discussion

We expected that n-doping of thin film polycrystalline CdTe would be feasible given the reports of it for
single crystals [28, 64]. However, direct measurements using Hall and hot probe methods failed to confirm
this and we speculate that this was due to grain boundary potentials. Nevertheless, HAXPES determinations
of the Fermi level were able to identify n-type behavior for CdTe:In, with upward band bending near the
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Figure 8. Device architectures using n-type absorbers. ‘Superstrate’ and ‘substrate’ geometries are possible in which the
uppermost part of the p–n junction is either p- or n-type. For the ‘substrate’ versions, conductors may be required on the
uppermost surfaces.

Figure 9. Simulated band diagram for a glass/FTO/n-ZnO/n-CdTe/p-ZnTe/P3HT/Au device. PCE= 24.9%; Voc = 1.1 V;
Jsc = 30.2 mA cm−2 and FF = 74.2%. Ec and Ev are the band edges while Fn is the Fermi level.

surface. However, C-V measurements of CdS/CdTe:In test structures indicated carrier concentrations of
approximately 6× 1014 cm−3, while the chemical concentration was estimated as 1019 cm−3. The low carrier
activation is most likely due to compensation from over-doping, as described by Watson and Shaw [28]. Such
compensation may also be responsible for the relatively low minority carrier lifetimes observed (∼2.5 ns)
although there are relatively few studies of lifetimes in n-type CdTe with which to compare.

Introduction of chlorides via MgCl2 acted to depress the Fermi level indicating that chlorine acts to
compensate the n-doping from indium. We know of no other specific study of co-doping or compensation in
CdTe with both In and Cl. However, whereas other halogens are n-dopants, chlorine is known to have
complex behaviour in CdTe and is used for compensating high resistivity CdTe for detectors [65]. In CdTe
solar cells, it has been linked to ‘type conversion’ from n- to p-type [4, 5] to impart PV performance in
junctions with n-CdTe [66]. (Grain boundary segregation of chlorine is also considered to impart grain
boundary electrical passivation [67].) The CdS/CdTe:In test structures made here acted to confirm that the
CdTe:In performed as might be expected from the above in the context of junctions. Indeed, the weak
junction response for CdS/CdTe:In was consistent with there being an n–n junction. Compensation of the
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CdTe:In with chlorine acted to strengthen the junction, but only to the level of a non-intentionally doped
CdTe structure with chlorine treatment.

Hence, in order to realize the full potential of devices having n-CdTe absorbers, it will be necessary to
make junctions having uncompensated n-CdTe with p-type partner layers. While SCAPS simulations
(figures 8 and 9) have identified some possible candidate structures for which Voc may exceed 1 V, we
recognize the limitations of modelling in this respect. In particular, practical realization of devices having
n-CdTe will have to overcome the issue of grain boundary passivation, namely that while chlorine effects
passivation it would also compensate the n-doping. Further experimental investigations will be required to
explore the device architecture and performance opportunities for n-CdTe.
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