
Northumbria Research Link

Citation: Rafiq, Husnain, Aslam, Nauman, Ahmed, Usman and Lin, Jerry Chun-Wei (2022)
Mitigating Malicious Adversaries Evasion Attacks in Industrial Internet of Things. IEEE
Transactions on Industrial Informatics. pp. 1-9. ISSN 1551-3203 (In Press)

Published by: IEEE

URL: https://doi.org/10.1109/TII.2022.3189046
<https://doi.org/10.1109/TII.2022.3189046>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/id/eprint/49657/

Northumbria University has developed Northumbria Research Link (NRL) to enable users
to access the University’s research output. Copyright © and moral rights for items on
NRL are retained by the individual author(s) and/or other copyright owners. Single copies
of full items can be reproduced, displayed or performed, and given to third parties in any
format or medium for personal research or study, educational, or not-for-profit purposes
without prior permission or charge, provided the authors, title and full bibliographic
details are given, as well as a hyperlink and/or URL to the original metadata page. The
content must not be changed in any way. Full items must not be sold commercially in any
format or medium without formal permission of the copyright holder. The full policy is
available online: http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription
may be required.)

http://nrl.northumbria.ac.uk/policies.html

1

Mitigating Malicious Adversaries Evasion Attacks
in Industrial Internet of Things

Husnain Rafiq, Nauman Aslam, Usman Ahmed, and Jerry Chun-Wei Lin∗

Abstract—With advanced 5G/6G networks, data-driven in-1

terconnected devices will increase exponentially. As a result,2

the Industrial Internet of Things (IIoT) requires data secure3

information extraction to apply digital services, medical diagnoses4

and financial forecasting. This introduction of high-speed network5

mobile applications will also adapt. As a consequence, the scale6

and complexity of Android malware are rising. Detection of7

malware classification vulnerable to attacks. A fabricate feature8

can force misclassification to produce the desired output. This9

study proposes a subset feature selection method to evade10

fabricated attacks in the IIOT environment. The method extracts11

application-aware features from a single android application12

to train an independent classification model. Ensemble-based13

learning is then used to train the distinct classification models.14

Finally, the collaborative ML classifier makes independent deci-15

sions to fight against adversarial evasion attacks. We compare and16

evaluate the benchmark Android malware dataset. The proposed17

method achieved 91% accuracy with 14 fabricated input features.18

19

Index Terms—Industrial Internet of Things (IIoT), adversarial20

attacks, android, malware.21

I. INTRODUCTION22

The Industrial Internet of Things (IIoT), with the combi-23

nation of a 5G/6G network, will be able to connect over24

trillion devices. As a result, tremendous data will flow from the25

mobile network [1]. This results in the IIOT based application-26

oriented digital application, i.e., medical diagnosis and finan-27

cial forecasting. Smartphones have become an indispensable28

part of our lives in recent years, being used in virtually29

every area, including banking, social networking and shopping.30

Android systems are believed to have captured 87.5 percent31

of the cell phone market, but malware within legitimate apps32

is also spreading at an exponential rate [2]. “Malware” is a33

term that refers to malicious code developed with a dangerous34

intent and often offered for use in mobile app stores under35

the guise of a regular and safe program. They are injected36

or downloaded by users and installed on mobile devices37

unnoticed. They come in various forms, including viruses,38

Trojan horses and worms. According to a recent report, there39

are about one million Android mobile device apps infected40

with malware [3]. Another frightening fact revealed in a survey41

is that the financial costs associated with these malware apps42

H. Rafiq and N. Aslam are with the Department of Computer and In-
formation Sciences, Northumbria University, United Kingdom. Email: hus-
nain.rafiq@northumbria.ac.uk, nauman.aslam@northumbria.ac.uk

U. Ahmed and J. C. W Lin are with the Department of Computer
Science, Electrical Engineering and Mathematical Sciences, Western Nor-
way University of Applied Sciences, 5063, Bergen, Norway. Email: us-
man.ahmed@hvl.no, jerrylin@ieee.org. Website: http://ikelab.net. (*Corre-
sponding author: Jerry Chun-Wei Lin)

reach 400 billion per year [3]. This data shows how vital 43

malware app detection systems are. 44

Existing approaches to malware identification lack the anal- 45

ysis and accuracy effect of combining URL, email, IP, and text 46

features with application permissions, intents, and API calls 47

features [1, 4]. The proposed solution is a hybrid technique 48

based on both static and dynamic feature sets. The first 49

part of the technique analyzes the manifest files to extract 50

applications’ permissions and intents. These features use by 51

our static classifier to identify potential malware applications 52

automatically. The next phase of our proposed technique 53

analyses the application’s behaviour on runtime along with 54

applications’ dynamic features. It gives the features as an input 55

vector to the classifier for applications class identification, i.e., 56

malware or not malware. This research is beneficial to the 57

research and industrial community to analyze such dynamic 58

features which have not yet been used to identify malware. 59

These features, along with others, can help identify the ever- 60

changing wide range of malware. The use of classification 61

will help in identifying a wide variety and latest malware that 62

traditional approaches are unable to identify [5]. 63

With the advances in machine learning-based techniques 64

over the past decade, the academic community has shown a 65

strong interest in applying them to Android malware detection 66

[5]–[7]. Through static or dynamic analysis, researchers have 67

identified several characteristics of Android apps in most 68

previous studies [2, 8]. Multiple data such as APIs, permis- 69

sions, intents, and network addresses can be retrieved from an 70

Android APK file and integrated into a single feature vector 71

space to categorize dangerous and benign apps using machine 72

learning. Surprisingly, these systems can be easily manipulated 73

using malicious examples, i.e., intentionally generated input 74

examples to mislead the detection model during the testing 75

phase. This is challenging because machine learning theory 76

assumes that the training dataset used in the learning phase 77

remains representative of the problem domain and that no 78

intentional dangerous modification of the data occurs [9]. 79

The techniques employed to fool the underlying ML models 80

by providing a tampered input fall under the umbrella of 81

adversarial ML. Adversarial attacks in ML can be classified 82

into two major categories [10] (1) evasion attacks; (2) poison- 83

ing attacks. Evasion attacks are performed when an attacker 84

carefully fabricates a malicious input. The underlying model 85

miss-classifies it as a legitimate sample. At the same time, 86

poisoning attacks are performed in the training phase when 87

an attacker manipulates the training data with carefully crafted 88

samples to compromise the whole learning process eventually. 89

The purpose of this study is to address adversarial evasion 90

2

attacks. Thus, the primary contributions of this work are as91

follows:92

1) We provide a unique and scalable countermeasure93

against adversarial evasion attacks on Android malware94

classifiers based on machine learning. It uses a collection95

of classifiers based on machine learning. To prevent96

evasion attacks, each classifier in the model is trained97

on a separate subset of distinguishing features.98

2) We discover and evaluate the best discriminating subsets99

of malware detection features collected from Android100

applications. We create semantic subsets of the original101

feature vector and rank them according to their detection102

accuracy. We use the most advanced machine learning-103

based classifiers with the optimal hyperparameter values.104

Finally, the model is trained using the discriminative105

feature subsets found.106

3) We evade DREBIN [6], one of the mainstream Android107

malware classifiers, to present the crucial concern about108

the fragility of ML-based classifiers. Consequently, we109

perform an empirical case study to present the effective-110

ness of the proposed model against such evasion attacks.111

II. RELATED WORK112

Android security issues, particularly malware detection in113

legitimate applications, have been a popular area of study due114

to the exponential increase in smartphone users worldwide.115

Numerous malware detection methods have been developed,116

each with advantages and disadvantages. These strategies use117

static features, dynamic features, or a combination of both.118

Static techniques analyze the applications statically without119

running them and studying their behaviors. However, dynamic120

techniques are somewhat capable of recognizing new malware121

as they try to predict them by analyzing their behaviors on run-122

time. However, they are time and computationally expensive.123

On the other hand, hybrid approaches can identify a wider124

range of malware with reasonable accuracy; however, they125

inherit both static and dynamic techniques limitations. This126

section gives an overview of the state-of-the-art techniques in127

this area, distributed under the headings of static, dynamic128

and hybrid techniques. These and many more such tech-129

niques share the same concept of analyzing the application’s130

behaviour on runtime and identifying the application like131

malware or not malware. Hybrid malware analysis approaches132

identify malicious apps by combining static and dynamic133

features. This is a relatively new part of the solution, and134

several researchers have begun to focus on it. Researchers use135

static and dynamic feature pools to develop various successful136

malware identification systems.137

The study presents a system to protect linear regression138

from malicious activities [1]. The proposed method develops139

a privacy-preserving verified learning technique for linear140

regression to prevent dishonest cloud server computations141

and inconsistent user data inputs. They developed a privacy-142

preserving prediction technique with lightweight verification143

to prevent malicious clouds from providing inaccurate infer-144

ence results. HyMalD logically performs static and dynamic145

analysis simultaneously to identify obfuscated malware [4].146

First, it extracts static features of the opcode sequence using 147

a newly created dataset and dynamic features of the API call 148

sequence. HyMalD employs Bi-LSTM and SPP-Net to identify 149

and classify IoT malware. The detection accuracy of HyMalD 150

was 92.5%. 151

Android Application Sandbox was offered as another hybrid 152

technique that uses (.dex files) for static analysis [11], while 153

low-level information about system interactions is used for 154

dynamic analysis. The static analysis begins by decompiling 155

.dex files into a human-readable format and then examining 156

for suspicious patterns. The dynamic analysis uses low-level 157

facts about the program that arise during its execution in the 158

sandbox environment. As is known, a sandbox environment 159

is used to ensure system analysis security and data security. 160

In dynamic analysis, the approach additionally analyzes the 161

behaviour of an application by generating random events. 162

Zhao et al. proposed the term AMDetector [12] for a 163

hybrid malware detection approach. The approach uses a 164

modified attack tree model that uses static features to elicit 165

information about an application. The classifier then uses this 166

information to categorize applications as usual or dangerous. 167

In addition, the application behaviour that triggers the various 168

code components of an application is evaluated, which serves 169

as the basis for dynamic analysis. By using structured rules 170

(including attack trees), this approach achieves high code 171

coverage and up to 96.5 per cent accuracy. However, manual 172

rule development and dynamic analysis are time-consuming. 173

Yuan et al. presented another hybrid approach that uses 174

deep learning to classify Android malware using Droid-Sec 175

[13]. The approach extracts over 200 static and dynamic 176

features from an application and feeds them into a deep neural 177

network for classification. Experiments were conducted on 178

599 applications that contained both malicious and benign 179

samples and had no class imbalance. The approach achieved 180

96.5 percent accuracy. Another work used different algorithms 181

like naı̈ve Bayes, J48, Random Forest, Multi-class classifier, 182

and multilayer perceptron [14]. The data set included 3258 183

Samples of Android apps. The multi-class classifier performs 184

better than others regarding the classification accuracy is 185

99.81%. In terms of computational complexity, the Naı̈ve 186

Bayes classifier proved to be the most efficient in classifying 187

malware datasets. 188

Alzaylaee et al. propose a unique hybrid technique for 189

generating test inputs to improve dynamic analysis on Android 190

devices [15]. The author created a hybrid system by com- 191

bining a random-based tool (Monkey) with a state-based tool 192

(Droidbox) to detect more dangerous behaviours. The dataset 193

contains 2444 apps, with 1222 benign and 1222 malicious 194

apps. The author evaluates three scenarios, random, State- 195

based and hybrid approaches and checks their performance. 196

The result shows that the hybrid technique improved the 197

number of dynamic feature accuracy over the random base 198

and state base test input methods. 199

Arora et al. discuss the hybrid malware detection technique 200

[16]. The author evaluates both permission and traffic features 201

to detect malware from the sample. The idea is based on 202

supervised and unsupervised learning algorithms (KNN and 203

K-Medoids). The result shows that the hybrid approach gives 204

3

the 91.98% detection accuracy far better than the dynamic and205

static accuracies of 81.13% and 71.46%, respectively.206

A recent study conducted by Hussain et al. uses gradient207

boosting based supervised machine learning approach for their208

hybrid malware detection technique [17]. The authors used the209

consent model associated with the intent of the application in210

combination with others. The approach works in two phases.211

The first phase using static analysis, tries to identify malware212

applications. The candidate applications are marked, and the213

next phase, using dynamic analysis, tries to confirm whether214

the suspected applications are malware or not. The authors215

used two feature selection strategies and conducted a com-216

parative analysis among classifiers to see the best features and217

classifiers. The authors used 500 benign applications belonging218

to 28 different categories and 5,774 malware applications219

belonging to 178 different categories. The results show 96%220

accuracy in detecting the malware application using a gradient221

boosting classifier. Though the results are convincing, the222

dataset malware versus benign applications seems unbalanced223

and may suffer from a class imbalance problem. Also, the224

technique is time and computational costly due to confirmation225

and reconfirmation strategy.226

III. METHODOLOGY227

This section covers the detailed methodology and workflow228

of our proposed technique. The basic workflow of our pro-229

posed system is composed of three phases, as mentioned in230

Fig. 1. The first phase is the data acquisition phase, followed231

by the feature extraction and selection phase and, finally,232

the classification phase. Detail explanation of each phase is233

described below.234

The designed system will be capable of classifying a wide235

range of malware, including that found on Android devices.236

We used the hybrid approach, a mixture of dynamic and237

static approaches. In static mode, we used android intents and238

permissions as the essential feature for malware detection,239

and in the dynamic mode, we used the system call feature240

for malware classification. In static mode, used four-level241

detection model consists of Decompiler, Extractor, intelligent242

learner, and decision-maker. The Decompiler converts an APK243

file into readable components. Each APK file consists of244

several components such as Java files, XML files, and a245

manifest file. Each component has been decoded and made246

readable.247

The extractor module is responsible for extracting various248

information required for malware detection, such as intentions249

and permissions. Androguard is used to reverse engineer the250

Dex file and the gorgeous soup package to determine the251

permissions and intent of the manifest file. This submodule252

accepts data from the feature database and learns the data253

pattern using a Bayesian network technique. The output model254

is then sent to the decision maker submodule. The decision-255

maker sub-module is responsible for assessing whether the256

data is harmful or not. It receives data from the Extractor257

and Intelligent Learner submodules and the feature database.258

The decision-maker submodule uses the model to detect the259

maliciousness of the application. If the output of the static260

model is an as malicious app, it has been sent directly to 261

the malware classifier database. If the output of the static 262

model is a clean App, it sends to the dynamic mode for 263

further procedure. The dynamic module is used to check the 264

application’s behaviour at run time. The benign apps that came 265

from the decision-maker have been again analyzed to find 266

out the application’s behaviour at run time. The application 267

is tested in a virtual device called an emulator by using 268

a monkey tool to check all functionalities. I will use the 269

system call feature for dynamic analysis in this research. It 270

has been used to extract system calls. We use the stace tool for 271

recording the system calls. For each system call, we construct 272

a weighted directed graph. Each system call represents by a 273

node. The node size shows system call frequency, and direct 274

edges indicate the sequence of system calls. 275

Even though people would consider the manufactured sam- 276

ples to be benign, their inclusion in learning models could 277

cause them to behave in different ways that are not intended. 278

Real-world applications of adversarial attacks that succeed in 279

their goal. As a result, researchers in machine learning and 280

cybersecurity are increasingly interested in adversarial attack 281

and defense tactics. The field of adversarial machine learning 282

(ML) encompasses the strategies used to deceive the ML 283

models working in the process by providing a manipulated 284

input. In ML, adversarial attacks fall into two main categories: 285

(1) evasion attacks and (2) poisoning attacks. An attacker per- 286

forms a circumvention attack when he intentionally fabricates 287

a malicious input so that the underlying model incorrectly 288

identifies it as a valid sample. Poisoning attacks, on the other 289

hand, are performed during the training phase. In this case, 290

the training data is manipulated using carefully constructed 291

samples to eventually subvert the entire learning process. In 292

this study, we used the scenario of a circumvention attack 293

where features are faked to change the input based on the 294

feature analysis. This fabrication leads to mis-classification, 295

which is discussed in Section V-B. 296

IV. FEATURE EXTRACTION 297

Apk files are used to bundle Android apps. APK is an 298

abbreviation for Android Package Kit. It is a file type used by 299

the Android operating system to provide apps in the android 300

application framework, as shown in Fig. 1. APK files are 301

usually compressed files that can be downloaded directly from 302

the Google Play Store or third-party app stores for Android 303

devices. As seen in Fig. 1 and (Algorithm 1, Lines 2-3), 304

APK files contain several files and directories, including the 305

folder META-INF, the folder res, and the files resource.arc, 306

AndroidManifest.xml, and classes.dex. This information is 307

occasionally maintained in a separate folder called original. 308

The Android manifest.xml file format is a binary XML file. 309

This section contains metadata about the application, such 310

as the application name, version, intents, and permissions. 311

Classes.dex files contain compiled application code index for- 312

mat. We used a Python feature extraction script to extract the 313

features. This feature extraction script splits the APK file into 314

classes.dex and AndroidManifest.xml files extract permissions 315

and intents tags from the AndroidManifest.xml file and save 316

4

C
la

ss
if

ic
at

io
n

D
ec

is
io

n
m

ak
er

Network

Tr
ai

n
in

g

Fabricate samplesNew application

Fabricated Features

Benign

Malware

Misclassified

Missclassification

Ev
as

io
n

 A
tt

ac
ks

Fig. 1: A workflow of the proposed approach.

them to .txt files. Similarly, API calls and network features317

(IP addresses, email addresses, and URLs) are collected from318

the deconstructed dex files and stored in .txt files. These text319

files are also used to generate feature vectors. The following320

describes the exact operation of the feature extraction script:321

1) Decompile APK into their basic files and directories322

using APK Tool.323

2) In the second step, we obtain the dex files, resource files,324

and XML files due to APK decompilation.325

3) The script takes the AndroidManifest.xml files and reads326

permissions and intent tags. Extract all permissions and327

intents and store them into .txt files.328

4) For mining API calls, the script takes decompiled dex329

files. These dex files consist of classes.dex files. Some330

methods are used in each class. These classes can call331

these methods.332

5) The feature extraction script creates a call graph of333

classes in which each method is a node. When a method334

calls another method, it will create an edge to that node.335

Each node in the call graph constitutes an API call336

feature.337

6) Similarly, the script extracts network features (IP ad-338

dresses, email addresses, and URL) from dex files by339

using regular expressions.340

7) The extracted API calls and network features are stored341

in .txt files.342

A similar process is repeated for all malware and non-343

malware APK files in our dataset. The .txt files obtained344

from the feature extraction process are used for feature vector345

creation. These are the five types of information we extract346

from the dataset: permissions, APIs, intentions, hardware com-347

ponents, and network addresses, as mentioned in (Algorithm348

1, input). These attributes are derived from the properties of349

the data collection. Instead of embedding all features into a350

single non-linear feature vector space, the different types of351

extracted features are each embedded into their own feature 352

vector space. This is done to improve performance and avoid 353

evasion attacks. 354

The extracted permission files are then compared to the 355

unique permission list for the apps in the training set. If the 356

extracted permissions match the permission list, the permission 357

feature vector bit is set to 1; if not, it is set to 0 (Algorithm 1, 358

lines 4-10). The same procedure is used to extract intent-based, 359

hardware-based, and API-based characteristics (Algorithm 1, 360

lines 10-24). However, to extract API-based features, this study 361

used the Java source code rather than the Android manifest. In 362

addition, network-based characteristics are retrieved from the 363

Java source code. The IP addresses retrieved from the source 364

code of each app are used as the feature vector. Moreover, 365

malware is labeled as 1 and non-malware is labeled as 0, so it 366

is a binary classification problem. Moreover, the five types 367

of extracted feature subsets (permission, intent, hardware, 368

network, and API) are stored in different repositories for each 369

app in the dataset (Algorithm 1, lines 26-28). Finally, the 370

method outputs five different subsets of features (Algorithm 371

1, line 29). The returned subset of features is then used by the 372

model selected based on the hyperparameter setting, which is 373

different for each type of feature, as discussed in Section IV-A 374

and mentioned in Table I. 375

A. Model selection 376

The most tedious part of ML is to select the correct 377

algorithm and tune the corresponding hyperparameters for 378

a selected algorithm to obtain optimal results. This process 379

can be burdensome and time-intensive brute force search. 380

There are many ML algorithms, and each algorithm has 381

numerous hyperparameters. In this study, we use TPOT [18], 382

an automated machine learning (AutoML) tool to design and 383

optimize machine learning pipelines. TPOT is an AutoML 384

system based on genetic programming that optimizes features 385

5

Algorithm 1 Feature Extraction and Classification Detection

INPUT: APKFile.
OUTPUT: Malware or Non-Malware.

1: for all f ∈ F do ▷ F is APK folder
2: APKFile ← Open(file);
3: manifestFile , javaFile← APK Tool(APKFile);
4: if manifestFile == androidmanifest.xml then
5: permission← Get(Permission)(manifest.xml);
6: for all p ∈ permission do
7: if Permission(list)[i] == p then
8: V ector(Permission)[]← 1;

9: end if
10: V ector(Permission)[]← 0;

11: end for
12: intent← Getintent();
13: for all intent(i) ∈ intent do
14: if Intent(list)[(i)] == intent(i) then
15: V ectorintent[]← 1;

16: end if
17: V ectorintent[]← 0;

18: end for
19: network← Getnetworks(javaFile);
20: for all email, url, ips(i) ∈ network do
21: Datanetwork[]← email, url, ips(i);

22: end for
23: V ectornetwork[]← TF − IDF (Datanetwork);

24: end if
25: end for
26: Output(V ectorIntent)← Classify(V ectorIntent);
27: Output(V ector(Permission)) ←

Classify(V ector(Permission));
28: Output(V ectornetwork)← Classify(V ectornetwork);
29: Return V ectornetwork, V ector(Permission), V ectorIntent;

and machine learning models to achieve the best classification386

results in supervised learning. TPOT integrates all algorithms387

from the SciKit-Learn package [19], an open-source machine388

learning toolkit for Python programmers. Thus, each operator389

in the TPOT library pipeline corresponds to a specific machine390

learning method for classification, feature preprocessing, or391

feature selection. Table I, depicts the information about classi-392

fiers and corresponding hyperparameters returned by the TPOT393

library for permissions, intents, API, hardware components394

and network address-based features.395

B. Training and Testing396

The model setting and dataset are provided on the link. After397

selecting the ideal classification model and hyperparameters,398

we train and test our model on each extracted feature subset399

repository. We use TPOT to train and evaluate a total of 11,010400

Fig. 2: Permission area under the ROC under different thresh-
old values.

Android applications (5,560 malicious and 5,450 benign) from 401

the Drebin benchmark dataset. We used 70% (i.e., 7,707) of 402

the applications for training purposes and 30% (i.e., 3,303) 403

for testing purposes. However, for the network address class, 404

we could only identify 3,888 out of 5,560 malicious examples 405

with URL-based features. Therefore, we trained and evaluated 406

our model for the class of network addresses on 9,338 samples 407

(3,888 malicious and 5,450 benign). A ROC curve (receiver 408

operating characteristic curve) is a graph that illustrates the 409

performance of the general classification thresholds of a classi- 410

fication model. A ROC curve compares the TPR to the FPR at 411

different classification levels. As you lower the classification 412

threshold, more objects are classified as positive, increasing 413

both the number of false positives and true positives. We could 414

repeatedly test a model with different classification thresholds 415

to calculate the points on a ROC curve, but that would be inef- 416

ficient. AUC, an efficient method based on sorting, can give us 417

this information. The area of the ROC curve quantifies the two- 418

dimensional area under the full ROC curve. Area under the 419

curve (AUC) is an aggregate performance metric for the full 420

potential classification thresholds. AUC can be interpreted as 421

the likelihood that a random positive example will be classified 422

higher by the model than a random negative example. AUC 423

is independent of scale. It evaluates the accuracy with which 424

predictions are classified, not their absolute values. AUC is 425

independent of the classification threshold [20]. It evaluates 426

the accuracy of the model’s predictions independent of the 427

classification threshold. The AUC is the area under the ROC 428

curve. In general, the higher the AUC value, the better the 429

performance of a classifier for the task at hand. 430

The output of the tree-based pipeline (TPoT) for the 431

permissions-based features class is shown in Fig. 2. The ROC 432

curve for permissions-based features class is 0.98 for malware 433

(class 1 in the plot) and 0.98 (class 0 in the plot), which 434

signifies the excellent prediction results. According to our 435

classification results, the permission-based class contains the 436

highest discriminative features for malware detection of all 437

static features in the Android App. 438

In addition, Fig. 3 shows the categorization results for the 439

class of API-based features. The average API ROC curve is 440

0.96, slightly less accurate than the class of permission-based 441

features. We rank the API-based feature class in the second 442

https://home.mycloud.com/action/share/afb56bba-15bd-486d-9b59-137234bdf1a8

6

TABLE I: TPOT model selection for feature subsets

Features class Classifier Hyper Tuning

Permissions KNeighbors Number of neighbours Power parameter Weights of points
59 1 distance

API KNeighbors Number of neighbours Power parameter Weights of points
47 1 distance

Hardware LogisticRegression Regularization strength Primal formulation Penalty
5.0 False 12

Intents RandomForest
Bootstrap samples
used Criterion No. of features

Considered
Min. samples
for leaf node

Min. samples required
for split

Number of
tress

True Entropy 0.95 1 13 100

Network BernoulliNB Additive smoothing parameter Class prior probabilities
0.001 True

Fig. 3: API area under the ROC under different threshold
values.

Fig. 4: Hardware area under the ROC under different threshold
values.

position.443

Moreover, Fig. 4 shows the classification results for the class444

of hardware-based features. The average Receiver Operating445

Characteristic Curve for the class of hardware-based features446

is 0.89. Our results suggest that the hardware-based features447

class is ranked third after permissions and API-based features.448

Similarly, Fig. 5 shows the classification results for the449

intent-based feature class. The average receiver operating450

characteristic curve for the intent-based feature class is 0.88.451

Our results show that the intent-based feature class performs452

slightly worse than the hardware-based feature class and ranks453

fourth.454

Finally, Fig. 6 shows the categorization results for features455

based on network addresses. Even though the average ROC456

curve is 0.95, we rank the network address-based features457

Fig. 5: Intent area under the ROC under different threshold
values.

Fig. 6: Network area under the ROC under different threshold
values.

fifth. We classified 3,888 malware samples in the class of 458

network address based features out of 5560 malware samples. 459

For 1,672 malicious samples from the Derbin dataset, we could 460

not locate a network address. However, for 3,888 malicious 461

samples containing network addresses, we achieved a high 462

level of accuracy. We placed the network address-based feature 463

class in fifth place, as the feature was missing in 30.1% of the 464

malicious samples. 465

Table II summarizes the results for all five categories 466

of features (APIs, hardware components, network addresses, 467

permissions, and intents). Permissions: Android permissions 468

protect privacy. Before sending SMS or accessing contacts, 469

apps must get the user’s consent. Intents: Android intents 470

allow app components to interact. Intents pass data between 471

activities. The manifest file lists intents that can be used to 472

7

TABLE II: Classification results for feature subsets

Precision Recall F-measure
Permissions 0.940 0.939 0.939
API 0.852 0.928 0.888
Hardware 0.857 0.798 0.827
Intents 0.745 0.924 0.825
Network 0.854 0.954 0.901

identify malware. hardware: AndroidManifest.xml specifies473

hardware components such as camera, GPS, and touchscreen.474

Malware may require a specific hardware pattern to perform475

malicious activities. Therefore, hardware-based features can476

help in identification. API calls: an Android app needs to477

follow APIs when dealing with other app components, e.g.,478

to send SMS or get the user’s location. Android API call479

patterns can help in malware detection. We use API calls to480

identify malware. network addresses: Malware makes remote481

connections using IP addresses or domain names. We extract482

the network address from deconstructed code to create a483

malware-identifying feature vector.484

As can be seen in Table II, classifiers trained on each485

of these feature sets alone can distinguish dangerous from486

benign applications. Therefore, we train the proposed model487

using the four best discriminating feature subsets. Although488

the fifth feature set, network addresses, has a reasonably high489

detection rate. However, we still reject it as a component of490

the proposed system because 30.1% of malicious samples do491

not have network-based features.492

V. ADVERSARIAL ATTACKS COUNTERMEASURES493

This section discusses a method for mitigating malicious494

evasion attempts in machine learning-based classification mod-495

els. Moreover, we perform an empirical case study to evade496

the Drebin classifier by performing adversarial evasion attacks.497

Finally, we demonstrate the effectiveness of the proposed498

model in hostile contexts. There are three possible strategies499

to mitigate machine learning evasion attempts:500

1) Using adversarial examples to train the target classifier501

is called adversarial training.502

2) By employee the ensembles of classifiers.503

3) Making target classifiers hard to attack.504

By using ensemble classifiers and making the target model505

hard to attack, we focus on options 2 and 3. ML-based506

classifiers tend to be very fragile in case of evasion attacks.507

Authors in [21] proposed a prototype tool named Lagodroid508

to perform evasion attacks on a recent open-source Android509

malware classifier named RevealDroid [7]. Surprisingly, Lago-510

Droid could perform evasion by modifying just a single feature511

of the original malicious application. The findings in [21]512

suggest that a small modification in original malware can513

result in miss-classification. Therefore, our proposed scalable514

categorization model can be used to develop a framework515

that is resistant to adversarial evasion attacks. The learning516

model includes many classifiers, each trained independently517

on a subset of data to create an output fork. The proposed518

model uses four high-level feature subsets (permissions, APIs,519

intents, and hardware components). Each classifier in the pool520

is trained individually on each of these subgroups to obtain a521

label. Finally, the proposed model creates a final label for the 522

observed sample by performing an OR operation on the output 523

of each classifier in the pool. If an attacker creates a subset 524

of the application, such as APIs, the classifier trained for that 525

subset will fail. However, the proposed model would detect 526

the malicious App by using the results of other classifiers in 527

the pool trained on different subsets, such as permissions, in- 528

tents, or hardware-based attributes. Nevertheless, the proposed 529

model would be vulnerable to evasive attacks. However, our 530

method makes it difficult for an attacker to evade. Compared 531

to classical classifiers, such as Drebin [6], an attacker needs 532

to modify the malicious sample more to evade the proposed 533

model. Circumventing the model can be more difficult by 534

including additional classifiers in the pool, each trained on 535

a separate subset of distinguishing features. In the next part, 536

the usefulness of the proposed model in adversarial contexts 537

is demonstrated through an empirical case study. 538

A. Case Study 539

Drebin [6], a state-of-the-art classifier for Android malware 540

detection, was evaded as a proof of concept. Drebin is a 541

lightweight on-device malware detector that extracts features 542

from the Android App by performing static analysis. Drebin’s 543

collection contains 5,560 malicious and 123,453 benign ap- 544

plications. We also used the same dataset to evaluate the 545

static aspects of an Android application for malware detection. 546

Drebin collects various characteristics of Android apps, such 547

as requested permissions, application components, local API 548

calls, filtered intents, hardware components, used permissions, 549

suspicious API calls, and network addresses. Moreover, all 550

these retrieved features are contained in feature vectors’ sin- 551

gle multi-dimensional vector space. After feature extraction, 552

Drebin uses linear Support Vector Machines (SVM). Drebin 553

achieved an amazing 94% recall on the malware class with 554

only 1% FPR. We replicated Drebin’s case study with an iden- 555

tical dataset. We classified malicious and benign applications 556

with linear SVM. 557

The purpose of this case study is to show how weak a ML- 558

based classifier can be in an adversarial environment and how 559

our proposed model can be incorporated to make the process 560

of evasion more complex for the attacker. Once the attacker 561

knows the underlying classifier and the data on which the 562

classifier was trained (in the best case for an attacker), it is 563

easy to bypass the classifier. An attacker can highlight the top 564

features from the training data based on a particular classifier 565

(linear SVM in Drebin’s case) and carefully modify the top 566

features to achieve evasions (Fig. 7, evasion attack block). 567

An attacker can either add a new feature or remove a feature 568

from the existing feature set. Drebin uses a binary feature set 569

where 1 indicates the presence of a feature in the application 570

and 0 indicates the absence of a particular feature. Removing 571

a feature can potentially change the semantics of the malware. 572

Therefore, in this study, we rely only on adding new features 573

in the app, i.e., mutating 0 to 1. As mentioned in the Eq. (1), 574

the method is evaluated based on the evasion rate (the ratio of 575

mis-classified instances after the fabricated input to the total 576

number of instances in the testing set) [20] compared. 577

8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Modified Features

0.0

0.2

0.4

0.6

0.8

1.0

Ev
as

io
n
R
at
e

Evasion Rate

Fig. 7: Evasion attack on Drebin.

Evasion Rate proposed

Evasion Rate Drebin

Fig. 8: Performance of proposed in adversarial environment.

ERate =
Malware samples missclassified

Total Malware samples in Testing set
(1)

B. Support vector-based fabricated feature selection578

In this study, data points are nonlinearly separable due579

to the characteristics of these features, i.e., API, network,580

hardware, intent, and permission. Therefore, malware data581

that is not linearly separable can be mapped into a higher-582

dimensional space using the radial-based kernel method, re-583

sulting in linear separation of our data. After we completed584

the fitting of our linear SVM, the proposed model used the585

trained model to obtain the classification coefficients of the586

model. The orthogonal vector coordinates are obtained using587

feature weights orthogonal to the hyperplane. On the other588

hand, their orientation reflects the class that was predicted.589

Consequently, the magnitude of these coefficients can be590

compared to determine the relevance of the features. Thus,591

by looking at the SVM coefficients, it is possible to determine592

the characteristic features used in the classification and remove593

the irrelevant features (which have less variance).594

As shown in Fig. 7, by creating three fabricated examples595

without changing the intended meaning of the malicious entity,596

an attacker can completely bypass all malicious examples in597

the Drebin dataset. However, the results of our study suggest598

that the proposed method has the potential to complicate the599

attacker’s evasion process. It uses a group of classifiers, each of600

which is trained on its own set of features. We independently601

classified the vast majority of samples as malicious or benign602

by identifying five distinct subsets of the most important and 603

distinctive features. As part of our investigation, we modified 604

Drebin. We train the SVM independently on each of the four 605

feature sets, rather than training them on a single integrated 606

feature vector as originally intended (permissions, APIs, in- 607

tents, and hardware components). Even if the attacker now has 608

access to the data and the target classifier to extract the most 609

relevant features, it will be very difficult for them to find a way 610

around the classifier. This is because all members of a given 611

class within a subgroup are essential features. Consequently, 612

changing a single property can affect the validity of a single 613

class (e.g., permissions). However, in our tests with different 614

subgroups, we were still successful in identifying the virus 615

(e.g., APIs, intents, and hardware components). The evasion 616

attack Drebin is vulnerable to is also included in the proposed 617

model, as you can see in Fig. 8. On the other hand, the 618

proposed classifier can accurately classify malware with 91% 619

accuracy up to 14 different modifications of the unsafe feature 620

vector. With only three modifications to the malicious samples, 621

Drebin was avoided. 622

C. Comparison 623

As can be seen in Table III, [22]–[24, 26], evasion attacks 624

are discussed. Although these strategies achieve considerable 625

evasion rates, the authors have not been able to develop a 626

countermeasure to thwart these attacks. In contrast to these 627

methods, our proposed evasion algorithm was able to bypass 628

the target classifier (Drebin) in 100% of the cases by using 629

three features. As mentioned in the methodology, we also 630

present a countermeasure that can be used to defend against 631

such evasion attacks. As a result, the authors not only avoided 632

target classifiers but also offered strategies to counter such 633

attacks [21, 25]. Grosse et al. [25] used deep neural network 634

classifiers to undertake evasion attacks and achieved evasion 635

rates of up to 63% with feature vector perturbations. Grosse 636

et al. presented two responses to adversarial circumvention 637

attacks, including distillation and classifier retraining. How- 638

ever, neither of the recommended defenses produced promis- 639

ing results against evasive threats, with a peak detection 640

rate of 33% when the classifier was retrained. In addition, 641

LagoDroid [21] evaded a newer classifier called RevealDroid 642

with a evasion rate of 97%. To prevent evasion attempts 643

against RevealDroid, a countermeasure called RevealDroid 644

[7] is proposed. RevealDroid* works well with few changes, 645

but its performance degrades with more changes. Moreover, 646

RevealDroid* requires multiple ensemble classifiers to detect 647

possible evasion. In their experiments, the authors used 16 648

decision tree-based classifiers. Using an ensemble of four 649

SVM-based classifiers, we achieved a high detection rate of 650

up to 14 changes in the actual feature vector. 651

VI. CONCLUSION AND FUTURE WORK 652

In a 5G/6G powered network, large scale data will be 653

generated from several interconnected mobile devices; as a 654

result, the Industrial Internet of Things (IIoT) provides sev- 655

eral opportunities for secure machine learning for industrial 656

applications. The timely information extraction from IIOT 657

9

TABLE III: A comparison among different evasion techniques related to proposed model

Technique Year Target Dataset Evasion Rate Countermeasure
Android HIV [22] 2019 Drebin (SVM) Drebin 99% No
TLAMD [23] 2019 Random Forest Drebin 93% No
Harel [24] 2020 Drebin (SVM) Drebin 99% No
Grosse [25] 2016 Deep Learning Drebin 63% Yes
Proposed model 2022 Drebin (SVM) Drebin 100% Yes

data openness of security-critical IIOT issues becomes more658

challenging with the adoption of machine learning. This study659

used several discriminating features from the Android App for660

malware detection. We proposed the adversarial based evasion661

method to defend against the evasion attacks. The proposed662

model employs an ensemble-based classification model to train663

a separate set of features. The tree base pipeline optimization664

method improves the classification generalization. We then665

compared our proposed model again the state of the art666

Drebin method to evaluate the countermeasure to evade by667

just modifying three features in the feature vector. In contrast,668

our proposed model achieves 91% accuracies with the change669

in 14 features. We plan to increase the subset of features in670

future to defend against adversarial attacks and employ the671

dynamic analysis on Android ransomware shortly.672

VII. ACKNOWLEDGMENT673

This work is partially supported by the National Centre674

for Research and Development under the project Automated675

Guided Vehicles integrated with Collaborative Robots for676

Smart Industry Perspective and the Project Contract no. is:677

NOR/POLNOR/CoBotAGV/0027/2019 -00.678

REFERENCES679

[1] Z. Ma, J. Ma, Y. Miao, X. Liu, K.-K. R. Choo, Y. Gao, and R. H.680

Deng, “Verifiable data mining against malicious adversaries in industrial681

internet of things,” IEEE Transactions on Industrial Informatics, vol. 18,682

no. 2, pp. 953–964, 2021.683

[2] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review684

of android malware detection approaches based on machine learning,”685

IEEE Access, vol. 8, pp. 124 579–124 607, 2020.686

[3] N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial machine687

learning applied to intrusion and malware scenarios: a systematic688

review,” IEEE Access, vol. 8, pp. 35 403–35 419, 2020.689

[4] J. Jeon, B. Jeong, S. Baek, and Y.-S. Jeong, “Hybrid malware detection690

based on bi-lstm and spp-net for smart iot,” IEEE Transactions on691

Industrial Informatics, 2021.692

[5] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A multimodal deep693

learning method for android malware detection using various features,”694

IEEE Transactions on Information Forensics and Security, vol. 14, no. 3,695

pp. 773–788, 2018.696

[6] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and697

C. Siemens, “Drebin: Effective and explainable detection of android698

malware in your pocket.” pp. 23–26, 2014.699

[7] J. Garcia, M. Hammad, and S. Malek, “Lightweight, obfuscation-700

resilient detection and family identification of android malware,” ACM701

Transactions on Software Engineering and Methodology, vol. 26, no. 3,702

pp. 1–29, 2018.703

[8] Y. Pan, X. Ge, C. Fang, and Y. Fan, “A systematic literature review of704

android malware detection using static analysis,” IEEE Access, vol. 8,705

pp. 116 363–116 379, 2020.706

[9] P. Laskov and R. Lippmann, “Machine learning in adversarial environ-707

ments,” Mach. Learn., vol. 81, no. 2, pp. 115–119, 2010.708

[10] Z. Katzir and Y. Elovici, “Quantifying the resilience of machine learning709

classifiers used for cyber security,” Expert Systems with Applications,710

vol. 92, pp. 419–429, 2018.711

[11] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak,712

“An android application sandbox system for suspicious software detec- 713

tion,” in International Conference on Malicious and Unwanted Software, 714

2010, pp. 55–62. 715

[12] C. Shang, M. Li, S. Feng, Q. Jiang, and J. Fan, “Feature selection via 716

maximizing global information gain for text classification,” Knowledge- 717

Based Systems, vol. 54, pp. 298–309, 2013. 718

[13] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue, “Droid-sec: deep learning in 719

android malware detection,” in Proceedings of the ACM conference on 720

SIGCOMM, 2014, pp. 371–372. 721

[14] P. R. K. Varma, K. P. Raj, and K. S. Raju, “Android mobile security 722

by detecting and classification of malware based on permissions using 723

machine learning algorithms,” in International Conference on I-SMAC 724

(IoT in Social, Mobile, Analytics and Cloud, 2017, pp. 294–299. 725

[15] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “Dynalog: An automated 726

dynamic analysis framework for characterizing android applications,” in 727

International Conference On Cyber Security And Protection Of Digital 728

Services, 2016, pp. 1–8. 729

[16] A. Arora, S. K. Peddoju, V. Chouhan, and A. Chaudhary, “Hybrid 730

android malware detection by combining supervised and unsupervised 731

learning,” in Proceedings of the 24th Annual International Conference 732

on Mobile Computing and Networking, 2018, pp. 798–800. 733

[17] S. J. Hussain, U. Ahmed, H. Liaquat, S. Mir, N. Jhanjhi, and M. Hu- 734

mayun, “Imiad: intelligent malware identification for android platform,” 735

in International Conference on Computer and Information Sciences, 736

2019, pp. 1–6. 737

[18] R. S. Olson and J. H. Moore, “Tpot: A tree-based pipeline optimization 738

tool for automating machine learning,” in Workshop on Automatic 739

Machine Learning, 2016, pp. 66–74. 740

[19] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, 741

O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., 742

“Scikit-learn: Machine learning in python,” The Journal of machine 743

Learning research, vol. 12, pp. 2825–2830, 2011. 744

[20] U. Ahmed, J. C.-W. Lin, and G. Srivastava, “Mitigating adversarial 745

evasion attacks of ransomware using ensemble learning,” Computers 746

and Electrical Engineering, vol. 100, p. 107903, 2022. 747

[21] A. Calleja, A. Martı́n, H. D. Menéndez, J. Tapiador, and D. Clark, 748

“Picking on the family: Disrupting android malware triage by forcing 749

misclassification,” Expert Systems with Applications, vol. 95, pp. 113– 750

126, 2018. 751

[22] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang, and 752

K. Ren, “Android hiv: A study of repackaging malware for evading 753

machine-learning detection,” IEEE Transactions on Information Foren- 754

sics and Security, vol. 15, pp. 987–1001, 2019. 755

[23] X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, and M. Guizani, “Adversarial 756

samples on android malware detection systems for iot systems,” Sensors, 757

vol. 19, no. 4, p. 974, 2019. 758

[24] H. Berger, C. Hajaj, and A. Dvir, “When the guard failed the droid: A 759

case study of android malware,” CoRR, vol. abs/2003.14123, pp. 14–13, 760

2020. 761

[25] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. D. McDaniel, 762

“Adversarial perturbations against deep neural networks for malware 763

classification,” CoRR, vol. abs/1606.04435, pp. 44–35, 2016. 764

[26] Y. Xue, G. Meng, Y. Liu, T. H. Tan, H. Chen, J. Sun, and J. Zhang, 765

“Auditing anti-malware tools by evolving android malware and dynamic 766

loading technique,” IEEE Transactions on Information Forensics and 767

Security, vol. 12, no. 7, pp. 1529–1544, 2017. 768

	Introduction
	Related work
	Methodology
	Feature Extraction
	Model selection
	Training and Testing

	Adversarial Attacks countermeasures
	Case Study
	Support vector-based fabricated feature selection
	Comparison

	Conclusion and Future work
	Acknowledgment
	References

